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Space Figures

S E C T I O N  9.3

Space Figures

M. C. Escher’s “Cubic Space
Division”
© 1999 M. C. Esher/ Cordon 
Art-Baarn-Holland. All rights reserved.

This is a sketch of a three-dimensional figure that contains 54 small cubes. If
the outside of the figure is painted and then the figure is disassembled into 54
individual cubes, how many cubes will have paint on one face, two faces, three
faces, and no faces?

In the above lithograph by the Dutch artist Maurits C. Escher (1898–1970), the
girders intersect at right angles to form the edges of large cubes. The Canadian
mathematician H. S. M. Coxeter calls it the cubic honeycomb. By representing
space as being filled with cubes of the same size, Escher gives a wonderful sense
of infinite space.

The notion of space in geometry is an undefined term, just as the ideas of
point, line, and plane are undefined. We intuitively think of space as three-
dimensional and of a plane as only two-dimensional. In his theory of relativity,
Einstein tied together the three dimensions of space and the fourth dimension

P R O B L E M

O P E N E R
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of time. He showed that space and time affect each other and give us a four-
dimensional universe.

In NCTM’s K–4 Standard, Geometry and Spatial Sense, the importance of spa-
tial understanding is discussed:

Insights and intuitions about two- and three-dimensional shapes and their characteristics,
the interrelationships of shapes, and the effects of changes to shapes are important aspects
of spatial sense. Children who develop a strong sense of spatial relationships and who mas-
ter the concepts and language of geometry are better prepared to learn number and mea-
surement ideas, as well as other advanced mathematical topics.†

Planes
In two dimensions, the figures (lines, angles, polygons, etc.) all occur in a plane.
In three dimensions, there are an infinite number of planes. Each plane partitions
space into three disjoint sets: the points on the plane and two half-spaces. Por-
tions of a few planes are shown in Figure 9.40. Any two planes either are parallel,
as in part a, or intersect in a line, as in part b.
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HISTOR ICAL

H IGHL IGHT The Russian mathematician Sonya Kovalevsky is regarded as the greatest
woman mathematician to have lived before 1900. Since women were barred

by law from institutions of higher learning in Russia, Kovalevsky attended Hei-
delberg University in Germany. Later she was refused admission to the Univer-
sity of Berlin, which also barred women. Even the famous mathematician Karl
Weierstrass, who claimed she had “the gift of intuitive genius,” was unable to
obtain permission for Kovalevsky to attend his lectures. She obtained her doc-
torate from the University of Göttingen but was without a teaching position for
nine years, until the newly formed University of Stockholm broke tradition and
appointed her to an academic position. Kovalevsky’s prominence as a mathe-
matician reached its peak in 1888, when she received the famous Prix Bordin
from the French Académie des Sciences for her research paper “On the Rota-
tion of a Solid about a Fixed Point.” The selection committee “recognized in
this work not only the power of an expansive and profound mind, but also a
great spirit of invention.”*

*D. M. Burton, The History of Mathematics, 4th ed. (New York: McGraw-Hill, 1999) pp. 557–560.

Sonya Kovalevsky
1850–1891

†Curriculum and Evaluation Standards for School Mathematics (Reston, VA: National Council of Teachers
of Mathematics 1989), p. 48.
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When two planes intersect, we call the angle between the planes a dihedral
angle. Figure 9.41 shows three dihedral angles and their measures. A dihedral an-
gle is measured by measuring the angle whose sides lie in the planes and are per-
pendicular to the line of intersection of the two planes. Parts a, b, and c of Figure
9.41 show examples of obtuse, right, and acute dihedral angles, respectively.

When a line m in three-dimensional space does not intersect a plane P, it is
parallel to the plane, as in Figure 9.42a. A line n is perpendicular to a plane Q at
a point k if the line is perpendicular to every line in the plane that contains k, as
in Figure 9.42b.

m

P Q

k

n

(a) (b)Figure 9.42

Line of
intersection (a) (b) (c)

140° 90° 55°

Figure 9.41

(a) (b)Figure 9.40
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Polyhedra
The three-dimensional object with flat sides in Figure 9.43 is a crystal that is par-
tially embedded in rock. Its flat pentagonal sides with their straight edges were
not cut by people but were shaped by nature.

The surface of a figure in space whose sides are polygonal regions, such as the
one in Figure 9.43, is called a polyhedron (polyhedra is the plural). The polygo-
nal regions are called faces, and they intersect in the edges and vertices of the
polyhedron. The union of a polyhedron and its interior is called a solid. Fig-
ure 9.44 shows examples of a polyhedron and two figures that are not polyhedra.
The figure in part a is a polyhedron because its faces are polygonal regions. The
figures in parts b and c are not polyhedra because one has a curved surface and
the other has two faces that are not polygons.

A polyhedron is convex if the line segment connecting any two of its points is con-
tained inside the polyhedron or on its surface.

(a) (b) (c)Figure 9.44

Figure 9.43
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E x a m p l e A Classify the following polyhedra as convex or nonconvex.

1. 2. 3.

Solution Polyhedra 1 and 3 are convex; 2 is nonconvex.

Regular Polyhedra
The best known of all the polyhedra are the regular polyhedra, or Platonic solids.
A regular polyhedron is a convex polyhedron whose faces are congruent regular
polygons, the same number of which meet at each vertex. The ancient Greeks
proved that there are only five regular polyhedra. Models of these polyhedra are
shown in Figure 9.45. The tetrahedron has 4 triangles for faces; the cube has 6
square faces; the octahedron has 8 triangular faces; the dodecahedron has 12
pentagons for faces; and the icosahedron has 20 triangular faces.

The first three of the regular polyhedra shown in Figure 9.45 are found in na-
ture as crystals. The cube and the octahedron occur in the common mineral
pyrite, shown in Figure 9.46. The cube, which is embedded in rock, was found in
Vermont, and the octahedron is from Peru. The other regular polyhedra, the do-
decahedron and the icosahedron, do not occur as crystals but have been found in
the skeletons of microscopic sea animals called radiolarians.

SECTION 9.3 • Space Figures 593

Figure 9.45
From left to right:
tetrahedron, cube
(hexahedron), octahedron;
dodecahedron, icosahedron

Figure 9.46
Crystals of pyrite

Research Statement
The 6th national
mathematics assessment
concluded that students need
more experiences with
concrete models to enhance
their visualization skills and
more opportunities to see
how geometric concepts
relate to real-live situations
and other mathematical
aspects.

Strutchens and Blume 1997
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SEMIREGULAR POLYHEDRA Some polyhedra have two or more different types
of regular polygons for faces. The faces of the boracite crystal in Figure 9.47 are
squares and equilateral triangles. This crystal, too, developed its flat, regularly
shaped faces naturally, without the help of machines or people. Polyhedra whose
faces are two or more regular polygons with the same arrangement of polygons
around each vertex are called semiregular polyhedra. The boracite crystal is one
of these. Each of its vertices is surrounded by three squares and one equilateral
triangle.

Several other semiregular polyhedra are shown in Figure 9.48. You may recog-
nize the combination of hexagons and pentagons in part a as the pattern used on
the surface of soccer balls.

E x a m p l e B For each semiregular polyhedron in Figure 9.48, list the polygons in the order in
which they occur about any vertex.

Solution Part a: hexagon, hexagon, pentagon; part b: dodecagon, dodecagon, triangle; part c: trian-
gle, triangle, triangle, triangle, square; part d: octagon, octagon, triangle

Pyramids and Prisms
Chances are that when you hear the word pyramid, you think of the monuments
built by the ancient Egyptians. Each of the Egyptian pyramids has a square base
and triangular sides rising up to the vertex. This is just one type of pyramid. In
general, the base of a pyramid can be any polygon, but its sides are always trian-
gular. Pyramids are named according to the shape of their bases. Church spires are
familiar examples of pyramids. They are usually square, hexagonal, or octagonal
pyramids. The spire in the photograph in Figure 9.49 is an octagonal pyramid.

(a) (b) (c) (d)Figure 9.48

594 CHAPTER 9 • Geometric Figures

Figure 9.47
Crystal of boracite
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Several pyramids with different bases are shown in the following example.
Pyramids whose sides are isosceles triangles, as in Figures (1), (3), and (4) of Ex-
ample C, are called right pyramids. Otherwise, as in Figure (2) of Example C, the
pyramid is called an oblique pyramid. The vertex that is not contained in the
pyramid’s base is called the apex.

E x a m p l e C Determine the name of each pyramid.

1. 2. 3. 4.

Solution 1. Triangular pyramid (also called a tetrahedron) 2. Oblique square pyramid 3. Pen-
tagonal pyramid 4. Hexagonal pyramid

PRISMS Prisms are another common type of polyhedron. You probably remem-
ber from your science classes that a prism is used to produce the spectrum of col-
ors ranging from violet to red. Because of the angle between the vertical faces of a
prism, light directed into one face will be bent when it passes out through the
other face (Figure 9.50).
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Figure 9.49
The Bruton Steeple,
Williamsburg, Virginia
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A prism has two parallel bases, upper and lower, which are congruent polygons.
Like pyramids, prisms get their names from the shape of their bases. If the lateral
sides of a prism are perpendicular to the bases, as in the case of the triangular,
quadrilateral, hexagonal, and rectangular prisms in Figure 9.51, they are rectan-
gles. Such a prism is called a right prism. A rectangular prism, which is modeled
by a box, is the most common type of prism. If some of the lateral faces of a prism
are parallelograms that are not rectangles, as in the pentagonal prism, the prism
is called an oblique prism. The union of a prism and its interior is called a solid
prism. A rectangular prism that is a solid is sometimes called a rectangular solid.

E x a m p l e D The following figure is a right prism with bases that are regular pentagons.

1. What is the measure of the dihedral angle between face ABGF and face BCHG?

2. What is the measure of the dihedral angle between face GHIJF and face CDIH?

3. Name two faces that are in parallel planes.

Solution 1. It is the same as the measure of �FGH, which is 108�. 2. 90�. Since this is a right
prism, the top base is perpendicular to each of the vertical sides. 3. ABCDE and FGHIJ

The two oblique hexagonal prisms in Figure 9.52 are crystals that grew with
these flat, smooth faces and straight edges. Their lateral faces are parallelograms.

A

B C

D

F I

J

E

G H

Triangular
prism

Quadrilateral
prism

Hexagonal
prism

Pentagonal
prism

Rectangular
prismFigure 9.51
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Research Statement
In order to develop a
conceptual understanding of
geometry, students need to
be placed in situations that
allow them to apply
deductive, inductive, and
spatial reasoning.

Geddes and Fortunato 1993
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Cones and Cylinders
Cones and cylinders are the circular counterparts of pyramids and prisms. Ice
cream cones, paper cups, and party hats are common examples of cones. A cone
has a circular region (disk) for a base and a lateral surface that slopes to the
vertex (apex). If the vertex lies directly above the center of the base, the cone
is called a right cone or usually just a cone; otherwise, it is an oblique cone (Fig-
ure 9.53).

Ordinary cans are models of cylinders. A cylinder has two parallel circular
bases (disks) of the same size and a lateral surface that rises from one base to the
other. If the centers of the upper base and lower base lie on a line that is perpen-
dicular to each base, the cylinder is called a right cylinder or simply a cylinder;
otherwise, it is an oblique cylinder (Figure 9.54). Almost without exception, the
cones and cylinders we use are right cones and right cylinders.

Base

Base

Base

Base

Right
cylinder

Oblique
cylinderFigure 9.54

Base

Vertex point

Right
cone

Base

Vertex point

Oblique
coneFigure 9.53
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Figure 9.52
Prisms of the crystal
orthoclase feldspar
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Spheres and Maps
The photograph in Figure 9.55 is a view of earth showing its almost perfect spher-
ical shape. It was photographed from the Apollo 17 spacecraft during its 1972 lu-
nar mission. The dark regions are water. The Red Sea and the Gulf of Aden are
near the top center, and the Arabian Sea and Indian Ocean are on the right.

SPHERE A sphere is the set of points in space that are the same distance from
a fixed point, called the center. The union of a sphere and its interior is called
a solid sphere.

A line segment joining the center of a sphere to a point on the sphere is called
a radius. The length of such a line segment is also called the radius of the sphere.
A line segment containing the center of the sphere and whose endpoints are on
the sphere is called a diameter, and the length of such a line segment is called the
diameter of the sphere.

The geometry of the sphere is especially important for navigating on the sur-
face of the earth. You may have noticed that airline maps show curved paths be-
tween distant cities. This is because the shortest distance between two points on
a sphere is along an arc of a great circle. In the drawing of the sphere in Fig-
ure 9.56, G (the color arc) is the arc of a great circle, because its center is also the
center of the sphere, and arc B is not the arc of a great circle. The distance be-
tween points X and Y along arc G on a sphere is less than the distance between
these points along arc B.

Figure 9.55
Earth, as seen from Apollo
17 during its 1972 lunar
mission

ben32947_ch09.qxd  11/26/2002  3:12 PM  Page 599



600 CHAPTER 9 • Geometric Figures

Locations on the earth’s surface are often given by naming cities, streets, and
buildings. A more general method of describing location uses two systems of cir-
cles (Figure 9.57). The circles that are parallel to the equator are called parallels
of latitude and are shown in part a. Except for the equator, these circles are not
great circles. Each parallel of latitude is specified by an angle from 0° to 90°, both
north and south of the equator. For example, New York City is at a northern lati-
tude of 41°, and Sydney, Australia, is at a southern latitude of 34°. The second
system of circles is shown in part b. These circles pass through the north and
south poles and are called meridians of longitude. These are great circles, and
each is perpendicular to the equator. Since there is no natural point at which to
begin numbering the meridians of longitude, the meridian that passes through
Greenwich, England, was chosen as the zero meridian. Each meridian of longi-
tude is given by an angle from 0� to 180�, both east and west of the zero meridian.
The longitude of New York City is 74� west, and that of Sydney, Australia, is 151�
east. These parallels of latitude and meridians of longitude shown together in part
c, form a grid or coordinate system for locating any point on the earth.

MAP PROJECTIONS The globe is a spherical map of the earth. While such a
map accurately represents the earth’s shape and relative distances, we cannot see
the whole globe at one time, nor can distances be measured easily. Maps on a flat
surface are much more convenient. However, since a sphere cannot be placed flat
on a plane without separating or overlapping some of its surface, making flat maps
of the earth is a problem. There are three basic solutions: copying the earth’s sur-
face onto a cylinder, a cone, or a plane (Figure 9.58). These methods of copying
are called map projections. In each case, some distortions of shapes and distances
occur.

Parallels of latitude Meridians of longitude Grid formed by both
types of circles

(a) (b) (c)

15°

0°

30°

45°

75°
90°

60°

75°

60°
45°

30°
15°

0°

90°

North Pole

Equator

15°
30°

15°
30°

45° W      E↑↑

Figure 9.57

B

G
X Y

Figure 9.56

ben32947_ch09.qxd  11/26/2002  3:12 PM  Page 600



A cylindrical projection (part a), also called a mercator projection, is obtained
by placing a cylinder around a sphere and copying the surface of the sphere onto
the cylinder. The cylinder is then cut to produce a flat map. Regions close to the
equator are reproduced most accurately. The closer we get to the poles, the more
the map is distorted.

A conic projection (part b) is produced by placing a cone with its apex over
one of the poles and copying a portion of the surface of a sphere onto the cone.
The cone is then cut and laid flat. This type of map construction is commonly
used for countries that lie in an east-west direction and are middle latitude coun-
tries, as opposed to those near the poles or equator. The maps of the United States
that are issued by the American Automobile Association are conical projections.

A plane projection (part c), also called an azimuthal projection, is made by
placing a plane next to any point on a sphere and projecting the surface onto the
plane. To visualize this process, imagine a light at the center of the sphere, and
think of the boundary of a country as being pierced with small holes. The light
shining through these holes, as shown by the dashed lines in part c, forms an im-
age of the country on the plane. Less than one-half of the sphere’s surface can be
copied onto a plane projection, with the greatest distortion taking place at the
outer edges of the plane. A plane projection, unlike cylindrical and conical pro-
jections, has the advantage that the distortion is uniform from the center of the
map to its edges. Plane projections are used for hemispheres and maps of the Arc-
tic and Antarctic. To map the polar regions, a plane is placed perpendicular to the
earth’s axis in contact with the north or south pole.

Problem-Solving Application
There is a remarkable formula that relates the numbers of vertices, edges, and
faces of a polyhedron. This formula was first stated by René Descartes about
1635. In 1752 it was discovered again by Leonhard Euler and is now referred to

Cylindrical projection Conic projection Plane projection

(a) (b) (c)Figure 9.58
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as Euler’s formula. See if you can discover this formula, either before or as you
read the parts of the solution presented below.

P R O B L E M
What is the relationship among the numbers of faces, vertices, and edges of a
polyhedron?

Understanding the Problem Euler’s formula holds for all polyhedra. Let’s look
at a specific example. A die is a cube which has six faces. Question 1: How many
vertices and edges does it have?

Devising a Plan Let’s make a table; list the numbers of faces, vertices, and
edges for several polyhedra; and look for a relationship. Question 2: What are the
numbers of faces, vertices, and edges for the polyhedra in figures (a), (b), and (c)?

Carrying Out the Plan The following table contains the numbers of faces, ver-
tices, and edges for the cube above and the polyhedra in figures (a) through (c).
Using F for the number of faces, V for the number of vertices, and E for the num-
ber of edges, we can construct Euler’s formula from these data. Question 3: What
is Euler’s formula?

F V E

Cube 6 8 12
Figure (a) 5 6 9
Figure (b) 6 6 10
Figure (c) 9 9 16

Looking Back You may remember that an icosahedron has 20 triangular faces,
but may not remember the number of edges or vertices. Altogether, 20 triangles
have a total of 60 edges. Since every two edges of a triangle form one edge of an
icosahedron, this polyhedron has 60 � 2 � 30 edges. Given the numbers of faces
and edges for the icosahedron and Euler’s formula F � V � 2 � E, we can deter-
mine the number of vertices. Question 4: How many vertices are there?

Answers to Questions 1–4 1. 8 vertices and 12 edges 2. Figure (a): 5 faces, 6 vertices, 9 edges;
figure (b): 6 faces, 6 vertices, 10 edges; figure (c): 9 faces, 9 vertices, 16 edges 3. F � V � 2 � E
4. 12; 20 � V � 2 � 30

(c)(b)(a)
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P U Z Z L E R

HISTOR ICAL

H IGHL IGHT Switzerland’s Leonhard Euler is considered to be the most prolific writer in
the history of mathematics. He published over 850 books and papers, and

most branches of mathematics contain his theorems. After he became totally
blind at the age of 60, he continued his amazing productivity for 17 years by
dictating to a secretary and writing formulas in chalk on a large slate. On the
200th anniversary of his birthday in 1907, a Swiss publisher began reissuing
Euler’s entire collected works; the collection is expected to run to 75 volumes
of about 60 pages each.*

*H. W. Eves, In Mathematical Circles (Boston: Prindle, Weber, and Schmidt, 1969), pp. 46–49.
Leonhard Euler
1707–1783

How can four triangles be formed by using six
matchsticks that touch only at their endpoints

(do not cross)?
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E X E R C I S E S  A N D  P R O B L E M S  9.3

Crystals of calcite

1. The crystals crowded together in the above photo-
graph are growing with flat polygonal faces.
a. What type of polygon is the top face of these

crystals?
b. What type of polyhedron is formed by these crys-

tals?
Which of the figures in exercises 2 and 3 are polyhedra?

2.

a. b. c.

3.
a. b. c.

Classify the polyhedra in exercises 4 and 5 as convex or
nonconvex.

4.

a. b.

c.

5. a. b. c.

The semiregular polyhedra are classified according to
the arrangement of regular polygons around each vertex.
Proceeding counterclockwise, list the polygons about a
vertex of each polyhedron in exercises 6 and 7.

6. a. b.

20 hexagons 32 triangles
12 pentagons 6 squares

7 a. b.

8 triangles 20 hexagons
6 squares 30 squares

12 decagons
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Name each of the figures in exercises 8 and 9.

8. a. b. c.

9.
a. b. c.

Name the figures in exercises 10 and 11, and state
whether they are right or oblique.

10.
a. b. c.

11.
a. b. c.

12. The polyhedron below is a right pentagonal prism
whose bases are regular polygons.

a. What face is parallel to face ABCDE?
b. What is the measure of the dihedral angle be-

tween face ABGF and face BCHG?
c. What is the measure of the dihedral angle be-

tween face FGHIJ and face EDIJ?

13. The polyhedron below is a right prism, and its bases
are regular hexagons.

a. What face is parallel to face GHIJKL?
b. What face is parallel to face IJDC?
c. What is the measure of the dihedral angle be-

tween face ABHG and face ABCDEF?
d. What is the measure of the dihedral angle be-

tween face ABHG and face BCIH?

Which of the three types of projections is best suited for
making flat maps of the regions in exercises 14 and 15?

14. a. Australia
b. North, Central, and South America
c. The entire equatorial region between 30� north

latitude and 30� south latitude

15. a. Arctic region
b. Western hemisphere between 20� north and 20�

south
c. United States

Each of the geometric shapes listed in exercises 16 and
17 can be seen in the following photograph. Locate these
objects.

Thompson Hall, University of New Hampshire
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16. a. Cone b. Pyramid c. Cylinder
d. Sphere e. Circle

17. a. 30� angle b. Rectangle c. Semicircle
d. Square e. 45� angle

18. Use your knowledge of the spherical coordinate sys-
tem to match each of the following cities with its
approximate longitude and latitude.

Tokyo 38�N and 120�W
San Francisco 56�N and 4�W
Melbourne 35�N and 140�E
Glasgow 35�S and 20�E
Capetown 38�S and 145�E

19. Two points on the earth’s surface that are on oppo-
site ends of a line segment through the center of the
earth are called antipodal points. The coordinates
of such points are nicely related. The latitude of one
point is as far above the equator as that of the other
is below, and the longitudes are supplementary an-
gles (in opposite hemispheres). For example, (30�N,
15�W) is off the west coast of Africa near the Canary
Islands, and its antipodal point (30�S, 165�E) is off
the eastern coast of Australia.

Babson College globe:
diameter 28 feet, weight 21 tons

a. The globe in the accompanying photograph
shows that (20�N, 120�W) is a point in the Pacific
Ocean just west of Mexico. Its antipodal point is
just east of Madagascar. What are the coordinates
of this antipodal point?

b. The point (30�S, 80�E) is in the Indian Ocean.
What are the coordinates of its antipodal point?
In what country is it located?

20. China is bounded by latitudes of 20�N and 55�N and
by longitudes of 75�E and 135�E. It is playfully as-
sumed that if you could dig a hole straight through
the center of the earth, you would come out in
China. For which of the following starting points is
this true?
a. Panama (9�N, 80�W)
b. Buenos Aires (35�S, 58�W)
c. New York (41�N, 74�W)

The intersection of a plane and a three-dimensional fig-
ure is called a cross section. The cross section produced
by the intersection of a plane and a right cylinder, where
the plane is parallel to the base of the cylinder (see fig-
ure), is a circle. Determine the cross sections of the fig-
ures in exercises 21 and 22.

21. a. b.

22. a. b.

23. A cube can be divided into triangular pyramids in
several ways. Pyramid FHCA divides this cube into
five triangular pyramids. Name the four vertices of
each of the other four pyramids.

A

D

F

G

H

B

E

C
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24. E, F, G, H, and C are the vertices of a square pyra-
mid inside this cube. Name the five vertices of two
more square pyramids that, together with the given
pyramid, divide the cube into three pyramids.

One method of describing a three-dimensional figure is
to make a drawing of its different views. There are nine
cubes in the following figure (two are hidden), and the
top, right, and front views are shown.

Sketch the top, front, and side views of each of the figures
in exercises 25 and 26. (Note: Figure 25b has one hidden
cube beneath a cube that can be seen, and the color faces
of the cubes are part of the front views of the figures.)

25. a. b.

26. a. b.

The table of polyhedra below illustrates some of the
forms which crystals may take in nature. The polygons
at the tops of the columns are the horizontal cross sec-
tions of the polyhedra in the columns. Use this table in
exercises 27 and 28.

27. a. List the numbers of the polyhedra that are pyra-
mids.

b. Which of the polyhedra is most like a dodecahe-
dron?

28. a. List the numbers of the polyhedra that are
prisms.

b. Which of the polyhedra is most like an octahe-
dron?

Use Euler’s formula in exercises 29 and 30 to determine
the missing numbers for each polyhedron. For each set
of conditions, find a polyhedron from those numbered
from 1 to 21 in the table for exercises 27 and 28 which
has the given number of faces, vertices, and edges.

29. a. 7 faces, 7 vertices, edges
b. 16 faces, vertices, 24 edges
c. faces, 5 vertices, 8 edges

Front view

Top view

Side view (right)

E

A

D

F

G

H

CB

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17
18

19 20 21

22 23 24 25 26 27 28

29 30 31 32 33
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30. a. 6 faces, vertices, 9 edges
b. faces, 8 vertices, 12 edges
c. 14 faces, 24 vertices, edges

Hurricane Ginger was christened on September 10,
1971, and became the longest-lived Atlantic hurricane
on record. This tropical storm formed approximately
275 miles south of Bermuda and reached the U.S. main-
land 20 days later. Use this map in exercises 31 and 32.

31. The storm’s coordinates on September 10 were
(28�N, 66�W). What were its coordinates on Sep-
tember 15, September 23, and September 30?

32. At this latitude on the earth’s surface, each degree
of longitude spans a distance of approximately 60
miles. About how many miles did this hurricane
travel between September 10 and September 30?
(Hint: Use a piece of string.)

REASONING AND PROBLEM SOLVING

33. Erica is designing a science experiment that re-
quires two different three-dimensional figures such
that one fits inside the other and both figures have
at least one cross section that is the same for both
figures (see exercises 21 and 22). Find such a pair
of figures.

34. Here are the first three figures in a staircase pat-
tern. These staircases are polyhedra.

a. The number of faces for the polyhedron in the
first figure is 8. How many faces are there for the
polyhedron in the 35th figure?

b. The number of edges for the polyhedron in the
first figure is 18. How many edges are there for
the polyhedron in the 35th figure?

c. The number of vertices for the polyhedron in the
first figure is 12. How many vertices are there for
the polyhedron in the 35th figure?

35. Sketch and describe how to form a piece of paper
into the following figures (without bases).

a. b. c.

Right Right Oblique
circular cylinder circular cone circular cylinder

36. Featured Strategies: Making a Drawing and Using
a Model The five regular polyhedra and the num-
bers and shapes of their faces are shown in the fol-
lowing table. Determine the missing numbers of
vertices and edges.

POLYHEDRON VERTICES FACES EDGES

Tetrahedron 4 triangles
Cube 8 6 squares 12
Octahedron 8 triangles
Dodecahedron 12 pentagons
Icosahedron 20 triangles

a. Understanding the Problem The cube is the
most familiar of the regular polyhedra. Its 6 faces
meet in 12 edges, and its edges meet in 8 vertices
(see figure i). How many vertices and edges does
a tetrahedron have?

i. ii.

b. Devising a Plan One approach is to use a
model or a sketch of the polyhedra and to count
the numbers of vertices and edges. Or once we
determine either the number of vertices or the
number of edges, the missing number can be ob-
tained by using Euler’s formula F � V � 2 � E.

Another approach that avoids counting is to
use the fact that each pair of faces meets in ex-
actly one edge. For example, since a dodecahe-
dron has 12 pentagons for faces and each pair of

Atlantic Ocean

Bermuda

30 Sep 1971

10 Sep 1971

Erratic path of Hurricane Ginger

11

12

13 14
15

16

17
18

19

20
21
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2627
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29
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40°
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pentagons shares an edge, the number of edges is
(12 � 5)/2 � 30. Using Euler’s formula, determine
the number of vertices in a dodecahedron.

c. Carrying Out the Plan Continue to find the
numbers of edges by multiplying the number of
faces by the number of sides on the face and di-
viding by 2. For example, what is the number of
edges in an icosahedron? Fill in the rest of the
table on the preceding page.

d. Looking Back The number of vertices for each
regular polyhedron can also be found directly
from the number of edges that meet at each ver-
tex. For example, three edges meet at each ver-
tex of the dodecahedron, as shown in Figure iii
below. Since there are 12 faces and each face
has 5 vertex points, the dodecahedron has
(12 � 5) /3 = 20 vertex points. Use this approach
to determine the number of vertices for the
icosahedron in iv.

37. Each of the following polygons contains five
squares. There are only 12 such polygons that can
be formed in the plane by joining five squares along
their edges, and they are called pentominoes.

a. Which two of these pentominoes will fold into an
open-top box, so that each face of the box is one
of the squares?

b. Eight of the 12 pentominoes will fold into an
open-top box. Find another one of these.

38. The polygons were formed by joining six squares
along their edges. There are 35 such polygons, and
they are called hexominoes.

a. Which two of these hexominoes will fold into a
cube so that each face of the cube is one of the
squares?

b. Eleven of the 35 hexominoes will fold into a
cube. Find another such hexomino.

39. The centers of the faces of a cube can be connected
to form a regular octahedron. Also, the centers of
the faces of an octahedron can be connected to
form a cube. Such pairs of polyhedra are called
duals.

a. How is this dual relationship suggested by the
table in exercises 36?

b. Find two other regular polyhedra that are duals
of each other.

c. Which regular polyhedron is its own dual?

40. There are six categories of illusions.* One category,
called impossible objects, is produced by drawing
three-dimensional figures on two-dimensional sur-
faces. Find the impossible feature in each of these
figures.

Dodecahedron Icosahedron

iii. iv.

*P. A. Rainey, Illusions (Hamden, CT: The Shoe String Press, 1973), pp.
18–43.

i. ii. iii.
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a. b.

M. C. Escher’s “Waterfall”
©1999 M. C. Escher/Cordon
Art-Baarn-Holland.
All rights reserved.

41. A second type of illusion involves depth perception.
We have accustomed our eyes to see depth when
three-dimensional objects are drawn on two-
dimensional surfaces. Answer questions a and b by
disregarding the depth illusions.

a. Is one of these cylinders larger than the others?

b. Which of the four numbered angles below is the
largest? Which are right angles? (Hint: Use a cor-
ner of a piece of paper.)

1

2

3

4

P U Z Z L E R
Some wildlife researchers, having pitched
camp, set out on an exploratory trip. They

walked 15 miles due south, then 15 miles due east,
where they saw a bear. Walking 15 miles due north, they
returned to their camp. What was the color of the bear?

c.
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