Turning Data into

Something You Can Use

By Sarah E. Hutchinson and Stacey C. Sawyer
How Data and Programs Are Represented in the Computer

Before we study the inner workings of the processor, we need to expand on an earlier discussion of data representation in the computer—how the processor “understands” data. We started with a simple fact: electricity can be either on or off.

Other kinds of technology also use this two-state on/off arrangement. An electrical circuit may be open or closed. The magnetic pulses on a disk or tape may be present or absent. Current may be high voltage or low voltage. A punched card or tape may have a hole or not have a hole. This two-state situation allows computers to use the binary system to represent data and programs.


The decimal system that we are accustomed to has 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). By contrast, the binary system has only two digits: 0 and 1. (Bi- means “two.”) Thus, in the computer the 0 can be represented by the electrical current being off (or at low voltage) and the 1 by the current being on (or at high voltage). All data and programs that go into the computer are represented in terms of these numbers. For example, the letter H is a translation of the electronic signal 01001000, or off-on-off-off-on-off-off-off. When you press the key for H on the computer keyboard, the character is automatically converted into the series of electronic impulses that the computer recognizes.

Binary Coding Schemes

All the amazing things that computers do are based on binary numbers made up of 0s and 1s. Fortunately, we don’t have to enter data into the computer using groupings of 0s and 1s. Rather, data is encoded, or arranged, by means of binary, or digital, coding schemes to represent letters, numbers, and special characters.


There are many coding schemes. Two common ones are EBCDIC and ASCII. Both use 7 or 8 bits to form each byte, providing up to 256 combinations with which to form letters, numbers, and special characters, such as math symbols and Greek letters. One newer coding scheme uses 16 bits, enabling it to represent 65,536 unique characters.

· EBCDIC: Pronounced “eb-see-dick,” EBCDIC, which stands for Extended Binary Coded Decimal Interchange Code, is commonly used in IBM mainframes. EBCDIC is an 8-bit coding scheme, meaning that it can represent 256 characters. 

· ASCII: Pronounced “as-key,” ASCII, which stands for American Standard Code for Information Interchange, is the most widely used binary code with non-IBM mainframes and microcomputers. Whereas standard ASCII originally used 7 bits for each character, limiting its character set to 128, the more common extended ASCII uses 8 bits. 

· Unicode: Although ASCII can handle English and European languages well, it cannot handle all the characters of some other languages, such as Chinese and Japanese. Unicode, which was developed to deal with languages, uses 2 bytes (16 bits) for each character, instead of 1 byte (8 bits), enabling it to handle 65,536 character combinations rather than just 256. Although each Unicode character takes up twice as much memory space and disk space as each ASCII character, conversion to the Unicode standard seems likely. However, because most existing software applications and databases use the 8-bit standard, the conversion will take time.

The Parity Bit: Checking for Errors

Dust, electrical disturbance, weather conditions, and other factors can cause interference in a circuit or communications line that is transmitting a byte. How does the computer know if an error has occurred? Detection is accomplished by use of a parity bit. A parity bit, also called a check bit, is an extra bit attached to the end of a byte for purposes of checking for accuracy.


Parity schemes may be even parity or odd parity. In an even-parity scheme, for example, the ASCII letter H (01001000) consists of two 1s. Thus, the ninth bit, the parity bit, would be 0 in order to make an even number of set bits. Likewise, with the letter O (01001111), which has five 1s, the ninth bit would be 1 to make an even number of set bits. The system software in the computer automatically and continually checks the parity scheme for accuracy. 

Machine Language: Your Brand of Computer’s Very Own Language

So far we have been discussing how data is represented in the computer—for example, via ASCII code in microcomputers. But if data is represented this way in all microcomputers, why won’t word processing software that runs on an Apple Macintosh run (without special arrangements) on an IBM PC? In other words, why are these two microcomputer platforms incompatible? It’s because each hardware platform, or processor model family, has a unique machine language. Machine language is a binary programming language that the computer can run directly. To most people an instruction written in machine language is incomprehensible, consisting only of 0s and 1s. However, it is what the computer itself can understand, and the 0s and 1s represent precise storage locations and operations. 

Many people are initially confused by the difference between the 0 and 1 ASCII code used for data representation and the 0 and 1 code used in machine language. What’s the difference? ASCII is used for data files—that is, files containing only data in the form of ASCII code. Data files cannot be opened and worked on without execution programs, the software instructions that tell the computer what to do with the data files. These execution programs are run by the computer in the form of machine language.


But wouldn’t it be horrendously difficult for programmers to write complex applications programs in seemingly endless series of machine-language groups of 0s and 1s? Indeed it would, so they don’t. Instead, programmers write in special programming languages that more closely resemble human language. 

How Computer Capacity Is Expressed: Bit by Bit

How many 0s and 1s will a computer’s main memory or a storage device such as a hard disk hold? This is a very important matter. The following terms are used to denote capacity:

· Bit: In the binary system, the binary digit (bit)—0 or 1—is the smallest unit of measurement.

· Byte: To represent letters, numbers, or special characters (such as ! or *), bits are combined into groups. A group of 8 bits is called a byte, and a byte represents one character, digit, or other value. (For example, in one scheme, 01001000 represents the letter H.) The capacity of a computer’s memory or a diskette is expressed in numbers of bytes or generally in multiples of bytes.

· Kilobyte: A kilobyte (K, KB) is about 1000 bytes. (Actually, it’s precisely 1024 bytes, but the figure is commonly rounded.) The kilobyte was a common unit of measure for memory or secondary-storage capacity on older computers. The original IBM PC, for example, had 640 K (about 640,000 characters) of memory. An average printed page of text, such as in this book, would take up about 4100–4200 bytes, or 4.1–4.2 kilobytes of space.

· Megabyte: A megabyte (M, MB) is about 1 million bytes (1,048,576 bytes). Many measures of microcomputer capacity—such as for main memory and diskettes—are expressed in megabytes.

· Gigabyte: A gigabyte (G, GB) is about 1 billion bytes (1,073,741,824 bytes). This measure is used to measure the capacity of many microcomputer hard disks and the main memory capacity of mainframes and some supercomputers.

· Terabyte: A terabyte (T, TB) represents about 1 trillion bytes (1,009,511,627,776 bytes). This unit of measurement is used for some supercomputers’ main memory capacity.

The Processor, Main Memory, and Registers

How is the information in “information processing” in fact processed? As we mentioned in Chapter 1, this is the job of the circuitry known as the processor. In large computers such as mainframes, this device, along with main memory and some other basic circuitry, is also called the central processing unit (CPU); in microcomputers, it is often called the microprocessor. The processor works hand in hand with other circuits known as main memory and registers to carry out processing. Together these circuits form a closed world, which is opened only by connection to input/output devices, covered in Chapter 3.

The Processor: In Charge

The main processor follows the instructions of the software to manipulate data into information. The processor consists of two parts: (1) the control unit and (2) the arithmetic/logic unit. The two components are connected by a kind of electronic roadway called a bus. (A bus also connects these components with other parts of the microcomputer, as we will discuss.) 

· Control unit: The control unit tells the rest of the computer system how to carry out a program’s instructions. It directs the movement of electronic signals between main memory and the arithmetic/logic unit. It also directs these electronic signals between main memory and the input and output devices.

· Arithmetic/logic unit: The arithmetic/logic unit, or ALU, performs arithmetic operations and logical operations and controls the speed of those operations. As you might guess, arithmetic operations are the fundamental math operations: addition, subtraction, multiplication, and division. Logical operations are comparisons. That is, the ALU compares two pieces of data to see whether one is equal to (=), greater than (>), or less than (<) the other. The comparisons can also be combined, as in “greater than or equal to (≥)” and “less than or equal to (≤).”


In the most powerful computers, the CPU is contained on several relatively large printed circuit boards. In the case of a microcomputer’s microprocessor, the processor circuitry is etched on a thumbnail-size or slightly larger chip of silicon. The chip is mounted on a carrier with metal leads, or pins, on the bottom that plug into the computer’s main circuit board, called the system board. 

What is silicon, and why use it? Silicon is an element that is widely found in clay and sand. It is used not only because its abundance makes it cheap but also because it is a semiconductor. A semiconductor is material whose electrical properties are intermediate between a good conductor of electricity and a nonconductor of electricity. (An example of a good conductor of electricity is copper in household wiring; an example of a nonconductor is the plastic sheath around that wiring.) Because it is only a semiconductor, silicon has partial resistance to electricity. As a result, when good-conducting metals are overlaid on the silicon, the electronic circuitry of the integrated circuit can be created. 

Specialized Processor Chips: Assistants to the CPU

Actually, modern computers may have a number of processors in addition to the main processor. Each of these coprocessors is dedicated to a special job. Two common examples are math and graphics coprocessor chips. A math coprocessor chip helps programs using lots of mathematical equations to run faster. A graphics coprocessor chip enhances the performance of programs with lots of graphics and helps create complex screen displays. Specialized chips significantly increase the speed of a computer system by offloading work from the main processor. These chips may be plugged directly into the motherboard; however, often they are included on “daughter cards,” such as sound cards and graphics cards, used to expand a computer’s capabilities.

CISC, RISC, and MPP: Not All Processors Are Created Equal

Not all main processors are constructed exactly the same—a factor that also affects the speed of a computer system.

· CISC: CISC (pronounced sisk) for complex instruction set computer refers to the processor architecture (chip design) found in most conventional mainframes and personal computers. CISC chips support up to 200 instructions. One argument against CISC technology is that this great number of instructions gets in the way of processing speed.

· RISC: RISC (pronounced risk) for reduced instruction set computer refers to processors that support fewer instructions than do CISC chips. One advantage to RISC chips over CISC chips is that the reduced number of instructions enables them to execute instructions faster. RISC chips are also cheaper to produce because they require fewer transistors. Still, experts debate about the ultimate value of RISC technology. RISC chips work by shifting the computational burden from hardware to software. Skeptics argue that adding burden to software isn’t necessary because traditional CISC chips are getting faster and cheaper anyway. The entire argument may be unnecessary however because CISC and RISC chips are getting more alike. Not only do many of today’s RISC chips include as many instructions as CISC chips, but CISC chips are now incorporating features traditionally associated with RISC chips. Macintosh computers and many workstations use RISC technology.

· MPP: Computers with a CISC or RISC processor execute instructions one at a time—that is, serially. However, a computer with more than one processor can execute more than one instruction at a time, which is called parallel processing. Although some powerful microcomputers and workstations are available with more than one main processor, the most powerful computers, such as supercomputers, often use massively parallel processing (MPP), which spreads calculations over hundreds or even thousands of standard, inexpensive microprocessors of the type used in microcomputers. (Option Red has 9072 processors!) Tasks are parceled out to a great many processors, which work simultaneously.

MPP applications are composed of parts, called segments. When one segment executes an instruction, it must be able to communicate that action to the other segments in the application. For this reason, MPP machines are notoriously difficult to program. Still, with the right software, 100 small processors can often run a large program in far less time than the largest supercomputer running it in serial fashion, one instruction at a time.

Main Memory: Working Storage Area for the CPU

Mentioned briefly in Chapter 1, main memory—also known as memory, primary storage, internal memory, or RAM (random access memory)—is working storage. The term random access comes from the fact that data can be stored and retrieved at random—from anywhere in the electronic RAM chips—in approximately equal amounts of time, no matter what the specific data locations are. This circuitry has three tasks. (1) It holds data for processing. (2) It holds instructions (the programs) for processing the data. (3) It holds data that has been processed (become useful information) and is waiting to be sent to an output, storage, or communications device. 


Main memory is in effect the computer’s short-term storage capacity. It limits the total size of the programs and data files it can work on at any given moment. There are two important facts to know about main memory:

· Its contents are temporary: Once the power to the computer is turned off, all the data and programs within main memory simply vanish. This is why data must also be stored on disks and tapes—called “secondary storage” to distinguish them from main memory’s “primary storage.” Thus, main memory is said to be “volatile.” As mentioned earlier, volatile storage is temporary storage; the contents are lost when the power is turned off. Consequently, if your computer experiences a sudden power failure, whatever you are currently working on will immediately disappear. This impermanence is the reason why you should frequently save your work in progress to a secondary-storage medium such as a diskette or hard disk. By “frequently,” we mean every 3–5 minutes.

· Its capacity varies in different computers: The size of main memory is important. It determines how much data can be processed at once and how big and complex a program may be used to process it.

Main memory is contained on chips called RAM chips that use CMOS (complementary metal-oxide semiconductor) technology. Common RAM technologies are dynamic RAM (DRAM) and static RAM (SRAM). Because SRAM chips are more expensive and use more power, DRAM chips are used in most personal computers. The drawback to DRAM chips is that their contents must be constantly refreshed, making them less reliable than SRAM chips. 

Registers

The control unit and the ALU also contain registers, or special high-speed circuitry areas that temporarily store data during processing and provide working areas for computation. It could be said that main memory, which is outside the processor, holds material that will be used “a little bit later.” Registers, which are contained in the processor, hold material that is to be processed “immediately.” The computer loads the program instructions and data from main memory into the registers just before processing. There are several types of registers, including an instruction register, which holds the instruction being executed; an address register, which holds the addresses (locations) of data to be processed; a program register, which holds status information; and an accumulator, which holds the results of the ALU’s logic operations.

The Machine Cycle: How a Single Instruction Is Processed

How does the computer keep track of the characters of data or instructions in main memory? Like a system of post-office mailboxes, it uses addresses. An address is the location, designated by a unique number, in main memory in which a character of data or part of an instruction is stored during processing. To process each character, the processor’s control unit retrieves that character from its address in main memory and places it into a register. This is the first step in what is called the machine cycle.

The machine cycle comprises a series of operations performed to execute a single program instruction. It is the shortest interval in which an elementary operation can take place within the processor. The machine cycle consists of two parts: an instruction cycle, which fetches and decodes, and an execution cycle, which executes and stores. 

Instruction cycle: In the instruction cycle, or I-cycle, the control unit (1) fetches (gets) an instruction from main memory and (2) decodes that instruction (determines what it means).

Execution cycle: During the execution cycle, or E-cycle, the arithmetic/logic unit (3) executes the instruction (performs the operation on the data) and (4) stores the processed results in a register.


The details of the machine cycle are actually a bit more involved than this, but our description shows the general sequence. The machine cycle is important because a processor’s speed is often measured by the time it takes to complete one cycle.






