4. This problem differs from the second one in that it has a non-zero value for the initial velocity. We use the same equation as was used in the second problem with a negative value for the initial velocity because the rock was initially thrown downward.

$$
\begin{aligned}
& d=v_{o} t+(1 / 2) a t^{2} \\
& d=(-5 \mathrm{~m} / \mathrm{s})(2 \mathrm{~s})+(1 / 2)\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~s})^{2} \\
& \mathrm{~d}=-10 \mathrm{~m}-19.6 \mathrm{~m}=-29.6 \mathrm{~m}
\end{aligned}
$$

Note the negative sign indicating that the displacement is downward as might be expected.

