CHAPTER 9

FILL-IN-THE-BLANK ITEMS

Introduction

Intuitively, we understand that most of the statisti	cs we are given are only (1) because
they are based on a sample from the larger group	of interest—the (2) In this chapter,
we discuss the process of (3)	_ and how to determine the range within which our
(4) should fall.	

The Sampling Distribution of Means

The sample mean is an (5)	estimate of the population mean. Th	e sampling
distribution of means is derived by extracting su	accessive random samples, all with th	e same
(6), from some population	. For each sample, the mean of some	characteristic is
computed and the (7) are j	plotted on a (8)	polygon. The
resulting polygon is called the (9)		

The properties of the sampling distribution of means are as follows:

1. The mean of the sampling distribution equals (10) ______.

- 2. The larger the size of each sample taken from the parent population, the more nearly the sampling distribution approximates the (11) _____ curve. This property is a simplified version of the (12) _____ .
- 3. The larger the size of each sample taken from the population, the smaller the
 - (13) ______ of the sampling distribution. The standard deviation is

called the (14) ______ of the mean and is symbolized by

(15) _____.

The equation for a *z* score based on the sampling distribution of means is (16) _____.

z scores obtained for a sample mean can be used in the same way as z scores for a

(17) ______.

Estimation and Degrees of Freedom

Often, we must estimate population values for μ and σ from our (18) _______. We can use (19) ________ to estimate the population mean and (20) ________ to estimate the population standard deviation. As you recall from Chapter 6, in the equation for our unbiased estimate of population variance, we divided the sum of squared deviations by (21) _______ rather than by N because of the tendency of the equation with N in the denominator to (22) _______ either the population variance or the population standard deviation. N-1 is referred to as (23) ________, which is defined as the number of (24) _______ free to vary after certain (25) _______ have been placed on the data. A t score is an estimated (26) ________ and corresponds to a (27) _________.

(28) _____, who published under the pseudonym (29) _____.

Confidence Intervals

A (30)	is a range of values around a sample mean within which
μ almost certainly lies. The confidence i	intervals usually computed are the 95% and the
(31) The equation	as for the confidence intervals are derived from the formula used to
convert (32) to ra	w scores. Instead of z scores, the confidence interval equation
requires (33) obtai	ined from Table (34)
For confidence intervals, $df = ($	35) The <i>t</i> distribution changes shape with
changes in (36)	Rather than being an exact estimate of the
population mean, the confidence interva	l is an (37) estimate.

Hypothesis Testing: One-Sample t Test

The one-sample <i>t</i> test is a procedure for testing the (38)	The
null hypothesis, symbolized by (39), assumes a particul	ar value for a population
parameter—in this case, for (40), the mean of the sample	ing distribution of means. The
alternative to the null hypothesis is that the value of (41)	_ is something other than what
we have assumed it to be. If the alternative hypothesis, symbolized by (42)	, doesn't
specify the direction in which H_0 will differ from μ , we say it is (43)	On the other
hand, an alternative hypothesis stating that μ will either be greater than H_0 or b	less than H_0 is called a
(44) hypothesis.	

The seven-step procedure for testing the null hypothesis is as follows:

- 1. State the (45) ______ hypothesis in symbols and words.
- 2. State the alternative hypothesis in symbols and words.
- 3. Choose an (46) ______ level, which will always be set to .05 or .01 unless there are some special circumstances. Set $\alpha = (47)$ _____, if there are no other instructions in the problem.
- **4.** State the (48) _____ rule.
- 5. Compute the (49) ______ statistic.
- 6. Make a (50) _____ by applying the rejection rule.

7.	Write a (51)	statement in	n the (52)	of the problem.
Dir	ectional tests			
For	a directional test, t_{o}	comp should have the (53)	sig	n as $t_{\rm crit}$. In addition, with a
dire	ectional test, t_{crit} sho	uld be (54)	extreme than for	a nondirectional test, because all
of t	he probability is pla	ced in (55)		of the distribution. For this
rea	son, directional tests	s are (56)	powerful than nor	directional tests but hazardous if
the	(57)	of the outcome cann	ot be predicted in adv	ance.
Tvi	pe I and Type II erro	<i>Ir</i> s		
• •		g or failing to reject H_0 is so	ometimes called (58)	
		Rejecting		
	0	r		
(60)	error. The probability of	f committing this type	of error is determined by the value
we	set for (61)	Lowering the	e value of alpha will (52) the
pro	bability of this type	of error.		
	Failing to reje	ct a false null hypothesis is	called a Type (63)	or
(64)	error. Although the prob	pability of this type of	error is unknown, it is increased by
(65)	in the value of alpha.		
The	e power of a statistic	cal test		
The	e (66)	of a test is the proba	ability that the test will	l detect a false hypothesis, given
by	the equation (67)	=	Facto	rs affecting power are the value of
(68)	, the (69)	of the sample t	aken from the population, and the
dis	tance between the h	ypothesized value of μ and	the true value. Specifi	cally, the smaller we set α , the
(70)	the power of the test wil	ll be. Also, the (71)	the sample
size	e, the greater the pov	wer of the test will be. Final	ly, the greater the dist	ance between the hypothesized
val	ue of μ and the true	value, the (72)	the power of	f the test will be.

Meta-analysis

The magnitude of the difference b	between H_0 and H_1 , called the (73)
, is the point	of departure in the quantitative analysis of large numbers of research
studies using (74)	This form of analysis is more interested in
(75)	than in whether a significant effect is present in a study.
Should hypothesis testing be aban	ndoned?
Some researchers say we should (76) hypothesis testing because the
(77)	in psychology experiments is really much higher than most
researchers think. Anti-hypothesis	s testers claim that a large percentage of studies don't have enough
(78) to deter	ct an effect even when the effect is present. As a consequence, Type
(79) errors a	are committed at high rates, sometimes as high as 60%. This point is valid
if it forces experimenters to be mo	ore attentive to having sufficient (80) in their
experiments.	

Troubleshooting Your Computations

When the confidence interval has been computed, look at it to be sure that it is (81) in
he light of your data. For example, the confidence interval should contain the (82) of
he sample. Be sure to use (83) rather than N when finding the t score from Table B.
When computing <i>t</i> scores, the appropriate (84) should be retained throughout the
omputations. If the hypothesized mean is larger than the mean of the sample, the resulting value of t
hould be (85) Be sure that the absolute value of your computed <i>t</i> is larger than the
ritical value of t from the table before (86) H_0 , if you're testing a nondirectional
ypothesis.