4. We will write the speed of 1% the speed of light as 0.01 c in the expression for γ.

$$
\begin{aligned}
& \gamma=\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)^{-1 / 2} \\
& \gamma=\left[1-(0.01 \mathrm{c})^{2} / \mathrm{c}^{2}\right]^{-1 / 2} \\
& \gamma=\left[1-(0.01)^{2}\right]^{-1 / 2}=1 /[1-0.0001]^{1 / 2} \\
& \gamma=1 /(0.9999)^{1 / 2}=1 / 0.99995 \\
& \gamma=1.0005
\end{aligned}
$$

This indicates that even for a speed of 1% the speed of light the differences between the predictions of special relativity and those of classical mechanics do not differ by much, only by 0.05%. A speed of 1% the speed of light is $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$. This is a very large speed, equivalent to 6.7 million miles per hour!

