CHAPTER 10

FILL-IN-THE-BLANK ITEMS

Introduction

In Chapter 9 we looked at a distribution composed of means of single samples drawn from a population, whereas in this chapter we considered (1) ______ samples taken simultaneously.

The Sampling Distribution of the Differences Between Sample Means

If the behavior of the me	embers of one sa	mple is not related to the	behavior of subjects	s in the other sample,	
the samples are (2)		. The assumption of inde	pendence is often m	ade as long as	
subjects are selected at	(3)	and are (4)	ass	igned to the different	
treatment conditions.					
To construct the sampling distribution of the differences, we first draw (5) of					
random samples from the same population. For each sample of the pair, a (6) is					
computed and the (7)		between the means is	found. A frequency		
(8)	based on the differences is then made, and from this a frequency				
(9)	_ is plotted. The	standard deviation of the	sampling distribution	on of differences is	
called the (10)		of the	differences.		
Three properties of the sampling distribution of the differences are: the mean of the distribution is					

equal to (11) _____; the larger the size of the samples taken from the population, the more

closely the distribution approximates the (12) ______ curve; and the larger the size of the samples, the (13) ______ the standard error of the difference between means.

In the sampling distribution of the differences, a score is symbolized by (14) ______. The

mean is symbolized by (15) _____, and the standard error is symbolized by

(16) ______. Putting these together, the formula for a *z* score is (17) ______

=______. If we divide by the estimated standard error, we obtain the formula for t, which is usually written as (18) ______ = _____.

Computing *t*: Independent Samples

To compute *t* for independent samples, we need three things: the mean of each sample, the

(19) ______ of subjects in each sample, and the (20) ______ of each sample.

The null hypothesis is that both samples were drawn from the (21)

_____ and that the mean of the sampling distribution is (22) _____. The degrees of freedom for the test are given by (23) _____.

One-tailed versus two-tailed tests

A (24) ______ test of significance is one considering both ends of the distribution. To use it,

we don't have to make any (25) ______ about the experiment's outcome. The

(26) ______ test, on the other hand, looks only at the tail of the distribution predicted by the

experimenter before the experiment. However, with a one-tailed test, we must make our prediction

(27) _____ doing the study.

The (28) _________ test is a more powerful test if the prediction comes true. A more powerful test is one with which it will be (29) _______ to reject the null hypothesis.

Assumptions of the two-sample t test

The <i>t</i> test assumes that the dependent variable is (30)	distributed in the population
from which the samples are drawn. Another assumption is	that the population (31) are

homogeneous. If you have reason to suspect that the assumptions will be violated, you should use (32) ______ samples with the same number of subjects in each. Both assumptions can apparently be violated with (33) ______ effect upon the conclusions reached with the *t* test, which means that the *t* test is a (34) ______ test.

Computing *t***: Dependent Samples**

In testing *H*₀, the most desired outcome is (35) ______ of the null hypothesis. One way to increase the (36) _______ of the *t* test is to use dependent samples. One way to obtain dependent samples is to form (37) _______ of unrelated individuals with one member of a pair assigned to one treatment group and the other member assigned to the other group. In the (38) _______ design, each subject is given both treatments; that is, each subject is his or her own (39) _______. Sometimes, this type of design is called the (40) _______ design. The dependent-samples design increases the power of the test by (41) _______ the standard deviation of the sampling distribution of differences between related samples.

The direct difference method

(42)	_ is a procedure used to con-	rol for the effects of the order of presentation of the		
treatment in experiments	. A (43)	_ method of drug presentation is one in which neither		
the administrator nor the	subject knows which drug i	s being given. With the direct difference method, all		
calculations are based on	the (44)	between each pair of scores rather than on the		
scores themselves. The t ratio is the mean of the differences divided by the estimated				
(45)	of th	e differences. The mean of the differences is defined		
as the (46)	sum of the difference	es divided by N, which is the number of		
(47)	_ of scores. For the test, <i>df</i> =	. (48)		

Troubleshooting Your Computations

The (49) ______ used must be appropriate to your data; that is, when the samples are assumed to be independent of each other, the *t* test for (50) ______ samples should be used. If the samples are related or matched in some way, the *t* test for (51) ______ samples should be used.

The estimated standard error of the differences should always have a (52) _______ sign. Also, be sure to retain the appropriate (53) _______ when computing the final value for *t*. In the *t* test for dependent samples, all computations are made on the (54) ______ scores rather than on the actual scores themselves. Be careful to add the difference scores (55) ______ — that is, taking the signs into account.

Remember the decision rule for a nondirectional test: If the absolute value of the computed *t* is equal to or larger than the critical value of *t* from Table B, (56) _____ H_0 .