Chapter 11: Functional Organization of Nervous Tissue

I. Functions of the Nervous System

A. List and describe the five major nervous system functions:

	1	
	2	
	3	
	4	
	5	
II. Di	visions of the Nervous System	
A.	The Central Nervous System	
	1. What does the CNS consist of?	&
	2. At what point are the two compo	nents of the CNS continuous?
В.	The Peripheral Nervous System	
	1. What does the PNS consist of?	
	a	
	b	
	C	
	d.	

2. What are sensory receptors? _____ or ____

3.	Where are sensory receptors located?	
	a	
	b	
	C	
	d	
	e	
4.	What is a nerve?	
5.	Where do cranial nerves originate?	
	a. How many pairs of cranial nerves are there?	_
6.	Where do spinal nerves originate?	
	a. There are how many pairs of spinal nerves?	_
7.	A ganglion is a	
8.	What is a plexus?	
9.	Functionally the sensory or afferent division	· · · · · · · · · · · · · · · · · · ·
	a. The cell bodies of sensory neurons are located in:	
	1 or	
	2	
10.	Functionally the motor or efferent division	
11.	The motor division is divided into the:	
	a&	
	b	
12.	What is a synapse?	
13.	The somatic nervous system transmits	_ from
	to	
	a. Is this voluntary or involuntary (subconscious) control?	
14.	The autonomic nervous system transmits	_from
	to,, and	
	a. Is this voluntary or involuntary (subconscious) control?	
15.	The ANS is subdivided into the:	
	a	
	b	

c. ______
16. Functionally the sympathetic division: ______
17. Functionally the parasympathetic division: ______
18. The enteric nervous system consists of: ______
a. Why is it considered to be part of the ANS? ______

III. Cells of the Nervous System

A. Neurons

- 1. Functionally neurons or nerve cells _____
- 2. Structurally neurons are organized
- 3. Each neuron consists of a:
 - a. _____ or _____
 - b. And two types of processes:
 - 1. _____
 - 2. _____
- 4. Neuron Cell Body
 - a. Contains normal cellular organelles including:
 - 1. Nucleus which is _____
 - 2. Extensive _____
 - 3. _____ apparatuses
 - 4. Moderate _____
 - 5. Randomly arranged ______ & _____
 - a. These increase as _____
 - 6. Large numbers of _____ & _____
 - 7. What are Nissl bodies?
- 5. Dendrites
 - a. Describe the structure of a dendrite _____
 - b. What are dendritic spines?

	c.	When stimulated dendrites				
6.	Ax	ons				
	a. Describe the structure of an axon hillock?					
	1. What arises at the axon hillock?					
	b. The beginning of an axon is called the					
	c. Branches of an axon are called or					
	d. What is axoplasm?					
	e.	What is an axolemma?				
	f.	Enlarged structures on the terminal end of an axon are called				
		or				
		1. These structures contain numerous				
	g.	Functionally neurotransmitters				
	h.	What is a trigger zone and what does it do?				
Ту	pes	of Neurons				
1.	Fu	nctional classification is based on the direction of action potentials:				
	a.					
		Neurons that carry action potentials toward the CNS are				
	b.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or				
	b.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or				
	b. c.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are				
	b. c.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are or				
2.	b. c. Str	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are or ructural classification is based on the number of processes:				
2.	b. c. Str a.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are or ructural classification is based on the number of processes: Describe the structure of a multipolar neuron:				
2.	b. c. Str a.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are or ructural classification is based on the number of processes: Describe the structure of a multipolar neuron:				
2.	b. c. Str a.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are or ructural classification is based on the number of processes: Describe the structure of a multipolar neuron: 1. Where would you find multipolar neurons?				
2.	b. c. Str a. b.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are or ructural classification is based on the number of processes: Describe the structure of a multipolar neuron: 1. Where would you find multipolar neurons? Describe the structure of a bipolar neuron:				
2.	b. c. Str a. b.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are or or ructural classification is based on the number of processes: Describe the structure of a multipolar neuron: 1. Where would you find multipolar neurons? Describe the structure of a bipolar neuron:				
2.	b. c. Str a. b.	Neurons that carry action potentials toward the CNS are Neurons that carry action potentials away from the CNS to muscles or glands are or Neurons that carry action potentials within the CNS are or or touctural classification is based on the number of processes: Describe the structure of a multipolar neuron: 1. Where would you find multipolar neurons? Describe the structure of a bipolar neuron: 1. Where would you find bipolar neurons?				

Β.

		1. Where would you find unipolar neurons?	
C. Ne	eurc	roglia of the CNS	
1.	As	Astrocytes	
	a.	Astrocytes are-star shaped because	
	b.	b. What is a foot process?	
	C.	. What do foot processes cover?	
		1	
		2	
		3	
	d.	I. The extensive cytoskeleton of microfilaments allow them to	
	e.	e. Functionally astrocytes play a role in	
		1. What is the blood-brain barrier?	
		 Functionally the blood-brain barrier: Protects 	
		D. Allows	
		3 Astrocytes also regulate the concentration of	8.
		and & ne	_ «
2	Fr	Enendymal Cells	
۷.	⊢r a	Where do you find ependymal cells?	
	b.	 What is a choroid plexus composed of? 	· · · · · · · · · · · · · · · · · · ·
		1. Where would you find a choroid plexus?	
	C.	. Functionally a choroid plexus?	
	d.	I. What do the cilia on ependymal cells do?	
	e.	e. What do the long processes of ependymal cells do?	
3.	Mi	/icroglia	

			b. In response to inflammation they become	&	
		4.	Oligodendrocytes		
			a. Oligodendrocytes have that can _		axons
			b. If they wrap around axons many times it forms		
			c. One oligodendrocyte can form		_axons
	D.	Ne	euroglia of the PNS		
		1.	Schwann cells or neurolemmocytes	axons	
			a. If they wrap around the axon many times it forms		
			b. Each Schwann cell wraps around	axon	
		2.	Where are satellite cells found?		
			a. Functionally satellite cells		
	E.	My	elinated and Unmyelinated Axons		
		1.	Myelin and	axons	
		2.	Action potentials travel fastest in		_
		3.	Structurally how is a myelin sheath formed?	·····	
		4.	What is the myelin sheath composed of?		
		5.	Interruptions in the myelin sheath are called		
		6.	The myelinated segments are known as		
		7.	How is an unmyelinated axon associated with an oligodence	lrocyte or a	
			Schwann cell?		
IV.	Or	gaı	nization of Nervous Tissue		
	Α.	W	hite matter is composed of		
		1.	The white color is due to the presence of		
	В.	Gr	ay matter is composed of		
	C.	W	hat are nerve tracts?		
	D.	Fu	inctionally the gray matter of the CNS		

	Ε.	W	hat is the cortex?		
	F.	The nuclei are			
	G.	. Nerves of the PNS are composed of			
	Н.	Ga	anglia are		
V.	Ele	ect	ric Signals		
	A.	Сс	oncentration Differences Across the Plasma Membrane		
		1.	What ions have a higher concentration outside the cell than inside the cell?		
			a		
			b.		
		2.	What ions have a higher concentration inside the cell than outside the cell?		
			a.		
			b. such as &		
		3.	There is a steep concentration gradient from outside to inside for		
		4.	There is a steep concentration gradient from inside to outside for		
		5.	Describe the actions of the sodium-potassium exchange pump:		
		-			
			a. Is this a one for one ion exchange?		
		6.	Negatively charged proteins are synthesized		
		•	a. They cannot readily diffuse across the plasma membrane because of:		
			1 &		
			2		
		7	The negatively charged molecules inside the cell repel		
			a This causes an of outside the cell		
		8	Nongated Ion Channels (Leak Channels)		
		0.	a These channels are always and are responsible for the		
			when the cell is at rest		
			h Each ion channel is for of ion		
			b. Each for charmen's for of 0 for 0		
			C. The memorane is more permeable to K and CI because		

	9.	Ga	ated Ion Channels	
		a.	Open and close in response to	
		b.	Opening and closing changes the	of the membrane
		C.	Ligand-gated ion channels open or close in response to	
			1. What is a ligand?	
			2. What is a receptor?	
		d.	What four substances do ligand-gated ion channels exist	for?
			1 2 3	4
		e.	Voltage-gated ion channels open and close in response	to
		f.	What three substances do voltage-gated ion channels ex	kist for?
			1 2 3	
		g.	Other-gated ion channels respond to stimuli such as:	
			1 of the skin in touch receptor	rs
			2 changes in the skin	
В.	Th	ne R	esting Membrane Potential	
	1.	W	nat is the potential difference?	
	2.	In	skeletal muscle fibers and nerve cells the potential differe	nce is equal to
		а.	Why is this reported as a negative number?	
		b.	What does "resting membrane potential" refer to?	
	3.	Es	tablishing the Resting Membrane Potential	
		a.	The resting membrane potential results from the:	
			1. Permeability	&
			2. Difference	
		b.	Why is the membrane permeable to K ⁺ ?	
		C.	Why do K^* move through the membrane?	
		d.	What is too big to move through the membrane?	

		e.	Together the movement of K^+ and the ions that do not move make the
		f.	Why is the resting membrane potential at equilibrium?
		g.	What other ions have a small influence on the resting membrane
			potential? 1 2 3
		h.	Why does K ⁺ play the major role?
		i.	What mechanism keeps the concentration of Na^+ high outside the cell and
			the concentration of K^+ high inside the cell?
			1. Does this play a role in the resting membrane potential?
C.	Lo	cal	Potentials
	1.	Wł	nat is a local potential?
	2.	Lo	cal potentials can result from:
		a.	
		b.	
		C.	
		d.	
		e.	
	3.	Th	e change in the membrane may be depolarization or hyperpolarization:
		a.	If a stimulus opens Na⁺ channels
		b.	If a stimulus opens K⁺ channels
	4.	Wł	ny are local potentials referred to as "graded"?
	5.	Wł	nat happens when local potentials "summate"?
	6.	Wł	nat happens to the intensity of a local potential as it spreads?
D.	Ac	tion	Potentials
	1.	W	nat is a threshold level?

2. An action potential is _____

- 3. For each of the following indicate if they may generate an action potential:
 - a. Depolarizing local potentials _____
 - b. Hyperpolarizing local potentials _____
 - c. Small local potentials _____
 - d. Large local potentials _____
- 4. Describe what is meant by the "all" part of the all-or-none principle: ______
- 5. Describe what is meant by the "none" part of the all-or-none principle:

6. Depolarization Phase

a. List the events that occur after a threshold depolarization is reached:

	1. Many
	2. Na ⁺
	3. Resulting
	4. More
	5. Causing
	6. In turn
	a. This is a feedback cycle that continues until
b.	When the plasma membrane is at rest:
	1. Which gate on the voltage-gated Na $^{+}$ channel is closed?
	2. Which gate on the voltage-gated Na ⁺ channel is open?
C.	When threshold is reached the to open and
	allows into the cell
d.	When the plasma membrane is at rest voltage-gated $K^{^+}$ channels are
e.	When threshold is reached the voltage-gated $K^{\scriptscriptstyle +}$ channels begin to
	1. But because the channels open little K^+ moves out of cell

7. Repolarization Phase

- a. List the events that occur at maximum depolarization:
 - 1. Change in
 - 2. Causes _____
 - a. So the permeability _____
 - Voltage-gated K⁺ channels continue ______
 - 4. As a result the membrane permeability to:
 - a. _____ decreases
 - b. _____ increases
 - 5. The decreased diffusion of ______ and increased diffusion of ______ causes repolarization
- b. At the end of repolarization the voltage-gated Na⁺ channels are returned to their resting state by:
 - 1. Closing ______
 - 2. Opening _____

8. Afterpotential (Hyperpolarization)

- a. What causes the afterpotential?
- b. All the action potentials produced by a cell are identical because they all:
 - 1. Take _____
 - 2. Exhibit _____

E. Refractory Period

- 1. What is the refractory period?
- 2. The absolute refractory period is:
 - a. From _____
 - b. Until
- 3. The absolute refractory period guarantees that:
 - a. Once an action potential is begun _____
 - b. A strong stimulus cannot _____
- 4. The relative refractory period follows _____

5. During the relative refractory period an action potential can be initiated by

F. Action Potential Frequency

- 1. The action potential frequency is _____
- 2. How many action potentials will each of the following stimuli produce:
 - a. Subthreshold stimulus
 - b. Threshold stimulus _____
 - c. Maximal stimulus _____
- Submaximal stimulus includes all stimuli between ______ & ______
- 4. What is a supramaximal stimulus?
- 5. What determines the maximum frequency of action potentials in a cell?
- 6. Frequency of action potentials provides information about stimulus strength:
 - a. A weak stimulus generates _____
 - b. A strong stimulus generates _____
- Is there a difference in the magnitude of action potentials produced by weak or strong stimuli?
- 8. Frequency of action potentials determines response of muscle or gland:
 - a. Less secretion or contraction is stimulated by _____
 - b. More secretion or contraction is stimulated by _____
- G. Propagation of Action Potentials
 - 1. Propagate refers to the spread _____
 - a. This is accomplished because an action potential at one location _____
 - 2. In an unmyelinated axon, when an action potential is produced:
 - a. Inside of the membrane
 - b. On the outside positively _____
 - c. On the inside positively _____
 - 1. The movement of positively charged ions is called ______
 - As a result of the ion movement the membrane immediately adjacent to the action potential is ______

- a. When it reaches threshold an _____
- 3. In a myelinated axon, an action potential is conducted from ______

to ______ in a process called ______

- a. The lipids of the myelin sheath act as _____
- b. An action potential at one node of Ranvier generates local currents that
- 4. Action potentials travel faster in myelinated axons because:
 - a. They are formed _____
 - b. Instead of being _____
- 5. Does an action potential move faster through a large-diameter axon or a small-diameter axon?
- 6. Complete the following data table:

Nerve Fiber	Diameter	Myelination	Speed
Туре А			
Туре В			
Туре С			

- 7. Type A fibers are used for _____
- 8. Type B and C fibers are used for _____

VI. The Synapse

- A. Terminology
 - 1. What is a synapse? _____
 - 2. Define presynaptic cell:
 - 3. Define postsynaptic cell:
- B. Electrical Synapses
 - 1. Electrical synapses are gap junctions that allow _____
 - 2. What are connexons?
 - Movement of ions through the connexons can ______
 - a. Therefore an action potential in one cell

	4.	W	here would you find electrical synapses?
		a.	
		b.	
C.	Ch	nem	ical Synapses
	1.	De	escribe the three essential components of a chemical synapse:
		a.	Presynaptic terminal
		b.	Synaptic cleft
		C.	Postsynaptic membrane
			1. These are typically,, or
	2.	Ne	eurotransmitter Release
		a.	List the events that occur when an action potential arrives at the
			presynaptic terminal:
			1. Voltage
			2. Ca ²⁺
			3. Synaptic vesicles
			4. Release
		b.	When neurotransmitters are released:
			1. Diffuse
			2. Bind
		C.	Depending on the receptor, the binding produces:
			1 or
			2
	3.	Ne	eurotransmitter Removal
		a.	There are three primary methods of removing neurotransmitter:
			1. Neurotransmitter is broken down by
			a. An example of this is acetylcholine being broken down by
			2. Neurotransmitter is actively transported
			and repackaged into
			3. Diffusion of neurotransmitter molecules
			and into

- 4. Receptor Molecules in Synapses
 - a. Receptor molecules in synapses are:
 - 1. Membrane
 - 2. Ligand ______
 - 3. Highly _____
 - b. How many different neurotransmitters can bind to one type of receptor?

 _____Why? _____
 - c. Neurotransmitters only affect cells _____
 - d. Different types of receptors for the same neurotransmitter results in
 - 1. One type of norepinephrine receptor will cause
 - 2. Another type of norepinephrine receptor will cause _____
- 5. Neurotransmitters and Neuromodulators
 - a. Some neurons can secrete more than one type of _____
 - 1. The physiological significance is _____
 - b. What is the function of a neuromodulator? ______
- 6. Excitatory and Inhibitory Postsynaptic Potentials
 - a. What is an excitatory postsynaptic potential?
 - b. EPSP's are important because _____
 - c. What is an excitatory neuron?
 - d. Generally an EPSP occurs because of an increase
 - e. What is an inhibitory postsynaptic potential?
 - f. IPSP's are important because _____
 - g. What is an inhibitory neuron?
 - h. An IPSP occurs because of an increase _____

- 7. Presynaptic Inhibition and Facilitation
 - a. What is an axoaxonic synapse? _____
 - Neuromodulators released in an axoaxonic synapse can alter ______
 - c. In presynaptic inhibition _____
 - d. Functionally endorphins inhibit neurons by _____
 - 1. This prevents _____
 - e. In presynaptic facilitation _____
- D. Spatial and Temporal Summation
 - 1. A single presynaptic action potential does not reach _____
 - and produce an ______ in the postsynaptic membrane.
 - 2. What is summation?
 - 3. What is the trigger zone?
 - 4. The concentration of Na⁺ channels at the trigger zone is _____
 - Spatial summation occurs when two action potentials arrive ______
 - at ______ that synapse with ______
 - a. The local depolarizations in the postsynaptic neuron summate at the

_____ and if it reaches threshold ______

- Temporal summation occurs when two or more action potentials arrive _____
 at a single presynaptic terminal
 - a. Although local depolarizations are short lived if the action potentials arrive close enough together they can _____
 - b. If the summated local depolarization reaches ______ at the ______ then ______ in the postsynaptic neuron
- If a postsynaptic neuron is receiving EPSP's and IPSP's at the same time what determines if an action potential will be created in the postsynaptic neuron?

VII. Neuronal Pathways and Circuits

- A. In convergent pathways
 - 1. If some presynaptic neurons are inhibitory and some are excitatory _____
- B. In divergent pathways _____
 - 1. Describe the simplest divergent pathway _____
- C. Oscillating circuits have neurons arranged in _____
 - 1. This allows _____
 - a. This response is called _____
 - 2. Oscillating circuits are similar to _____
 - 3. What causes an oscillating circuit to stop?
 - a. ______ or
 - b. _____