10. We use Bernoulli's law to calculate the pressure.

$$
P_{1}+(1 / 2) d g v_{1}^{2}+d g h_{1}=P_{2}+(1 / 2) d g v_{2}^{2}+d g h_{2}
$$

The pipe is horizontal, so $h_{1}=h_{2}$, and we may cancel the third term on each side of the equation.

$$
P_{1}+(1 / 2) d g v_{1}{ }^{2}=P_{2}+(1 / 2) d g v_{2}^{2}
$$

We subtract the second term on the right hand side of the equation from both sides of the equation to obtain P_{2} as

$$
P_{1}+(1 / 2) d g v_{1}^{2}-(1 / 2) d g v_{2}^{2}=P_{2}
$$

Using the information supplied in the statement of the problem and the value of v_{2} determined in Problem 9 we can solve the problem, but we must be careful to use proper units. Thus the pressure must be expressed in Pascal, not kiloPascal.
$P_{2}=\left(20 \times 10^{3} \mathrm{~Pa}\right)+(1 / 2)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.3 \mathrm{~m} / \mathrm{s})^{2}-(1 / 2)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.2 \mathrm{~m} / \mathrm{s})^{2}$

$$
\begin{aligned}
& P_{2}=(20,000+441-7056) \mathrm{Pa} \\
& P_{2}=13,385 \mathrm{~Pa}=13.385 \text { KiloPascal }
\end{aligned}
$$

Note that the pressure is reduced in the constricted region, because the equation of continuity required higher velocity there, and Bernoulli's principle for a level pipe states that a region of higher velocity must have a lower pressure.

