Chapter 26: Urinary System

I. Functions of the Urinary System

		st and describe the six major functions of the kidneys:
	• • •	
		·
	2.	
	3.	
	-	
	4.	
	5.	
	J.	•
	6.	
ш	Kidn	ey Anatomy and Histology
		ocation and External Anatomy of the Kidneys
		Describe the size and shape of the kidneys:
	2.	The kidneys lie on the
		on either side of
		near the
	3.	Why is the right kidney lower than the left?

	4.	What is the renal capsule?	 						
		What is perirenal fat?							
		a. Functionally the perirenal fat acts as							
	6.	What is the structure of the renal fascia?							
		a. Functionally the renal fascia anchors							
	7.	The hilum is a that lies on							
		a. What structures enter here?							
		b. What structures exit here?							
	8.	The hilum opens into the	that contains						
В.	Int	ternal Anatomy and Histology of the Kidneys							
	1.	The renal sinus is surrounded by an inner	and an outer						
	2.	2. What are renal pyramids?							
	3.	Medullary rays extend from the int	0						
	4.	What are renal columns?							
	5.	5. The bases of the pyramids form the boundary between the							
		and the							
	6.	The tips of the renal pyramids, called	, point toward						
	7.	What are minor calyces?							
	8.	Minor calyces from several pyramids join together to form							
	9.	The major calyces converge to form an enlarged chamber c	alled the						
		which is surrounded by the							
1	0.	The renal pelvis narrows into a small-diameter tube the							
		which exits the kidney at the and connects to _							
1	1.	Nephron							
		a. The nephron is the and	of the kidney						
		b. Each nephron is a tubelike structure with an:							
		Enlarged terminal end called							
		2. Proximal							

	3. Loop of	() and a
	4. Distal		
C.	The distal tubule empties in		, which carries
	urine toward the		
d.	Several collecting ducts me	erge to form a larger di	ameter tubule called a
		which empties into a	
e.	Which structures are locate	d in the renal cortex?	
	1		
	2		
	3		
f.	Which structures are locate	d in the renal medulla	?
	1		
	2		
g.	Nephrons whose renal corp	ouscles lie near the me	edulla are called
	1. They have long	whic	– ch extend deep into the
	2. These account for only	– about of	nephrons
h.	The remainder of the nephr	ons are called	
	1. Their loops of Henle do	not	
i.	Each renal corpuscle consi	sts of:	
	1. Enlarged end of a neph	ron called	
	2. Network of capillaries ca	alled	
	3. The wall of the Bowman	's capsule is indented	to form a
	4. The glomerulus fills the		
	5. Fluid flows from the	to the	to the
j.	Bowman's capsule has an:		
	1. Outer layer called the _		_
	2. Inner layer called the		_
	3. The parietal layer consist	sts of	that

		becomes	at the beginning			
	4.		composed of specialized			
		that wrap around the	,			
k.	Wł	hat are fenestrae?				
l.	Wł	hat are filtration slits?				
			embrane sandwiched between the			
			_ & the			
n.	Th	e kidney's filtration m	embrane consists of:			
	1.	Capillary				
	2.	·	membrane			
			of Bowman's capsule			
Ο.	Uri	ine formation begins	when material moves from			
	acı	ross the	into the			
p.	Wł	hat supplies blood to	the glomerulus?			
q.	Wh	hat drains blood from	the glomerulus?			
r.	Wł	here the afferent arter	iole enters the glomerulus the smooth muscle			
	cells form a cufflike arrangement called					
s.	In t	the distal tubule adjad	cent to the afferent arteriole there are specialized			
	ері	ithelial cells called the	e			
t.	Th	e juxtaglomerular cel	s and macula densa are collectively called the			
u.	Th	e proximal tubule is a	lso called the			
	The wall of the tubule is made up of					
	2.	The luminal surface	of the cells have many			
٧.	Th	e loops of Henle are	continuations of the			
	1.	Each loop has two li	mbs, one and one			
	2.	The first part of the o	lescending is similar in structure to the			
	3.	The loops of Henle t	hat extend into the medulla become			
		near th	e end of the loop			
		a. Lumen	in the thin part			

				b. Abrupt transition from	to
			4.	The first part of the ascending limb is consists of	
			5	Then it becomes and _	
			٥.	is replaced by	
			6.	The thick part of the ascending limb returns toward	
				and ends	
		W.	Th	e distal tubules are also called	_
				The wall is composed of	
				a. Cells are than in the	e proximal tubule
				b. Cells do not possess a large number of	
			2.	The distal tubules connect to	
		Χ.	Th	e collecting ducts are composed of	· · · · · · · · · · · · · · · · · · ·
			1.	Their diameter is	
			2.	They form much of the	
			3.	Extend through the toward the tips	of
C.	Ar	terie	es a	and Veins of the Kidneys	
	1.	Th	e re	enal artery branches off the	and enters the
		kic	lney	y at the	
	2.	Th	e fi	rst branches of the renal artery are called	
	3.	Th	ese	e diverge to form	which ascend
		wit	thin	the renal column toward the cortex	
	4.	Th	ese	arteries branch at the base of the pyramids and	arch over the
		ру	ram	ids forming the	
	5.			er branches off the arched arteries project into the	
		ca	lled		
	6.			ed from these small vessels are the	which
		su	pply	y blood to the glomerular capillaries of the	
	7.	Blo	ood	is carried away from the glomerular capillaries in	the

	8.	This vessel gives rise to a plexus of capillaries called the
		around the proximal and distal tubules
		a. Specialized branches that follow the loop of Henle deep into the medulla
		and back are called
	9.	The plexus of capillaries drains into the
1	0.	Which in turn drain into the
1	1.	Which empty into the
1	2.	Which drain into the, which exits the kidney and
		connects to the
II. An	ato	my and Histology of the Ureters and Urinary Bladder
A.	Ar	natomy
	1.	What are the ureters?
	2.	The ureters leave the renal pelvis of each kidney at the
		and extend & to the urinary bladder
	3.	The urinary bladder is described as a
		that lies
	4.	Where do the ureters enter the bladder?
	5.	The urinary bladder is positioned:
		a. In the male
		b. In the female
	6.	Functionally the urethra
	7.	Where does the urethra exit the bladder?
	8.	The triangular area marked by the two ureters and the urethra is called the
C.	Hi	stology
	1.	What kind of epithelium lines the ureters and bladder?
	2.	The rest of the walls consist of a:
		a
		b
		C

	3.	Th	e wall of the urinary bladder is			than the ureters
		a.	This is caused by layers, compo	sed pr	imarily of	· · · · · · · · · · · · · · · · · · ·
			external to the epithelium			
	4.	Tra	ansitional epithelium is specialize	d so th	at cells	
		an	d the number of cell layers		as the	volume
		a.	How many cells thick when the u	ırinary	bladder is en	npty?
		b.	How many cells thick when the t	ırinary	bladder is ful	l?
	5.	WI	nere the urethra exits the urinary	bladde	r	
		an	d keeps	s urine	from flowing	out of the bladder until
		pre	essure			
		a.	In males the tissue	and _	m	nuscle form an
					which contrac	cts to keep
			from entering the bladder			
	6.	Th	e external urinary sphincter is co	mpose	d of	
		a.	It surrounds the urethra as it ext	ends _		
		b.	The sphincter acts like a		that	the flow of urine
			through the urethra			
	7.	Th	e urethra opens to the outside:			
		a.	In the male at			-
		b.	In the female into the			anterior to the
IV. L	Jrine	Pro	duction			
Α	۱. G	ener	al			
	1.	WI	ny are nephrons called the function	nal un	its of the kidr	ney?
	2.	Th	e three major processes critical to	the fo	ormation of u	rine are:
		a.				
		b.				
	3.	De	scribe the process of filtration:		· · · · · · · · · · · · · · · · · · ·	

	4.	a. The fluid entering the nephron is called the Describe the process of reabsorption:					
		a. What is reabsorbed?					
		b. What is not reabsorbed?					
	5.	Describe the process of secretion:					
	6.	Urine produced by the nephrons consists of:					
		a and filtered and secreted					
		b. Minus and reabsorbed					
В.	Fil	tration					
	1.	What is the renal fraction?					
		a. In a healthy resting adult it varies from					
		b. This results in an average renal blood flow rate of					
	2.	Define "renal plasma flow rate":					
		a. It is equal to multiplied by the					
		portion of blood that is					
	3.	What is the filtration fraction?					
		· · · · · · · · · · · · · · · · · · ·					
	4.	What is the glomerular filtration rate (GFR)?					
		a. This is approximately each minute					
		b. With this GFR approximately how much filtrate is made a day?					
		Approximately how much of this is reabsorbed?					
	5.	Filtration Barrier					
		a. The filtration membrane is a and prevents:					
		1 and from entering					
		Bowman's capsule					
		2. Allows other to enter					

	b.	The filtration membrane is
		permeable than a typical capillary
		1 and solutes of a readily pass
		through the filtration membrane from the glomerular capillaries
		2 molecules do not pass through
	C.	In general the membrane prevents molecules from passing that are
		1. Larger than
		2. Have a molecular mass of or more
	d.	What is the size of most plasma proteins?
		Do they pass through the filtration membrane?
	e.	What is the diameter of an albumin molecule?
		1. This allows amounts to enter the filtrate
	f.	Do protein hormones pass through the filtration membrane?
	g.	What happens in the proximal tubule to proteins in the filtrate?
		Actively reabsorbed by
		2 by the cells
		a. As a result is normally found in the urine
6.	Fil	tration Pressure
	a.	Filtration pressure forces fluid from the across
		the into the
	b.	Filtration pressure results from the sum of the forces that:
		Move fluid out of the glomerular capillary into
		2. Move fluid out of the lumen of Bowman's capsule into the
		
	C.	The glomerular capillary pressure is inside the capillary
		It moves fluid of the capillary Bowman's capsule
		The glomerular capillary pressure averages
	d.	Capsule pressure is caused by filtrate
		1. It the movement of fluid into Bowman's capsule
		2. The capsule pressure averages

е	. Co	Colloid osmotic pressure within the glomerular capillary exists because				
	1.	Proteins in the glomerular capillary produce an				
		of about that favors fluid movement to the				
		from				
f.	Th	e high glomerular capillary pressure results from a:				
	1.	Low resistance to blood flow in the and				
	2.	Higher resistance to blood flow in the				
	3.	As the diameter of a vessel decreases:				
		a. Resistance to flow through the vessel				
		b. Pressure upstream from the decreased diameter is	_			
		c. Pressure downstream from the decreased diameter is lower				
	4.	Since the efferent arterioles have a small diameter:				
		Blood pressure in the glomerular capillaries is				
		Results in filtrate being forced				
		b. Blood pressure in the peritubular capillaries is				
		1. Allows fluid to from the	-			
C. Tubu	ılar F	Reabsorption				
1. T	ubul	ar reabsorption results from processes such as:				
а		d				
b		e				
С						
2. lr	norga	anic salts, organic molecules, and about 99% of the filtrate volume				
le	eave	the nephron and enter				
а	. Th	e material then enters the				
	an	d pass back into general circulation				

3.	Sc	plutes reabsorbed from the lumen of the nephron to interstitial fluid include:
	a.	e
	b.	f
	C.	g
	d.	h
4.	As	solutes are reabsorbed from the nephron water follows by
5.	Th	e small volume of filtrate that forms urine contains a relatively high
	СО	ncentration of:
	a.	C.
	b.	d
	e.	Other substances that are
6.	Re	egulation of solute reabsorption and the permeability characteristics of
	ро	rtions of the nephron allow for production of:
	a.	Small volume ofOR
	b.	Large volume of
7.	Re	eabsorption in the Proximal Tubule
	a.	The cells that form the wall of the nephron have:
		Apical surface which makes
		2. Basal surface which forms
		Lateral surfaces which are bound
	b.	In the proximal tubule reabsorption of most solute is linked to the primary
		of across the
		of the epithelial cells from the into the
		creating a low inside the cells
	C.	At the basal cell membrane:
		1. ATP provides the required energy to move out of the cell
		in exchange for by
		2. Concentration of is high in the lumen of the tubule so
		there is a large between the lumen of the
		tubule and the of the nephron cells

		1. This concentration gradient is the source of energy for the
		of many solute molecules from the lumen
		of the nephron into the
d.	Ca	arrier molecules that transport useful solutes like glucose and amino
	ac	ids are located within the
	1.	Each carrier molecule binds specifically to one
		and to
	2.	As the Na ⁺ moves down the concentration gradient from inside the
		lumen of the tubule to inside the epithelial cell:
		a. Both the and other or
		bound to the carrier molecule move
		b. From the into the
	3.	Once the cotransported molecules are inside the cell they cross the
		of the cell by
e.	So	me solutes also between the cells from the
	lur	nen of the into the
f.	Re	eabsorption of solutes in the proximal tubule is
	an	d the tubule is to
	1.	As solute molecules are reabsorbed water follows by
g.	Ab	out how much filtrate is reabsorbed in the proximal tubule?
Re	abs	sorption in the Loop of Henle
a.	Th	e loop of Henle descends into the
b.	In	the medulla the concentration of solutes is
C.	Th	e thin segment of the loop of Henle (descending limb) is:
	1.	to water
	2.	to urea, sodium, and other ions
	3.	Adapted to allow passive movements of but
		passes through more
	4.	As the filtrate passes through the thin segment of the loop of Henle:
		a. Water moves
		b. Some solutes move

	5.	5. By the time the filtrate reaches the end of the thin segment:	
		Volume of filtrate has been	
		b. Concentration of the filtrate	
d.	In	n the ascending limb of Henle, both the thin and thick segments are	
		so no additional	
	1.	. Surrounded by interstitial fluid that becomes	
		toward the cortex	
	2.	2. As the filtrate flows through the thin segment solutes	
		into the making filtrate	
	3.	3. In the thick segment of the ascending limb of the loop of Henle:	
		a. Cotransport is responsible for the movement of,	,
		& across the apical membrane into the cell	
	4.	From the epithelial cells to the interstitial fluid:	
		a. Cl⁻ and K⁺ move by	
		b. Na ⁺ moves by	
	5.	5. Because the ascending limb of the loop of Henle is:	
		a. Impermeable to & ions	
		The concentration of solutes in the filtrate is	
		by the time it reaches the distal tubule	
Re	eabs	bsorption in the Distal Tubule and Collecting Duct	
a.	In	n the distal tubules and collecting ducts:	
	1.	is transported across the apical membrane with	
		a. The active transport of Na ⁺ across the membrane	Э
		creates the gradient	
	2.	2. The collecting ducts extend from the of the kidr	ey
		through the of the kidney where solute concent	ration
		is	
	3.	Water moves by into the more concentrated inte	rstitia
		fluid:	
		When the distal tubule and collecting duct are	
		Producing a volume of	urine

			4.	W	ater does ı	not move b	у	into th	ne interstitia	l fluid:
				a.	When the	distal tubu	ule and	collecting duc	ct are	
					1. Produ	cing a		volume	of	urine
			5.	Fc	rmation of	dilute or c	oncentr	ated urine is ι	under	
1	0.	Ch	ang	ges	in the Cor	ncentration	of Solu	tes in the Nep	ohron	
		a.	Ur	ea	enters the	glomerular	filtrate	and is in the		
					the plasma					
		b.	As	the	e volume o	f filtrate de	creases	s in the nephro	on:	
			1.	Co	oncentratio	n of urea _			becaus	e the renal
				tul	oules are r	nore perme	eable to	·		
								bed?		
				b.	How muc	h urea is re	eabsorb	ed?		
		C.	W					absorbed at th		
			1.				4.			
			2.				5.			
			3.				6.			
		d.	Th	еу	all become	e more			_ in the filtra	te as the
			vo	lum	e of the fil	trate becon	nes			
		e.	lf t	hes	se substan	ces accum	ulate in	the body they	y are	
		f.	Th	eir	accumulat	ion in the f	iltrate a	nd		in urine
			he	lp r	naintain					
D.	Tu	bul	ar S	Sec	retion					
	1.	Tu	bul	ar s	ecretion in	volves the	moven	nent of substa	nces such a	as:
		a.	Ву	-pr	oducts of _					
		b.	Dr	ugs	or molecu	ıles				
			1.	Tr	iese subst	ances are i	moved i	into		
	2.	Tu	bul	ar s	secretion c	an occur by	y either		or	processes
	3.	W	nat	sub	stance dif	fuses into l	umen o	f the nephron	?	
	4.	W	nat	suk	stances a	re secreted	by act	ive transport o	or countertra	ansport?
		a.					C.			
		b.					d.			

	5.	ne example of a countertransport process moves H ⁺ into the filtrate:	
		The carrier molecule is on the apical surface of the nephron cell:	
		1. H ⁺ bind to the carrier molecule on the	
		2. Na ⁺ bind to the carrier molecule on the	
		a. As Na ⁺ move into the cell	_ cell
		The H ⁺ are produced as a result of:	
		1 and read	cting
		2. To form and	
		and are cotransported across the	
		of the cell and enter the	
Ε.	Ur	Concentration Mechanism	
	1.	hen a large volume of water is consumed it is necessary to:	
		Eliminate water without	
		Losing homeost	asis
		The response of the kidneys is to produce a volu	ume
		of urine	
		If water is not available this would lead to	
	2.	hen water intake is restricted the kidneys produce a vol	lume
		urine that contains	
		prevent their accumulation	
	3.	ne kidneys can produce urine concentrations that vary between	
		nd while maintaining extracellular fluid close to	_
	4.	onditions that are essential for the kidneys to control the volume and	
		encentration of urine produced include:	
		Maintenance of	
		Countercurrent	
		Mechanism that	
	5.	edullary Concentration Gradient	
		What is the interstitial fluid concentration in the cortical region of the	
		kidney?	
		Solutes become in the medulla	

	un	ntil they reachnear the								
C.	Th	he major mechanisms that create and maintain the h	nigh solute							
	СО	oncentrations in the medulla include:								
	1.	Active transport of and the cotranspo	rt of ions out of							
			into							
		the								
	2.	Diffusion of smaller amounts of than								
		the into								
	3.	The vasa recta remove water and solutes that entending without								
	4.	Active transport of ions from the	to the							
		of the medu	of the medulla							
	5.	Passive diffusion of	to the							
		of the medu	ılla							
d.	Th	he roles of each of these mechanisms in the mainter	nance of the high							
	solute concentration in the medulla of the kidney includes:									
	1.	Loops of Henle								
		a. Descending limbs of the loop of Henle:								
		1. Are permeable to water so as filtrate flows t	hrough water							
		into the								
		b. Ascending limbs of the loop of Henle:								
		1. Are to water								
		2. Solutes out of the thin segmen	nt as it passes							
		through								
		The thick segment actively transports	_,, and							
		into the								
		c. Water enters interstitial fluid from the								
		d. Solutes enter interstitial fluid from the								
	2.	The Vasa Recta								
		a. What are countercurrent systems?								

b.	The vasa recta are a countercurrent system because:							
	Blood flows through them to the							
	2. After the vessels							
	3. Blood is carried							
c.	Walls of the vasa recta are permeable to & _	 						
d.	As blood flows toward the medulla:							
	1. Water							
	2. Some solutes							
e.	As blood flows back toward the cortex:							
	1. Water moves							
	2. Some solutes							
f.	The rates of diffusion are such that	and						
	are carried from the medulla by the	vasa recta						
g.	The composition of the blood at both ends of the vasa re	cta is						
	1. Nearly							
	2. Volume and osmolality							
h.	The loops of Henle and vasa recta are in:							
	1. Parallel & their							
	2. Functions							
	a. Water and solutes that leave the							
	enter the							
	b. Vasa recta carry the water and solutes away with	out						
Ur	ea							
	Urea molecules are responsible for							
h	December 1 imbs are narmachle to uree as uree diffuse							
D.	Descending limbs are permeable to urea so urea diffuse into the							
C.	The ascending limbs and distal tubules are							
	1. So there is no movement of urea in or out							
d.	The collecting ducts are permeable to urea:							

		1.	. Some urea diffuses out of _	into the	9
				of the medulla	
		e. Ti	hus, urea flows in a		
6.	Su	ımmary of	f Changes in Filtrate Volume	and Concentration	
	a.	In the av	erage person how much filtra	ite is produced per day by glom	erular
		filtration	?		
	b.	As the fil	Itrate flows through the proxir	nal tubule:	
		1. Solut	tes such as glucose are move	ed by1	rom
		the lu	umens of the nephron into the		
		2. Wate	er moves by	from the lumen into	
			oximately how much of the file?	trate is reabsorbed in the proxin	nal
	C.	As the fil	Itrate passes through the des	cending limbs of the loops of He	enle:
		1. Wate	er	of the nephrons	
		2. Solut	es	the nephrons	
		a. A	pproximately how much filtrat	e is reabsorbed in the descendi	ng
		lir	mbs of the loops of Henle?		
		3. So to	tal volume reabsorption at th	is point is	
	d.	As the fil	ltrate passes through the asc	ending limbs of the loops of Her	ıle:
		1. Thick	segments are	to water	
		2	_,, and are tran	sported from	
		into t	he		
		a. Ti		ot water causes the osmolality o	f the
		b. Ti	herefore the filtrate in the nep	hrons is	
7.	Fo	rmation o	of Concentrated Urine		
	a.	After lea	ving the loops of Henle filtrate	e passes into the	
			and then int	o the	ducts
	b.	These tu	ibes are effected by the horm	one	
		1. ADH	pe	rmeability of the membrane to w	ater
		a. C	vclic AMP increases the num	ber of	in

			the	
			2. When ADH is present	_ out of the
			and	
			a. This water reabsorption accounts for another filtrate being reabsorbed	of the
			 b. The osmolality at the end of the collecting ducts is 	
	8.	Fo	ormation of Dilute Urine	
		a.	. If ADH is not present the distal tubules and collecting ducts have	ve a
		b.	The amount of water reabsorbed by osmosis is	
		C.	. Water remaining in the lumen of the nephron dilutes the solute	S
		d.	. The resulting urine produced:	
			Has a concentration less than	
			a. The osmolality may be close to the osmolality in the:	
			2. The volume is	
			a. The volume may be much larger than of th	е
			filtrate formed each day	
٧.	Regu	lati	tion of Urine Concentration and Volume	
	A. Ge	ene	eral	
	1.	W	Where is reabsorption obligatory and therefore relatively constant	?
		a.	·	
		b.	<u> </u>	
	2.	W	Where is reabsorption regulated and therefore changes dramatica	lly?
		a.	·	
		b.	·	
	3.	lf l	homeostasis requires the elimination of a large volume of dilute	urine:
		a.	. Large volume of	
		b.	. Dilute filtrate in the and	
			passes through with little	

	4.	lf (con	servation of water is re	quired to maintain home	ostasis:					
		a.	SI	ightly less							
		b.	W	Water is reabsorbed as filtrate passes through 8							
			<u> </u>	Resulting in a	volume of	urine					
В.	Нс	ormo	ona	l Mechanisms							
	1.	Ar	ntidi	uretic Hormone							
		a.	In	the absence of ADH th	e	&					
			re	main							
		b.	Н	ow much urine do peop	le with a lack of ADH pro	oduce?					
		C.	La	ick of ADH can lead to	major problems such as	:					
			1.		&						
			2.								
		d.	In	sufficient ADH secretio	n results in a condition c	alled diabetes insipidus:					
			1.	Diabetes implies							
			2.	Insipidus implies							
	e. In contrast to diabetes mellitus, which implies:										
			<u> </u>	Mellitus means							
		f.	Α[OH is secreted from the	,						
			1.	Neurons with cell bod	ies in the	nuclei of the					
				- 	have axons that term	inate in posterior pituitary					
				a. ADH is released in	nto the	from these					
				neuron terminals							
		g.	W	here are the osmorece	ptor cells?						
			<u> </u>	If the osmolality incre	ases these cells	_					
						s are					
					ons to						
			3.		rithin the supraoptic nucl						

	from the
i.	Baroreceptors
	Baroreceptors that monitor blood influence ADH
	secretion when the
	2. When baroreceptors detect decreases in blood pressure:
	a. Decrease the of nerve impulses to hypothalamus
	b. Results in an of ADH
j.	When blood osmolality increases or when blood pressure declines
	significantly:
	1. ADH secretion
	2. ADH acts on the kidneys to
	3. This decreases
	4. Increases which increases
k.	When blood osmolality decreases or blood pressure increases:
	1. ADH secretion
	2. Causes the kidney to
	3. Produce a of urine
	4. Increases blood
	5. Decreases
I.	ADH is more important in than
Re	enin-Angiotensin-Aldosterone
a.	Renin is an enzyme secreted by cells of the
b.	The rate of renin secretion increases in response to:
	1 in blood pressure in the afferent arteriole
	2 in Na ⁺ concentration of the filtrate as it
	passes by the macula densa cells
C.	Renin enters the general circulation and acts on
	converting it to
d.	Then a proteolytic enzyme called
	converts to

e.	Fu	nct	ionally angiotensin II:
	1.	ls	a that increases
			to
	2.	Ind	creases the rate of
	3.	Ind	creases the sensation of
	4.	Ind	creases appetite
	5.	Ind	creases secretion
f.	Th	e ra	ate of renin secretion decreases:
	1.	lf k	blood pressure
	2.	lf t	he Na ⁺ concentration
g.			terone
	1.	Ald	dosterone is a steroid hormone secreted by
	2.	In	the distal tubules and collecting ducts aldosterone molecules:
		a.	Diffuse
		b.	Bind to
		C.	The combination of aldosterone molecules with receptor molecules
			increases
		d.	As a result the rate of Na ⁺ transport
	3.	Re	educed secretion of aldosterone
		a.	Concentration of solutes in the distal tubules and collecting ducts
			remains
		b.	This diminishes the capacity of water to
			from the tubules into the
		c.	Therefore, urine volume and the urine has a greater
			concentration of
Ot	her	Но	rmones
a.	Atı	rial	natriuretic hormone is secreted by
			when blood volume in the right atrium

		b.	At	rial	natriureti	c hormo	ne:						
			1.	Inl	Inhibits								
			2.	Inl	nibits		_ reabsor	ption in the ki	dney				
				a.	This lea	ds to pro	oduction o	of a	_ volum	e u	rine		
				b.	The res	ulting de	ecrease in	blood volume	e	blood press	sure		
		c.	At	rial	natriureti	c hormo	ne also _						
			1.	Re	educes _			and lov	vers				
C.	Αu	itor	egu	latio	on								
	1.	W	hat	is a	utoregula	ation? _							
		_											
	2.	Αι	utor	egu	lation inv	olves ch	nanges in						
		in	the										
	3.	As systemic blood pressure increases											
		&	pre	ven	t								
	4.	Α	dec	rea	se in sys	temic bl	ood press	ure results in					
					preve	enting _							
5. If the macula densa detect an increased filtrate flow rate:													
		a.	Se	ends	s a signal	l to							
		b.	To	со	nstrict								
		C.	Th	e re	esult is a								
D.	Effect of Sympathetic Stimulation on Kidney Function												
	1.	Sy	/mp	ath	etic stimu	ulation o	f the kidne	eys constricts	the		8		
		— а.	De	ecre	asing			 &					
	2.	Int	tens	se s	ympathe	tic stimu	lation			the rate of filtrat	e		
		foi	rma	tion	to only _								
	3.	. Small changes in sympathetic stimulation have											
4. In response to severe stress or circulatory shock:													
		a.	Re	enal	blood flo	ow can d	lecrease _						
		b.	— Kie	dne	v tissues	can be		and unabl	e to				

VI. Clearance and Tubular Maximum

A.	Plasma Clearance									
	1.	Wł	What is plasma clearance?							
	2.	Pla	asm	na clearance can also be used to estimate						
В.	Glo	ome	erul	ar Filtration Rate (GFR)						
	1.	Lis	t th	e four characteristics that a substance must have to estimate GFR:						
		a.								
		C.								
		d.								
	2.	WI	nat	substance has these characteristics?						
		a.	As	filtrate is formed						
		b.	As	filtrate flows through the nephron						
			1.	Therefore, the entire volume of plasma that becomes filtrate is cleared						
			2.	The plasma clearance for inulin is equal to						
	_	٥.								
	3.			GFR is reduced when the kidney fails using inulin to measure GFR						
_	_			tes						
C.				asma Flow						
		Plasma clearance can also be used to calculate								
	2.			characteristics must the substance have?						
		b.								
	3	\ / /I	— nat	substance has these characteristics?						
	0.									
		a.	73	blood flows through the kidney						

		1.	The clearance calculation for PAH is therefore a	good estimate for
		2.	If the hematocrit is known, one can easily calcula	te
D.	Tu	bular L	oad and Tubular Maximum	
	1.	What	is the tubular load of a substance?	-
	2.	What	is the tubular maximum?	
	3.	Is the	tubular maximum the same for all substances?	
	4.	a. Nu	ubular maximum for each substance is determined umber of	
	5		erson with diabetes mellitus:	
	0.	•	ne tubular load exceeds the	
			nis allows	
			ine volume is	
VII. U	rine	Move	ement	
A.	Uri	ne Flo	w Through the Nephron and the Ureters	
	1.	Hydro	ostatic pressure averages:	
		a	in Bowman's capsule	
		b	in the renal pelvis	
		1.	This pressure gradient forces urine from	
			through into the	
	2.	No pr	essure gradient exists to force urine to flow to	
		throug	gh the	
		a. Th	ne circular smooth muscle in the walls of the ureter	'S:
		1.	Exhibits	
			That forces	

		b.	The peristaltic contractions of each ureter:	
			Proceed at a velocity of	
			2. Generate pressures	
		C.	Where the ureters penetrate the	they course
			Pressure inside the urinary bladder:	
			a. Compresses	_
			b. Prevents the	_
		d.	When no urine is present in the urinary bladder the intern	al pressure is
			When it contains 100 mL or urine pressure is elevated	to
			2. Between 400-500 mL of urine the pressure	
			3. With urine volumes over 500 mL the pressure	
В.	Mi	ctur	tion Reflex	
	1.	Wr	nat is micturition?	
			e micturition reflex is activated when	
	3.	The	e micturition reflex is:	
		a.	Integrated in	
			Modified by	
	4.		ne filling the urinary bladder:	
		a.	Stimulates which produce	
		b.	Sensory neurons carry action potentials to the	
			through the	
	5.	ln ı	response:	
		a.	Action potentials are carried to the urinary bladder throug	h
		b.	This causes	
			Decreased somatic motor action potentials cause the	
			, composed of	to
		d.	Urine flows from the urinary bladder when the	
			to force through the urethra whi	

	e. The reflex normally produces a					
6.	Stretch receptors in the urinary bladder also send action potentials to					
	micturition centers in the and to the					
	a. Response from these areas modify the activity of the					
	in the spinal cord					
7.	The micturition reflex, integrated in the spinal cord, predominates					
8.	The ability to voluntarily inhibit micturition develops at the age of					
9.	After this time the influence of the & o	on the				
	spinal reflex predominates					
	a. The micturition reflex integrated in the spinal cord is					
	but it is either or by					
	b. Higher brain centers prevent micturition by					
	Inhibits parasympathetic stimulation of					
	2. Simulates somatic motor neurons that					
10.	When the contents of the urinary bladder exceed 400-500 mL:					
	a. Pressure					
	o. Frequency of action potentials					
	c. Increased stimulation of pons and cerebrum results in					
11.	Voluntary initiation of micturition involves:					
	a in action potentials from the	to:				
	1. Facilitate					
	2. Voluntarily					
	Increased voluntary contraction of					
	which cause an increase in					
	a. Increases the pressure applied to the					
12.	The desire to urinate can also be initiated by:					
	a. Irritation of the or	by				
	or other conditions					

VIII. Effects of Aging on the Kidneys

Α.	Siz	ze of Kidneys							
	1.	Aging causes a							
		a. Begins as early as							
		b. Obvious by							
		c. Continues							
	2.	Loss of size appears to be related to changes							
В.	Blo	ood Flow							
	1.	. The amount of blood flowing through the kidneys							
		a. Starting at age 20 there is 10 years							
	2.	Small arteries, including the afferent and efferent arteriole become							
		and							
	3.	Functional glomeruli							
	4.	Other glomeruli and assume a structure similar to							
C.	Ne	Nephrons and Collecting Ducts							
	1.	Some nephrons and collecting ducts become,,							
		and more in structure							
	2.	The capacity to secrete and absorb							
	3.	Whole nephrons							
	4.	The ability of the kidney to concentrate urine							
		a. Increases the risk of							
	5.	Decreased ability to eliminate:							
		a c							
		b d							
	6.	Less responsive to and							
	7.	The reduced ability to							
		contributes to Ca ²⁺ deficiency, osteoporosis, and bone fracture.							