9. The equation of continuity requires that

$$
v_{1} A_{1}=v_{2} A_{2}
$$

We divide both sides of the equation by A_{2} to obtain an expression for v_{2}.

$$
\begin{aligned}
& \mathrm{v}_{2}=\mathrm{v}_{1} \mathrm{~A}_{1} / \mathrm{A}_{2} \\
& \mathrm{v}_{2}=(0.3 \mathrm{~m} / \mathrm{s})\left(80 \mathrm{~cm}^{2}\right) /\left(20 \mathrm{~cm}^{2}\right) \\
& \mathrm{v}_{2}=1.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Note that the velocity is greater in the constricted region of the pipe.

