6. The temperature of the gas remains constant, so we can use Boyle's law to solve for the unknown volume.

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Divide both sides of the equation by P_{2} to get

$$
\begin{aligned}
& V_{2}=\left(P_{1} V_{1}\right) / P_{2} \\
& V_{2}=\left(4 0 . 0 \mathrm { kPa } \left(\left(0.90 \mathrm{~m}^{3}\right) /(60.0 \mathrm{kPa})\right.\right. \\
& V_{2}=0.60 \mathrm{~m}^{3}
\end{aligned}
$$

This conforms to our expectations that an increase in pressure should result in a decrease in the volume.

