Describing Motion

chapter overview

The main purpose of this chapter
is to provide clear definitions and
illustrations of the terms used in
physics to describe motion, such
as the motion of the car described
in this chapter’s opening example.
Speed, velocity, and acceleration
are crucial concepts for the analy-
sis of motion in later chapters.
Precise description is the first step
to understanding. Without it, we
remain awash in vague ideas that
are not defined well enough to
test our explanations.

Each numbered topic in this
chapter builds on the previous
section, so it is important to
obtain a clear understanding
of each topic before going on.
The distinctions between speed
and velocity and velocity and
acceleration are particularly
important.
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chapter outline

l Average and instantaneous
speed. How do we describe
how fast an object is moving?
How does instantaneous speed
differ from average speed?

2 Velocity. How do we introduce
direction into descriptions of
motion? What is the distinction
between speed and velocity?

3 Acceleration. How do we
describe changes in motion?
What is the relationship
between velocity and
acceleration?

4 Graphing motion. How can
graphs be used to describe
motion? How can the use of
graphs help us gain a clearer
understanding of speed,
velocity, and acceleration?

5 Uniform acceleration. What
happens when an object
accelerates at a steady rate?
How do the velocity and
distance traveled vary with
time when an object is
uniformly accelerating?
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Imagine that you are in your car stopped at an inter-
section. After waiting for cross traffic, you pull away from
the stop sign, accelerating eventually to a speed of 56
kilometers per hour (35 miles per hour). You maintain
that speed until a dog runs in front of your car and you
hit the brakes, reducing your speed rapidly to 10 km/h
(fig. 2.1). Having missed the dog, you speed up again to
56 km/h. After another block, you come to another stop
sign and reduce your speed gradually to zero.

We can all relate to this description. Measuring speed
in miles per hour (MPH) may be more familiar than the
use of kilometers per hour (km/h), but speedometers in
cars now show both. The use of the term acceleration to
describe an increase in speed is also common. In physics,
however, these concepts take on more precise and spe-
cialized meanings that make them even more useful in
describing exactly what is happening. These meanings

are sometimes different from those in everyday use. The
term acceleration, for example, is used by physicists to
describe any situation in which velocity is changing,
even when the speed may be decreasing or the direc-
tion of the motion may be changing.

How would you define the term speed if you were
explaining the idea to a younger brother or sister? Does
velocity mean the same thing? What about acceleration—
is the notion vague or does it have a precise meaning?
Is it the same thing as velocity? Clear definitions are
essential to developing clear explanations. The language
used by physicists differs from our everyday language,
even though the ideas are related and the same words
are used. What are the exact meanings that physicists
attach to these concepts, and how can they help us to
understand motion?

figure 2.1 As the car brakes for the dog, there is a sudden change in speed.

2.1 Average and Instantaneous Speed

Since driving or riding in cars is a common activity in our
daily lives, we are familiar with the concept of speed. Most
of us have had experience in reading a speedometer (or per-
haps failing to read it carefully enough to avoid the attention
of law enforcement). If you describe how fast something is
moving, as we did in our example in the introduction, you
are talking about speed.

How is average speed defined?

What does it mean to say that we are traveling at a speed
of 55 MPH? It means that we would cover a distance of
55 miles in a time of 1 hour if we traveled steadily at that
speed. Carefully note the structure of this description: there
is a number, 55, and some units or dimensions, miles per
hour. Numbers and units are both essential parts of a de-
scription of speed.

The term miles per hour implies that miles are divided
by hours in arriving at the speed. This is exactly how we
would compute the average speed for a trip: suppose, for

example, that we travel a distance of 260 miles in a time of
5 hours, as shown on the road map of figure 2.2. The aver-
age speed is then 260 miles divided by 5 hours, which is
equal to 52 MPH. This type of computation is familiar to
most of us.

We can also express the definition of average speed in a
word equation as

Average speed equals the distance traveled divided by the
time of travel.

or

distance traveled

Average speed = —; ;
gesp time of travel

We can represent this same definition with symbols by
writing

s =

b}

d
t
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figure 2.2 A road map showing a trip of 260 miles, with
driving times for the two legs of the trip.

where the letter s represents the speed, d represents dis-
tance, and ¢ represents the time. As noted in chapter 1, let-
ters or symbols are a compact way of saying what could be
said with a little more effort and space with words. Judge
for yourself which is the more efficient way of expressing
this definition of average speed. Most people find the sym-
bolic expression easier to remember and use.

The average speed that we have just defined is the rate
at which distance is covered over time. Rates always repre-
sent one quantity divided by another. Gallons per minute,
pesos per dollar, and points per game are all examples of
rates. If we are considering time rates, the quantity that we
divide by is time, which is the case with average speed.
Many other quantities that we will be considering involve
time rates.

What are the units of speed?

Units are an essential part of the description of speed. Sup-
pose you say that you were doing 70—without stating the
units. In the United States, that would probably be under-
stood as 70 MPH, since that is the unit most frequently
used. In Europe, on the other hand, people would probably
assume that you are talking about the considerably slower
speed of 70 km/h. If you do not state the units, you will
not communicate effectively.

It is easy to convert from one unit to another if the con-
version factors are known. For example, if we want to con-
vert kilometers per hour to miles per hour, we need to know
the relationship between miles and kilometers. A kilometer
is roughly %10 of a mile (0.6214, to be more precise). As
shown in example box 2.1, 70 km/h is equal to 43.5 MPH.

example box 2.1

1 km = 0.6214 miles
1 mile = 1.609 km

Unit Conversions

Convert 70 kilometers per hour to miles per hour.
lema miles
70— ){ 0.6214 = 43.5 MPH
(5 Joee )

Convert 70 kilometers per hour to meters per second.

o m
(70 T) (1000 g) = 70 000 m/h

But 1h = (60 sin) <60 i) =3600s
i

70 000 m/k

- 194
36005/ LAms

Lines drawn through the units indicate cancellation.

The process involves multiplication or division by the ap-
propriate conversion factor.

Units of speed will always be a distance divided by a
time. In the metric system, the fundamental unit of speed
is meters per second (m/s). Example box 2.1 also shows the
conversion of kilometers per hour to meters per second,
done as a two-step process. As you can see, 70 km/h can
also be expressed as 19.4 m/s or roughly 20 m/s. This is a
convenient size for discussing the speeds of ordinary
objects. (As shown in example box 2.2, the convenient unit
for measuring the growth of grass has a very different size.)

example box 2.2

Sample Question: Watching Grass Grow

Question: The units km/h or m/s have an appropriate
size for moving cars or people. Many other processes
move much more slowly, though. What units would have
an appropriate size for measuring the average speed with
which a blade of grass grows?

Answer: When grass is well fertilized and watered, it is
not unusual for it to grow 3 to 6 centimeters in the course
of a week. This can be seen by measuring the length of
the clippings after mowing. If we measured the speed in
m/s, we would obtain an extremely small number that
would not provide a good intuitive sense of the rate of
growth. The units of cm/week or mm/day would provide

a better indication of this speed.
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Familiar Speeds in Different Units
20MPH = 32km/h = 9m/s
40 MPH = 64 km/h = 18 m/s
60 MPH = 97 km/h = 27 m/s
80 MPH = 130 km/h = 36 m/s
100 MPH = 160 km/h = 45 m/s

Table 2.1 shows some familiar speeds expressed in miles
per hour, kilometers per hour, and meters per second to
give you a sense of their relationships.

What is instantaneous speed?

If we travel a distance of 260 miles in 5 hours, as in our
earlier example, is it likely that the entire trip takes place
at a speed of 52 MPH? Of course not; the speed goes up
and down as the road goes up and down, when we over-
take slower vehicles, when rest breaks occur, or when the
highway patrol looms on the horizon. If we want to know
how fast we are going at a given instant in time, we read
the speedometer, which displays the instantaneous speed
(fig. 2.3).

How does instantaneous speed differ from average speed?
The instantaneous speed tells us how fast we are going at a
given instant but tells us little about how long it will take
to travel several miles, unless the speed is held constant.
The average speed, on the other hand, allows us to com-
pute how long a trip might take but says little about the
variation in speed during the trip. A more complete descrip-
tion of how the speed of a car varies during a portion of
a trip could be provided by a graph such as that shown in
figure 2.4. Each point on this graph represents the instanta-
neous speed at the time indicated on the horizontal axis.

Even though we all have some intuitive sense of what
instantaneous speed means from our experience in reading

figure 2.3 A speedometer with two scales for measuring
instantaneous speed, MPH and km/h.
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figure 2.4  Variations in instantaneous speed for a portion
of a trip on a local highway.

speedometers, computing this quantity presents some prob-
lems that we did not encounter in defining average speed.
We could say that instantaneous speed is the rate that dis-
tance is being covered at a given instant in time, but how
do we compute this rate? What time interval should we
use? What is an instant in time?

Our solution to this problem is simply to choose a very
short interval of time during which a very short distance
is covered and the speed does not change drastically. If
we know, for example, that in 1 second a distance of
20 meters was covered, dividing 20 meters by 1 second to
obtain a speed of 20 m/s would give us a good estimate of
the instantaneous speed, provided that the speed did not
change much during that single second. If the speed was
changing rapidly, we would have to choose an even shorter
interval of time. In principle, we can choose time intervals
as small as we wish, but in practice, it can be hard to
measure such small quantities.

If we put these ideas into a word definition of instanta-
neous speed, we could state it as

Instantaneous speed is the rate at which distance is being cov-
ered at a given instant in time. It is found by computing the
average speed for a very short time interval in which the speed
does not change appreciably.

Instantaneous speed is closely related to the concept of
average speed but involves very short time intervals. When
discussing traffic flow, average speed is the critical issue,
as shown in everyday phenomenon box 2.1.
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everyday phenomenon

Transitions in Traffic Flow

The Situation. Jennifer commutes into the city on a freeway
every day for work. As she approaches the city, the same pat-
terns in traffic flow seem to show up in the same places each
day. She will be moving with the flow of traffic at a speed of
approximately 60 MPH when suddenly things will come to a
screeching halt. The traffic will be stop-and-go briefly and
then will settle into a wavelike mode with speeds varying
between 10 and 30 MPH. Unless there is an accident, this
will continue for the rest of the way into the city.
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The traffic in the upper lanes is flowing freely with adequate spacing
to allow higher speeds. The higher-density traffic in the lower lanes
moves much more slowly.

What causes these patterns? Why does the traffic stop
when there is no apparent reason such as an accident?
Why do ramp traffic lights seem to help the situation?
Questions like these are the concern of the growing field
of traffic engineering.

The Analysis. Although a full analysis of traffic flow is com-
plex, there are some simple ideas that can explain many of the
patterns that Jennifer observes. The density of vehicles, meas-
ured in vehicles per mile, is a key factor. Adding vehicles at
entrance ramps increases the density. The spacing between
vehicles varies with speed so that speed and density are
interrelated.

When Jennifer and other commuters are traveling at
60 MPH, they need to keep a spacing of several car lengths
between vehicles. Most drivers do this without thinking about
it, although there are always some who follow too closely or
tailgate. Tailgating runs the risk of rear-end collisions when
the traffic suddenly slows.

When more vehicles are added at an entrance ramp, the
density must increase, reducing the distance between vehicles.
As the distance between vehicles decreases, drivers should
reduce their speed to maintain a safe stopping distance. If
this occurred uniformly, there would be a gradual decrease in
the average speed of the traffic to accommodate the greater
density. This is not what usually happens, however.

We find an average speed by dividing the distance traveled
by the time required to cover that distance. Average speed
is therefore the average rate at which distance is being
covered. Instantaneous speed is the rate that distance

is being covered at a given instant in time and is found
by considering very small time intervals or by reading a
speedometer. Average speed is useful for estimating how
long a trip will take, but instantaneous speed is of more
interest to the highway patrol.

2.2 Velocity

Do the words speed and velocity mean the same thing?
They are often used interchangeably in everyday language,
but physicists make an important distinction between the
two terms. The distinction has to do with direction: which

(continued)

way is the object moving? This distinction turns out to
be essential to understanding Newton’s theory of motion
(introduced in chapter 4), so it is not just a matter of whim
or jargon.

What is the difference between
speed and velocity?

Imagine that you are driving a car around a curve (as illus-
trated in figure 2.5) and that you maintain a constant speed
of 60 km/h. Is your velocity also constant in this case? The
answer is no, because velocity involves the direction of mo-
tion as well as how fast the object is going. The direction
of motion is changing as the car goes around the curve.

To simply state this distinction, speed as we have de-
fined it tells us how fast an object is moving but says noth-
ing about the direction of the motion. Velocity includes the
idea of direction. To specify a velocity, we must give both
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A significant proportion of drivers will attempt to main-
tain their speed of 50 to 60 MPH even when densities have
increased beyond the point where this is advisable. This
creates an unstable situation. At some point, usually near
an entrance ramp, the density becomes too large to sustain
these speeds. At this point there is a sudden drop in average
speed and a large increase in the local density. As shown in
the drawing, cars can be separated by less than a car length
when they are stopped or moving very slowly.

Once the average speed of a few vehicles has slowed to
less than 10 MPH, vehicles moving at 50 to 60 MPH begin to
pile up behind this slower moving jam. Because this does not
happen smoothly, some vehicles must come to a complete
stop, further slowing the flow. At the front end of the jam, on
the other hand, the density is reduced due to the slower flow
behind. Cars can then start moving at a speed consistent with
the new density, perhaps around 30 MPH. If every vehicle
moved with the appropriate speed, flow would be smooth
and the increased density could be safely accommodated.
More often, however, overanxious drivers exceed the appro-
priate speed, causing fluctuations in the average speed as
vehicles begin to pile up again.

Notice that we are using average speed with two different
meanings in this discussion. One is the average speed of an
individual vehicle as its instantaneous speed increases and

decreases. The other is the average speed of the overall
traffic flow involving many vehicles. When the traffic is flow-
ing freely, the average speed of different vehicles may differ.
When the traffic is in a slowly moving jam, the average
speeds of different vehicles are essentially the same, at least
within a given lane.

Traffic lights at entrance ramps that permit vehicles to
enter one-at-a-time at appropriate intervals can help to
smoothly integrate the added vehicles to the existing flow.
This reduces the sudden changes in speed caused by a rapid
increase in density. Once the density increases beyond the
certain level, however, a slowing of traffic is inevitable. The
abrupt change from low-density, high-speed flow to higher-
density, slow flow is analogous to a phase transition from a
gas to a liquid. (Phase transitions are discussed in chapter 10.)
Traffic engineers have used this analogy to better understand
the process.

If we could automatically control and coordinate the
speeds of all the vehicles on the highway, the highway might
carry a much greater volume of traffic at a smooth rate of
flow. Speeds could be adjusted to accommodate changes in
density and smaller vehicle separations could be maintained
at higher speeds because the vehicles would all be moving
in a synchronized fashion. Better technology may someday
achieve this dream.

figure 2.5 The direction of the velocity changes as the car
moves around the curve, so that the velocity v, is not the same
as the velocity v, even though the speed has not changed.

its size or magnitude (how fast) and its direction (north,
south, east, up, down, or somewhere in between). If you
tell me that an object is moving 15 m/s, you have told me
its speed. If you tell me that it is moving due west at 15 m/s,
you have told me its velocity.

At point A on the diagram in figure 2.5, the car is trav-
eling due north at 60 km/h. At point B, because the road
curves, the car is traveling northwest at 60 km/h. Its veloc-
ity at point B is different from its velocity at point A
(because the directions are different). The speeds at point
A and B are the same. Direction is irrelevant in specifying
the speed of the object. It has no effect on the reading on
your speedometer.

Changes in velocity are produced by forces acting upon
the car, as we will discuss further in chapter 4. The most
important force involved in changing the velocity of a car
is the frictional force exerted on the tires of the car by the
road surface. A force is required to change either the size
or the direction of the velocity. If no net force were acting
on the car, it would continue to move at constant speed in
a straight line. This happens sometimes when there is ice
or oil on the road surface, which can reduce the frictional
force to almost zero.
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study hint

Science has always relied on pictures and charts to get
points across. Throughout the book, a number of concepts
will be introduced and illustrated. In the illustrations, the
same color will be used for certain phenomena.

Blue arrows are velocity vectors.
Green arrows depict acceleration vectors.

Red arrows depict force vectors.

1

Purple arrows show momentum, a
concept we will explore in chapter 7.

What is a vector?

Velocity is a quantity for which both the size and direction
are important. We call such quantities vectors. To describe
these quantities fully, we need to state both the size and
the direction. Velocity is a vector that describes how fast
an object is moving and in what direction it is moving.
Many of the quantities used in describing motion (and in
physics more generally) are vector quantities. These
include velocity, acceleration, force, and momentum, to
name a few.

Think about what happens when you throw a rubber ball
against a wall, as shown in figure 2.6. The speed of the ball
may be about the same after the collision with the wall as it
was before the ball hit the wall. The velocity has clearly
changed in the process, though, because the ball is moving
in a different direction after the collision. Something has
happened to the motion of the ball. A strong force had to
be exerted on the ball by the wall to produce this change in
velocity.

Vo

vy

figure 2.6 The direction of the velocity changes when a
ball bounces from a wall. The wall exerts a force on the ball in
order to produce this change.

m 10 m/s
m 20 m/s

figure 2.7 The length of the arrow shows the size of the
velocity vector.

The velocity vectors in figures 2.5 and 2.6 are repre-
sented by arrows. This is a natural choice for depicting
vectors, since the direction of the arrow clearly shows the
direction of the vector, and the length can be drawn pro-
portional to the size. In other words, the larger the velocity,
the longer the arrow (fig. 2.7). In the text, we will represent
vectors by printing their symbols in boldface and larger
than other symbols: v is thus the symbol for velocity. A
fuller description of vectors can be found in appendix C.

How do we define instantaneous
velocity?

In considering automobile trips, average speed is the most
useful quantity. We do not really care about the direction of
motion in this case. Instantaneous speed is the quantity of
interest to the highway patrol. Instantaneous velocity,
however, is most useful in considering physical theories of
motion. We can define instantaneous velocity by drawing
on our earlier definition of instantaneous speed.

Instantaneous velocity is a vector quantity having a size equal
to the instantaneous speed at a given instant in time and hav-
ing a direction corresponding to that of the object’s motion at
that instant.

Instantaneous velocity and instantaneous speed are
closely related, but velocity includes direction as well as
size. It is changes in instantaneous velocity that require the
intervention of forces. These changes will be emphasized
when we explore Newton’s theory of mechanics in chapter
4. We can also define the concept of average velocity, but
that is a much less useful quantity for our purposes than
either instantaneous velocity or average speed.

To specify the velocity of an object, we need to state

both how fast and in what direction the object is moving;
velocity is a vector quantity. Instantaneous velocity has a
magnitude equal to the instantaneous speed and points in
the direction that the object is moving. Changes in instan-
taneous velocity are where the action is, so to speak, and
we will consider these in more detail when we discuss
acceleration in section 2.3.
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2.3 Acceleration

Acceleration is a familiar idea. We use the term in speak-
ing of the acceleration of a car away from a stop sign or
the acceleration of a running back in football. We feel the
effects of acceleration on our bodies when a car’s velocity
changes rapidly and even more strikingly when an elevator
lurches downward, leaving our stomachs slightly behind
(fig. 2.8). These are all accelerations. You can think of your
stomach as an acceleration detector—a roller-coaster gives
it a real workout!

Understanding acceleration is crucial to our study of
motion. Acceleration is the rate at which velocity changes.
(Note that we said velocity, not speed.) It plays a central
role in Newton’s theory of motion. How do we go about
finding a value of an acceleration, though? As with speed,
it is convenient to start with a definition of average accel-
eration and then extend it to the idea of instantaneous
acceleration.

How is average acceleration defined?

How would we go about providing a quantitative descrip-
tion of an acceleration? Suppose that your car, pointing due
east, starts from a full stop at a stop sign, and its velocity
increases from zero to 20 m/s as shown in figure 2.9. The
change in velocity is found simply by subtracting the initial
velocity from the final velocity (20 m/s — 0 m/s = 20 m/s).

Acceleration
detector

a

figure 2.8  Your acceleration detector senses the downward
acceleration of the elevator.

v=0 v=20m/s
t=0 t=5s

figure 2.9 Acar starting from rest, accelerates to a velocity
of 20 m/s due east in a time of 5 s.

To find its rate of change, however, we also need to
know the time needed to produce this change. If it took
just 5 seconds for the velocity to change, the rate of change
would be larger than if it took 30 seconds.

Suppose that a time of 5 seconds was required to pro-
duce this change in velocity. The rate of change in velocity
could then be found by dividing the size of the change
in velocity by the time required to produce that change.
Thus the size of the average acceleration, a, is found by
dividing the change in velocity of 20 m/s by the time of
5 seconds,

_ 20 m/s
5s

a = 4 m/s/s.

The unit m/s/s is usually written m/s> and is read as
meters per second squared. It is easier to understand it,
however, as meters per second per second. The car’s veloc-
ity (measured in m/s) is changing at a rate of 4 m/s every
second. Other units could be used for acceleration, but they
will all have this same form: distance per unit of time
per unit of time. In discussing the acceleration of a car on
a drag strip, for example, the unit miles per hour per sec-
ond is sometimes used.

The quantity that we have just computed is the size of the
average acceleration of the car. The average acceleration
is found by dividing the total change in velocity for some
time interval by that time interval, ignoring possible differ-
ences in the rate of change of velocity that might be occur-
ring within the time interval. Its definition can be stated in
words as

Average acceleration is the change in velocity divided by the
time required to produce that change.

We can restate it in symbols as

change in velocity

Acceleration = -
elapsed time

or
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Because change is so important in this definition, we
have used the special symbol A (the Greek letter delta) to
mean a change in a quantity. Thus Av is a compact way
of writing the change in velocity, which otherwise would
be expressed as v, — V,, since a change is the difference
between two quantities. Because the concept of change is
critical, this notation will appear often.

The idea of change is all-important. Acceleration is not
velocity over time. It is the change in velocity divided by
time. It is common for people to associate large accelera-
tions with large velocities, when in fact the opposite is
often true. The acceleration of a car may be largest, for
example, when it is just starting up and its velocity is near
zero. The rate of change of velocity is greatest then. On the
other hand, a car can be traveling at 100 MPH but still
have a zero acceleration if its velocity is not changing.

What is instantaneous acceleration?

Instantaneous acceleration is similar to average accelera-
tion with an important exception. Just as with instantane-
ous speed or velocity, we are now concerned with the rate
of change at a given instant in time. It is instantaneous ac-
celeration that our stomachs respond to. It can be defined
as

Instantaneous acceleration is the rate at which velocity is
changing at a given instant in time. It is computed by finding
the average acceleration for a very short time interval during
which the acceleration does not change appreciably.

If the acceleration is changing with time, choosing a very
short time interval guarantees that the acceleration com-
puted for that time interval will not differ too much from
the instantaneous acceleration at any time within the inter-
val. This is the same idea used in finding an instantaneous
speed or instantaneous velocity.

What is the direction of an acceleration?

Like velocity, acceleration is a vector quantity. Its direction
is important. The direction of the acceleration vector is that
of the change in velocity Av. If, for example, a car is mov-
ing in a straight line and its velocity is increasing, the
change in velocity is in the same direction as the velocity
itself, as shown in figure 2.10. The change in velocity Av
must be added to the initial velocity v, to obtain the final
velocity v,. All three vectors point forward. The process of
adding vectors can be readily seen when we represent the
vectors as arrows on a graph. (More information on vector
addition can be found in appendix C.)

If the velocity is decreasing, however, the change in ve-
locity Av points in the opposite direction to the two velocity

vi=8m/s Av=12 m/s Vo =20 m/s
1 Av 2
—_— f — = ——
a
.

figure 2.10 The acceleration vector is in the same direction
as the velocity vectors when the velocity is increasing.

vectors, as shown in figure 2.11. Because the initial veloc-
ity v, is larger than the final velocity v,, the change in
velocity must point in the opposite direction to produce a
shorter v, arrow. The acceleration is also in the opposite
direction to the velocity, since it is in the direction of the
change in velocity. In Newton’s theory of motion, the force
required to produce this acceleration would also be oppo-
site in direction to the velocity. It must push backward on
the car to slow it down.

The term acceleration describes the rate of any change
in an object’s velocity. The change could be an increase (as
in our initial example), a decrease, or a change in direction.
The term applies even to decreases in velocity (decelera-
tions). To a physicist these are simply accelerations with a
direction opposite that of the velocity. If a car is braking
while traveling in a straight line, its velocity is decreasing
and its acceleration is negative if the velocity is positive.
This situation is illustrated in the sample exercise in exam-
ple box 2.3.

The minus sign is an important part of the result in
the example in example box 2.3 because it indicates that
the change in velocity is negative. The velocity is getting
smaller. We can call it a deceleration if we like, but it is

vi=20m/s AV =—12 m/s Vo =8 m/s
me—— -
LENEEe
vy Av 2
a
e E——

figure 2.11 The velocity and acceleration vectors for
decreasing velocity: Av and a are now opposite in direction to
the velocity. The acceleration a is proportional to Av.
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example box 2.3

Sample Exercise: Negative Accelerations

The driver of a car steps on the brakes, and the velocity
drops from 20 m/s due east to 10 m/s due east in a time
of 2.0 seconds. What is the acceleration?

_AV_Vz_Vl

v, = 20 m/s due east a =
v, = 10 m/s due east ! !
t =20s _ 10m/s — 20 m/s
a=27 2.0s
_ —10m/s
20s
= —5m/s?

a = 5.0 m/s? due west

Notice that when we are dealing just with the magnitude
of a vector quantity, we do not use the boldface notation.
The sign can indicate direction, however, in a problem
involving straight-line motion.

the same thing as a negative acceleration. One word,
acceleration, covers all situations in which the velocity is
changing.

Can a car be accelerating when
its speed is constant?

What happens when a car goes around a curve at constant
speed? Is it accelerating? The answer is yes, because the di-
rection of its velocity is changing. If the direction of the
velocity vector is changing, the velocity is changing. This
means that there must be an acceleration.

This situation is illustrated in figure 2.12. The arrows
in this drawing show the direction of the velocity vector
at different points in the motion. The change in velocity
Av is the vector that must be added to the initial velocity
V, to obtain the final velocity v,. The vector representing
the change in velocity points toward the center of the
curve, and therefore, the acceleration vector also points
in that direction. The size of the change is represented by
the length of the arrow Av. From this we can find the
acceleration.

Acceleration is involved whenever there is a change in
velocity, regardless of the nature of that change. Cases like
figure 2.12 will be considered more fully in chapter 5
where circular motion is discussed.

figure 2.12 A change in the direction of the velocity vector
also involves an acceleration, even though the speed may be
constant.

Acceleration is the rate of change of velocity and is found
by dividing the change in the velocity by the time required
to produce that change. Any change in velocity involves an
acceleration, whether an increase or a decrease in speed,
or a change in direction. Acceleration is a vector having a
direction corresponding to the direction of the change in
velocity, which is not necessarily the same direction as

the instantaneous velocity itself. The concept of change is
crucial. The graphical representations in section 2.4 will
help you visualize changes in velocity as well as in other
quantities.

2.4 Graphing Motion

It is often said that a picture is worth a thousand words,
and the same can be said of graphs. Imagine trying to
describe the motion depicted in figure 2.4 precisely in
words and numbers. The graph provides a quick overview
of what took place. A description in words would be much
less efficient. In this section, we will show how graphs can
also help us to understand velocity and acceleration.

What can a graph tell us?

How can we produce and use graphs to help us describe
motion? Imagine that you are watching a battery-powered
toy car moving along a meter stick (fig. 2.13). If the car is
moving slowly enough, you could record the car’s position
while also recording the elapsed time using a digital
watch. At regular time intervals (say, every 5 seconds), you
would note the value of the position of the front of the car
on the meter stick and write these values down. The results
might be something like those shown in table 2.2.
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figure 2.13 A toy car moving along a meter stick. Its
position can be recorded at different times.

How do we graph these data? First, we create evenly
spaced intervals on each of two perpendicular axes, one for
distance traveled (or position) and the other for time. To
show how distance varies with time, we usually put time
on the horizontal axis and distance on the vertical axis.
Such a graph is shown in figure 2.14, where each data
point from table 2.2 is plotted and a line is drawn through
the points. To make sure that you understand this process,
choose different points from table 2.2 and find where they
are located on the graph. Where would the point go if the
car was at 21 centimeters at 25 seconds?

The graph summarizes the information presented in the
table in a visual format that makes it easier to grasp at a

Position of the Toy Car along the Meter Stick
at Different Times

Time Position
0s 0cm
5s 4.1 cm

10s 7.9 cm

155 12.1 cm

20s 16.0 cm

255 16.0 cm

30s 16.0 cm

355 18.0 cm

40 s 20.1 cm

45 s 21.9 cm

50s 24.0 cm

55s 22.1 cm

60 s 20.0 cm

glance. The graph also contains information on the velocity
and acceleration of the car, although that is less obvious.
For example, what can we say about the average velocity
of the car between 20 and 30 seconds? Is the car moving
during this time? A glance at the graph shows us that the
distance is not changing during that time interval, so the
car is not moving. The velocity is zero during that time,
which is represented by a horizontal line on our graph of
distance versus time.

What about the velocity at other points in the motion?
The car is moving more rapidly between 0 and 20 seconds
than it is between 30 and 50 seconds. The distance curve is
rising more rapidly between O and 20 seconds than be-
tween 30 and 50 seconds. Since more distance is covered
in the same time, the car must be moving faster there. A
steeper slope to the curve is associated with a larger speed.

In fact, the slope of the distance-versus-time curve at
any point on the graph is equal to the instantaneous veloc-
ity of the car.* The slope indicates how rapidly the dis-
tance is changing with time at any instant in time. The rate
of change of distance with time is the instantaneous speed
according to the definition given in section 2.1. Since the
motion takes place along a straight line, we can then repre-
sent the direction of the velocity with plus or minus signs.
There are only two possibilities, forward or backward. We
then have the instantaneous velocity, which includes both
the size (speed) and direction of the motion.

When the car travels backward, its distance from the
starting point decreases. The curve goes down, as it does
between 50 and 60 seconds. We refer to this downward-
sloping portion of the curve as having a negative slope and
also say that the velocity is negative during this portion of
the motion. A large upward slope represents a large instan-
taneous velocity, a zero slope (horizontal line) a zero veloc-
ity, and a downward slope a negative (backward) velocity.
Looking at the slope of the graph tells us all we need to
know about the velocity of the car.

Velocity and acceleration graphs

These ideas about velocity can be best summarized by plot-
ting a graph of velocity against time for the car (fig. 2.15).
The velocity is constant wherever the slope of the distance-
versus-time graph of figure 2.14 is constant. Any straight-
line segment of a graph has a constant slope, so the velocity
changes only where the slope of the graph in figure 2.14
changes. If you compare the graph in figure 2.15 to the
graph in figure 2.14 carefully, these ideas should become
clear.

*Since the mathematical definition of slope is the change in the vertical
coordinate Ad divided by the change in the horizontal coordinate Az, the
slope, Ad/At, is equal to the instantaneous velocity, provided that Az is
sufficiently small. It is possible to grasp the concept of slope, however,
without appealing to the mathematical definition.
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figure 2.14 Distance plotted against time for the motion
of the toy car. The data points are those listed in table 2.2.
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figure 2.15 Instantaneous velocity plotted against time for
the motion of the toy car. The velocity is greatest when distance
traveled is changing most rapidly.
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figure 2.16  An approximate sketch of acceleration plotted
against time for the toy-car data. The acceleration is non-zero
only when the velocity is changing.

What can we say about the acceleration from these
graphs? Since acceleration is the rate of change of velocity
with time, the velocity graph (fig. 2.15) also provides in-
formation about the acceleration. In fact, the instantaneous
acceleration is equal to the slope of the velocity-versus-
time graph. A steep slope represents a rapid change in
velocity and thus a large acceleration. A horizontal line has
zero slope and represents zero acceleration. The accelera-
tion turns out to be zero for most of the motion described
by our data. The velocity changes at only a few points in
the motion. The acceleration would be large at these points
and zero everywhere else.

Since our data do not indicate how rapidly the changes
in velocity actually occur, we do not have enough informa-
tion to say just how large the acceleration is at those few
points where it is not zero. We would need measurements
of distance or velocity every tenth of a second or so to get
a clear idea of how rapid these changes are. As we will see
in chapter 4, we know that these changes in velocity cannot
occur instantly. Some time is required. So we can sketch an
approximate graph of acceleration versus time, as shown in
figure 2.16.

The spikes in figure 2.16 occur when the velocity is
changing. At 20 seconds, there is a rapid decrease in the
velocity represented by a downward spike or negative
acceleration. At 30 seconds, the velocity increases rapidly
from zero to a constant value, and this is represented by an
upward spike or positive acceleration. At 50 seconds, there
is another negative acceleration as the velocity changes
from a positive to a negative value. If you could put your-
self inside the toy car, you would definitely feel these
accelerations. (Everyday phenomenon box 2.2 provides
another example of how a graph is useful for analyzing
motion.)

Can we find the distance traveled
from the velocity graph?

What other information can be gleaned from the velocity-
versus-time graph of figure 2.15? Think for a moment about
how you would go about finding the distance traveled if
you knew the velocity. For a constant velocity, you can get
the distance simply by multiplying the velocity by the time,
d = vt. In the first 20 seconds of the motion, for example,
the velocity is 0.8 cm/s and the distance traveled is 0.8 cm/s
times 20 seconds, which is 16 cm. This is just the reverse
of what we used in determining the velocity in the first
place. We found the velocity by dividing the distance traveled
by the time.

How would this distance be represented on the velocity
graph? If you recall formulas for computing areas, you may
recognize that the distance d is the area of the shaded rec-
tangle on figure 2.15. The area of a rectangle is found by
multiplying the height times the width, just what we have
done here. The velocity, 0.8 cm/s, is the height and the
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everyday phenomenon

The 100-m Dash

The Situation. A world-class sprinter can run 100 m in a
time of a little under 10 s. The race begins with the runners in
a crouched position in the starting blocks, waiting for the
sound of the starter’s pistol. The race ends with the runners
lunging across the finish line, where their times are recorded
by stopwatches or automatic timers.

Runners in the starting blocks, waiting for the starter's pistol to fire.

What happens between the start and finish of the race?
How do the velocity and acceleration of the runners vary dur-
ing the race? Can we make reasonable assumptions about
what the velocity-versus-time graph looks like for a typical
runner? Can we estimate the maximum velocity of a good
sprinter? Most importantly for improving performance, what
factors affect the success of a runner in the dash?

The Analysis. Let's assume that the runner covers the 100-m
distance in a time of exactly 10 s. We can compute the aver-
age speed of the runner from the definition s = d/t:
100 m

= 0s 10 m/s.
Clearly, this is not the runner’s instantaneous speed through-
out the course of the race, since the runner’s speed at the
beginning of the race is zero and it takes some time to accel-
erate to the maximum speed.

The objective in the race is to reach a maximum speed
as quickly as possible and to sustain that speed for the rest
of the race. Success is determined by two things: how quickly
the runner can accelerate to this maximum speed and the
value of this maximum speed. A smaller runner often has bet-
ter acceleration but a smaller maximum speed, while a larger
runner sometimes takes longer to reach top speed but has a
larger maximum speed.

The typical runner does not reach top speed before travel-
ing at least 10 to 20 m. If the average speed is 10 m/s, the
runner’s maximum speed must be somewhat larger than this
value, since we know that the instantaneous speed will be
less than 10 m/s while the runner is accelerating. These ideas

are easiest to visualize by sketching a graph of speed plot-
ted against time, as shown. Since the runner travels in a
straight line, the magnitude of the instantaneous velocity is
equal to the instantaneous speed. The runner reaches top
speed at approximately 2 to 3 s into the race.

12
10+ )
— ~ Zero acceleration
o 8r Decreasing
E 6t acceleration
%] 41
5 Constant acceleration
l l l l l

A graph of speed versus time for a hypothetical runner in the
100-m dash.

The average speed (or velocity) during the time that the
runner is accelerating is approximately half of its maximum
value if the runner’s acceleration is more or less constant dur-
ing the first 2 s. If we assume that the runner’s average speed
during this time is about 5.5 m/s (half of 11 m/s), then the
speed through the remainder of the race would have to be
about 11.1 m/s to give an average speed of 10 m/s for the
entire race. This can be seen by computing the distance from
these values:

d (5.5m/s)(2s) + (11.1 m/s)(8 s)
11m + 8 m = 100 m.

What we have done here is to make some reasonable
guesses for these values that will make the average speed
come out to 10 m/s; we then checked these guesses by com-
puting the total distance. This suggests that the maximum
speed of a good sprinter must be about 11 m/s (25 MPH). For
sake of comparison, a distance runner who can run a 4-min
mile has an average speed of about 15 MPH, or 6.7 m/s.

The runner’s strategy should be to get a good jump out of
the blocks, keeping the body low initially and leaning forward
to minimize air resistance and maximize leg drive. To maintain
top speed during the remainder of the race, the runner needs
good endurance. A runner who fades near the end needs
more conditioning drills. For a given runner with a fixed maxi-
mum speed, the average speed depends on how quickly the
runner can reach top speed. This ability to accelerate rapidly
depends upon leg strength (which can be improved by work-
ing with weights and other training exercises) and natural
quickness.
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time, 20 seconds, is the width of this rectangle on the
graph.

It turns out that we can find the distance this way even
when the areas involved on the graph are not rectangles,
although the process is more difficult when the curves are
more complicated. The general rule is that the distance trav-
eled is equal to the area under the velocity-versus-time
curve. When the velocity is negative (below the time axis
on the graph), the object is traveling backward and its dis-
tance from the starting point is decreasing.

Even without computing the area precisely, it is possible
to get a rough idea of the distance traveled by studying the
velocity graph. A large area represents a large distance.
Quick visual comparisons give a good picture of what is
happening without the need for lengthy calculations. This
is the beauty of a graph.

A good graph can present a picture of motion that is rich
in insight. Distance traveled plotted against time tells us
not only where the object is at any time, but its slope also
indicates how fast it was moving. The graph of velocity
plotted against time also contains information on accelera-
tion and on the distance traveled. Producing and studying
such graphs can give us a more general picture of the
motion and the relationships between distance, velocity,
and acceleration.

2.5 Uniform Acceleration

If you drop a rock, it falls toward the ground with a con-
stant acceleration, as we will see in the next chapter. An
unchanging or uniform acceleration is the simplest form
of accelerated motion. It occurs whenever there is a con-
stant force acting on an object, which is the case for a
falling rock as well as for many other situations.

How do we describe the resulting motion? The impor-
tance of this question was first recognized by Galileo, who
studied the motion of balls rolling down inclined planes as
well as objects in free fall. In his famous work, Dialogues
Concerning Two New Sciences, published in 1638 near the
end of his life, Galileo developed the graphs and formulas
that are introduced in this section and that have been stud-
ied by students of physics ever since. His work provided
the foundation for much of Newton’s thinking a few
decades later.

How does velocity vary in uniform
acceleration?

Suppose a car is moving along a straight road and acceler-
ating at a constant rate. We have plotted the acceleration
against time for this situation in figure 2.17. The graph is
very simple, but it illustrates what we mean by uniform
acceleration. A uniform acceleration is one that does not

change as the motion proceeds. It has the same value at any
time, which produces a horizontal-line graph.

The graph of velocity plotted against time for this same
situation tells a more interesting story. From our discussion
in section 2.4, we know that the slope of a velocity-versus-
time graph is equal to the acceleration. For a uniform posi-
tive acceleration, the velocity graph should have a constant
upward slope; the velocity increases at a steady rate. A
constant slope produces a straight line, which slopes up-
ward if the acceleration is positive as shown in figure 2.18.
In plotting this graph, we assumed that the initial velocity
is zero.

This graph can also be represented by a formula. The
velocity at any time ¢ is equal to the original velocity plus
the velocity that has been gained because the car is acceler-
ating. The change in velocity Av is equal to the acceleration
times the time, Av = at since acceleration is defined as
Av/t. These ideas result in the relationship

v =y, + at

The first term on the right, v,, is the original velocity
(assumed to be zero in figure 2.18), and the second term,

t

figure 2.17 The acceleration graph for uniform acceleration
is a horizontal line. The acceleration does not change with time.

=

figure 2.18 Velocity plotted against time for uniform
acceleration, starting from rest. For this special case, the average
velocity is equal to one-half the final velocity.
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at, represents the change in velocity due to the acceleration.
Adding these two terms together yields the velocity at
any later time 7.

A numerical example applying these ideas to an acceler-
ating car is found in part a of example box 2.4. The car
could not keep on accelerating indefinitely at a constant
rate because the velocity would soon reach incredible val-
ues. Not only is this dangerous, but physical limits imposed
by air resistance and other factors prevent this from
happening.

What happens if the acceleration is negative? Velocity
would decrease rather than increase, and the slope of the
velocity graph would slope downward rather than upward.
Because the acceleration is then negative, the second term
in the formula for v would subtract from the first term,
causing the velocity to decrease from its initial value. The
velocity then decreases at a steady rate.

How does distance traveled vary with time?

If the velocity is increasing at a steady rate, what effect
does this have on the distance traveled? As the car moves
faster and faster, the distance covered grows more and
more rapidly. Galileo showed how to find the distance for
this situation.

We find distance by multiplying velocity by time, but in
this case we must use an average velocity since the velocity
is changing. By appealing to the graph in figure 2.18, we
can see that the average velocity should be just half the
final velocity, v. If the initial velocity is zero, the final

example box 2.4

Sample Exercise: Uniform Acceleration

A car traveling due east with an initial velocity of 10 m/s
accelerates for 6 seconds at a constant rate of 4 m/s.

a. What is its velocity at the end of this time?

b. How far does it travel during this time?

a. vy = 10 m/s v =y, + at
a = 4 m/s? = 10m/s + (4 m/s>)(6 s)
t=26s = 10 m/s + 24 m/s
v =17 = 34 m/s

v = 34 m/s due east

b. d = vyt + %atz
= (10 m/s)(6s) + » (4 m/s>)(6 5)*
= 60m + (2m/s?)(36 )
=60m + 72m = 132 m

t

figure 2.19 As the car accelerates uniformly, the distance
covered grows more and more rapidly with time because the
velocity is increasing.

velocity is at, so multiplying the average velocity by the
time yields

_ 1 5
d = 5 ar.

The time ¢ enters twice, once in finding the average
velocity and then again when we multiply the velocity by
time to find the distance.*

The graph in figure 2.19 illustrates this relationship; the
distance curve slopes upward at an ever-increasing rate as
the velocity increases. This formula and graph are only
valid if the object starts from rest as shown in figure 2.18.
Since distance traveled is equal to the area under the
velocity-versus-time curve (as discussed in section 2.4), this
expression for distance can also be thought of as the area
under the triangle in figure 2.18. The area of a triangle is
equal to one-half its base times its height, which produces
the same result.

If the car is already moving before it begins to acceler-
ate, the velocity graph can be redrawn as pictured in figure
2.20. The total area under the velocity curve can then be
split in two pieces, a triangle and a rectangle, as shown.
The total distance traveled is the sum of these two areas,

— L)
d = vyt + sar~

The first term in this formula represents the distance the
object would travel if it moved with constant velocity v,
and the second term is the additional distance traveled
because the object is accelerating (the area of the triangle
in figure 2.20). If the acceleration is negative, meaning that
the object is slowing down, this second term will subtract
from the first.

*Expressing this argument in symbolic form, it becomes

| 1
The average velocity v = 5 v = 5 at

— v = (L 1 »
d—vt—(zat)t—zat.
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V—Vy=Av

Yo

t

figure 2.20 The velocity-versus-time graph redrawn for an
initial velocity different from zero. The area under the curve is
divided into two portions, a rectangle and a triangle.

This more general expression for distance may seem
complex, but the trick to understanding it is to break it down
into its parts, as just suggested. We are merely adding two
terms representing different contributions to the total
distance. Each one can be computed in a straightforward

summary

manner, and it is not difficult to add them together. The two
portions of the graph in figure 2.20 represent these two
contributions.

The sample exercise in example box 2.4 provides a
numerical example of these ideas. The car in this example
accelerates uniformly from an initial velocity of 10 m/s due
east to a final velocity of 34 m/s due east and covers a dis-
tance of 132 meters while this acceleration is taking place.
Had it not been accelerating, it would have gone only
60 meters in the same time. The additional 72 meters
comes from the acceleration of the car.

Acceleration involves change, and uniform acceleration
involves a steady rate of change. It therefore represents the
simplest kind of accelerated motion that we can imagine.
Uniform acceleration is essential to an understanding of
free fall, discussed in chapter 3, as well as to many other
phenomena. Such motion can be represented by either the
graphs or the formulas introduced in this section. Looking
at both and seeing how they are related will reinforce
these ideas.

The main purpose of this chapter is to introduce concepts that are
crucial to a precise description of motion. To understand accelera-
tion, you must first grasp the concept of velocity, which in turn
builds on the idea of speed. The distinctions between speed and
velocity, and between velocity and acceleration, are particularly
important.

l Average and instantaneous speed. Average speed
is defined as the distance traveled divided by the time. It is the
average rate at which distance is covered. Instantaneous speed is
the rate at which distance is being covered at a given instant in time
and requires that we use very short time intervals for computation.

[\

2 Velocity. The instantaneous velocity of an object is a
vector quantity that includes both direction and size. The size of
the velocity vector is equal to the instantaneous speed, and the
direction is that of the object’s motion.

/M
@ Y

v = speed and direction

3 Acceleration. Acceleration is defined as the time rate of
change of velocity and is found by dividing the change in velocity
by the time. Acceleration is also a vector quantity. It can be com-
puted as either an average or an instantaneous value. A change
in the direction of the velocity can be as important as a change in
magnitude. Both involve acceleration.

[M\

- =

vy Av v,
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4 Graphing motion. Graphs of distance, speed, velocity,
and acceleration plotted against time can illustrate relationships
between these quantities. Instantaneous velocity is equal to the
slope of the distance-time graph. Instantaneous acceleration is
equal to the slope of the velocity-time graph. The distance trav-
eled is equal to the area under the velocity-time graph.

5 Uniform acceleration. When an object accelerates at
a constant rate producing a constant-slope graph of velocity versus
time, we say that it is uniformly accelerated. Graphs help us to
understand the two formulas describing how velocity and distance
traveled vary with time for this important special case.

v
d v
: § —>
t t Vo
t
V=V + at
d=vt+ jat?
key terms
Speed, 19 Magnitude, 23 Average acceleration, 25
Average speed, 19 Vector, 24 Instantaneous acceleration, 26
Rate, 20 Vector quantity, 24 Slope, 28

Instantaneous speed, 21

Velocity, 22 Acceleration, 25

questions

Instantaneous velocity, 24

Uniform acceleration, 31

* = more open-ended questions, requiring lengthier responses,
suitable for group discussion

Q = sample responses are available in appendix D

Q = sample responses are available on the Online Learning
Center

Q1. Suppose that critters are discovered on Mars who measure
distance in boogles and time in bops.
a. What would the units of speed be in this system?
Explain.
b. What would the units of velocity be? Explain.
c. What would the units of acceleration be? Explain.

Q2. Suppose that we choose inches as our basic unit of dis-
tance and days as our basic unit of time.
a. What would the units of velocity and acceleration be in
this system? Explain.
b. Would this be a good choice of units for measuring the
acceleration of an automobile? Explain.

Q3. What units would have an appropriate size for measuring
the rate at which fingernails grow? Explain.

Q4. A tortoise and a hare cover the same distance in a race. The
hare goes very fast for brief intervals, but stops frequently,

whereas the tortoise plods along steadily and finishes the

race ahead of the hare.

a. Which of the two racers has the greater average speed
over the duration of the race? Explain.

b. Which of the two racers is likely to reach the greatest
instantaneous speed during the race? Explain.

Q5. A driver states that she was doing 80 when stopped by the
police. Is that a clear statement? Would this be interpreted
differently in England than it would be in the United
States? Explain.

Q6. Does the speedometer on a car measure average speed or
instantaneous speed? Explain.

Q7. Is the average speed over several minutes more likely to
be close to the instantaneous speed at anytime for a car
traveling in freely flowing, low-density traffic or for one
traveling in high-density traffic? Explain.

*Q8. The highway patrol sometimes uses radar guns to identify
possible speeders and at other times uses associates in air-
planes who note the time taken for a car to pass between
two marks some distance apart on the highway. What do each
of these methods measure, average speed or instantaneous
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Q9.

Ql0.

*Q11.

Q12.

QI13.

Ql4.

Qis.

Qle.

Q17.

Q18.

speed? Can you think of situations in which either one
of these methods might unfairly penalize a driver? Explain.

A ball is thrown against a wall and bounces back toward
the thrower with the same speed as it had before hitting the
wall. Does the velocity of the ball change in this process?
Explain.

A ball attached to a string is whirled in a horizontal circle

such that it moves with constant speed.

a. Does the velocity of the ball change in this process?
Explain.

b. Is the acceleration of the ball equal to zero? Explain.

A ball tied to a string fastened at the other end to a rigid

support forms a pendulum. If we pull the ball to one side

and release it, the ball moves back and forth along an arc

determined by the string length.

a. Is the velocity constant in this process? Explain.

b. Is the speed likely to be constant in this process? What
happens to the speed when the ball reverses direction?

A dropped ball gains speed as it falls. Can the velocity of
the ball be constant in this process? Explain.

A driver of a car steps on the brakes, causing the velocity
of the car to decrease. According to the definition of accel-
eration provided in this chapter, does the car accelerate in
this process? Explain.

At a given instant in time, two cars are traveling at differ-
ent velocities, one twice as large as the other. Based upon
this information is it possible to say which of these two
cars has the larger acceleration at this instant in time?
Explain.

A car just starting up from a stop sign has zero velocity at
the instant that it starts. Must the acceleration of the car
also be zero at this instant? Explain.

A car traveling with constant speed rounds a curve in the
highway. Is the acceleration of the car equal to zero in this
situation? Explain.

A racing sports car traveling with a constant velocity of
100 MPH due west startles a turtle by the side of the road
who begins to move out of the way. Which of these two
objects is likely to have the larger acceleration at that
instant? Explain.

In the graph shown here, velocity is plotted as a function

of time for an object traveling in a straight line.

a. Is the velocity constant for any time interval shown?
Explain.

b. During which time interval shown does the object have
the greatest acceleration? Explain.

Q19.

Q20.

Q21.

Q22.

Q23.

Q24.

Q25.

A car moves along a straight line so that its position (dis-

tance from some starting point) varies with time as de-

scribed by the graph shown here.

a. Does the car ever go backward? Explain.

b. Is the instantaneous velocity at point A greater or less
than that at point B? Explain.

d

For the car whose distance is plotted against time in ques-
tion 19, is the velocity constant during any time interval
shown in the graph? Explain.

A car moves along a straight section of road so that its

velocity varies with time as shown in the graph.

a. Does the car ever go backward? Explain.

b. At which of the labeled points on the graph, A, B, or
C, is the magnitude of the acceleration the greatest?
Explain.
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For the car whose velocity is plotted in question 21, in
which of the equal time segments 0-2 seconds, 2—4 sec-
onds, or 4—6 seconds, is the distance traveled by the car
the greatest? Explain.

Look again at the velocity-versus-time graph for the toy

car shown in figure 2.15.

a. Is the instantaneous speed greater at any time during
this motion than the average speed for the entire trip?
Explain.

b. Is the car accelerated when the direction of the car is
reversed at t = 50 s? Explain.

Suppose that the acceleration of a car increases with time.
Could we use the relationship v = v, + at in this situation?
Explain.

When a car accelerates uniformly from rest, which of these
quantities increases with time: acceleration, velocity, and/or
distance traveled? Explain.
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Q26. The velocity-versus-time graph of an object curves as

Q27.

Q28.

shown in the diagram. Is the acceleration of the object
constant? Explain.

v

1

For a uniformly accelerated car, is the average acceleration
equal to the instantaneous acceleration? Explain.

A car traveling in the forward direction experiences a neg-
ative uniform acceleration for 10 seconds. Is the distance
covered during the first 5 seconds equal to, greater than, or
less than the distance covered during the second 5 sec-
onds? Explain.

exercises

Q29.

Q30.

Q31.

*Q32.

A car starts from rest, accelerates uniformly for 5 seconds,
travels at constant velocity for 5 seconds, and finally decel-
erates uniformly for 5 seconds. Sketch graphs of velocity
versus time and acceleration versus time for this situation.

Suppose that two runners run a 100-meter dash, but the
first runner reaches maximum speed more quickly than the
second runner. Both runners maintain constant speed once
they have reached their maximum speed and cross the fin-
ish line at the same time. Which runner has the larger
maximum speed? Explain.

Sketch a graph showing velocity-versus-time curves for
the two runners described in question 30. (Sketch both
curves on the same graph, so that the differences are
apparent.)

A physics instructor walks with increasing speed across
the front of the room then suddenly reverses direction and
walks backward with constant speed. Sketch graphs of
velocity and acceleration consistent with this description.

El.

E2.

E3.

E4.

ES5.

E6.

E7.

E8.

E9.

E10.

Ell1.

A traveler covers a distance of 460 miles in a time of 8 hours.
What is the average speed for this trip?

A walker covers a distance of 1.8 km in a time of 30 min-
utes. What is the average speed of the walker for this dis-
tance in km/h?

Grass clippings are found to have an average length of
4.8 cm when a lawn is mowed 12 days after the previous
mowing. What is the average speed of growth of this grass
in cm/day?

A driver drives for 2.5 hours at an average speed of 54 MPH.
What distance does she travel in this time?

A woman walks a distance of 240 m with an average speed
of 1.2 m/s. What time was required to walk this distance?

A person in a hurry averages 62 MPH on a trip covering
a distance of 300 miles. What time was required to travel
that distance?

A hiker walks with an average speed of 1.2 m/s. What
distance in kilometers does the hiker travel in a time of
1 hour?

A car travels with an average speed of 22 m/s.
a. What is this speed in km/s?
b. What is this speed in km/h?

A car travels with an average speed of 58 MPH. What is
this speed in km/h? (See example box 2.1.)

Starting from rest and moving in a straight line, a runner
achieves a velocity of 7 m/s in a time of 2 s. What is the
average acceleration of the runner?

Starting from rest, a car accelerates at a rate of 4.2 m/s> for
a time of 5 seconds. What is its velocity at the end of this
time?

E12.

E13.

El4.

E15.

El6.

E17.

E18.

The velocity of a car decreases from 30 m/s to 18 m/s in a
time of 4 seconds. What is the average acceleration of the
car in this process?

A car traveling with an initial velocity of 12 m/s acceler-
ates at a constant rate of 2.5 m/s? for a time of 2 seconds.
a. What is its velocity at the end of this time?

b. What distance does the car travel during this process?

A runner traveling with an initial velocity of 2.0 m/s accel-
erates at a constant rate of 1.2 m/s? for a time of 2 seconds.
a. What is his velocity at the end of this time?

b. What distance does the runner cover during this process?

A car moving with an initial velocity of 30 m/s slows down
at a constant rate of —3 m/s%.

a. What is its velocity after 3 seconds of deceleration?

b. What distance does the car cover in this time?

A runner moving with an initial velocity of 4.0 m/s slows
down at a constant rate of —1.5 m/s> over a period of
2 seconds.

a. What is her velocity at the end of this time?

b. What distance does she travel during this process?

If a world-class sprinter ran a distance of 100 meters start-
ing at his top speed of 11 m/s and running with constant
speed throughout, how long would it take him to cover the
distance?

Starting from rest, a car accelerates at a constant rate of

3.0 m/s? for a time of 5 seconds.

a. Compute the velocity of the carat 1 s,2s, 3 s, 4 s, and
5 s and plot these velocity values against time.

b. Compute the distance traveled by the car for these same
times and plot the distance values against time.
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synthesis problems

SP1.

SP2.

home experiments and observations

A railroad engine moves forward along a straight section of
track for a distance of 80 m due west at a constant speed
of 5 m/s. It then reverses its direction and travels 20 m due
east at a constant speed of 4 m/s. The time required for this
deceleration and reversal is very short due to the small
speeds involved.

a. What is the time required for the entire process?

b. Sketch a graph of average speed versus time for this
process. Show the deceleration and reacceleration upon
reversal as occurring over a very short time interval.

c. Using negative values of velocity to represent reversed
motion, sketch a graph of velocity versus time for the
engine.

d. Sketch a graph of acceleration versus time for the
engine.

The velocity of a car increases with time as shown in the

graph.

a. What is the average acceleration between 0 seconds and
4 seconds?

b. What is the average acceleration between 4 seconds and
8 seconds?

c. What is the average acceleration between 0 seconds and
8 seconds?

d. Is the result in part ¢ equal to the average of the two val-
ues in parts a and b? Compare and explain.
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SP3.

SP4.

SPs5.

A car traveling due west on a straight road accelerates at

a constant rate for 10 seconds increasing its velocity from

0 to 24 m/s. It then travels at constant speed for 10 sec-

onds and then decelerates at a steady rate for the next

5 seconds to a velocity of 10 m/s. It travels at this velocity

for 5 seconds and then decelerates rapidly to a stop in a

time of 2 seconds.

a. Sketch a graph of the car’s velocity versus time for the
entire motion just described. Label the axes of your
graph with the appropriate velocities and times.

b. Sketch a graph of acceleration versus time for the car.

c. Does the distance traveled by the car continually
increase in the motion described? Explain.

A car traveling in a straight line with an initial velocity

of 14 m/s accelerates at a rate of 2.0 m/s? to a velocity of

24 m/s.

a. How much time does it take for the car to reach the
velocity of 24 m/s?

b. What is the distance covered by the car in this process?

c. Compute values of the distance traveled at 1-second
intervals and carefully draw a graph of distance plotted
against time for this motion.

Just as car A is starting up, it is passed by car B. Car B

travels with a constant velocity of 10 m/s, while car A

accelerates with a constant acceleration of 4.5 m/s?, starting

from rest.

a. Compute the distance traveled by each car for times of
1s,2s,3s,and 4 s.

b. At what time, approximately, does car A overtake car B?

c. How might you go about finding this time exactly?
Explain.

HEL.

HE2.

How fast do you normally walk? Using a meter stick or a
string of known length, lay out a straight course of 40 or
50 meters. Then use a watch with a second hand or a stop-
watch to determine:

a. Your normal walking speed in m/s.

b. Your walking speed for a brisk walk.

c. Your jogging speed for this same distance.

d. Your sprinting speed for this distance.

Record and compare the results for these different cases. Is
your sprinting speed more than twice your speed for a brisk
walk?

The speed with which hair or fingernails grow provides
some interesting measurement challenges. Using a millimeter

rule, estimate the speed of growth for one or more of:
fingernails, toenails, facial hair if you shave regularly, or
hair near your face (such as sideburns) that will provide
an easy reference point. Measure the average size of clip-
pings or of growth at regular time intervals.

a. What is the average speed of growth? What units are
most appropriate for describing this speed?

b. Does the speed appear to be constant with time? Does
the speed appear to be the same for different nails
(thumb versus fingers, fingernails versus toenails), or in
the case of hair, for different positions on your face?





