CHAPTER 11

FILL-IN-THE-BLANK ITEMS

Introduction

The t test in Chapter 10 was used to compare the results from (1) \qquad samples in order to see whether they were drawn from (2) \qquad populations. One important technique to compare the results from two or more groups is the (3) \qquad .

Two reasons not to apply the t test to results from more than two groups are that the computations would be (4) \qquad and the more tests you do on the same data, the greater the likelihood of
committing a Type (5) \qquad error, rejecting a (6) \qquad null hypothesis.
Between-Subjects ANOVA

Like the t test, one-way ANOVA has two versions: a (7) \qquad ANOVA, which parallels the independent t, and a (8) \qquad ANOVA, which parallels the dependent t. The t score is a measure of the distance between a group mean and a (9) \qquad mean, or another group (10) \qquad in standard (11) \qquad terms. One of the reasons that variance can be used to determine whether more than two groups differ is the property of (12) \qquad . According to the property of additivity, the variance of the sum of independent
scores is equal to the (13) \qquad of the variances of the scores. Because variance is additive, we can divide the total variability in a set of scores into its (14) \qquad

Visualization of ANOVA concepts

The two components of variability in which we're interested are based on within-groups variability and (15) \qquad variability, and the (16) \qquad for these components are $\left(X_{\mathrm{g}}-\bar{X}_{\mathrm{g}}\right)$ and $\left(\bar{X}_{\mathrm{g}}-\bar{X}_{\text {tot }}\right)$, respectively. $\bar{X}_{\text {tot }}$ is often called the (17) \qquad
\qquad . To analyze the variances, we are interested in comparing the
(18) \qquad variability to the within-groups variability. If the between-groups variability is (19) \qquad relative to within-groups variability, we will probably conclude that the treatments had an effect.

Everyday ANOVA.

The static on your cellular phone or the distracting noise at a party is analogous to
(20) \qquad variability; the message or signal you're trying to detect is analogous to
(21) \qquad variability.

Three sources of variability in some data are discussed: (22) \qquad variability, betweengroups variability, and (23) \qquad variability. The variability within groups is caused by experimental error and (24) \qquad . The variability between groups comes from experimental error, individual differences, and the (25) \qquad . The ANOVA test is the ratio of the variability (26) \qquad groups to the variability
\qquad groups. If there is no treatment effect, the F ratio will be near
\qquad , whereas a treatment effect will make the statistic relatively (29) \qquad .

Measuring variability: The sum of squares

The (30) \qquad sum of squares is the sum of the squared deviation of each score from the total mean. The sum of squares (31) \qquad groups is the sum of the squared deviations of each group score from a group mean, with the deviations summed across groups. The sum of squares (32) \qquad groups is based on the deviation between each group mean and the total mean.

Computing the sums of squares

Although computation of the sums of squares can be tedious, the "trick" is to first compute the sum of the (33) \qquad in each group, the sum of the (34) \qquad in
each group, the (35) \qquad sum of scores, the total sum of squared scores, the number of subjects per group, and the (36) \qquad number of subjects. The symbols are ΣX_{g}, (37) \qquad , $\Sigma X,(38)$ \qquad , N_{g}, and N, respectively.

Remember that variance is additive. In one-way between-subjects ANOVA, once $S S_{\text {tot }}$ and one of its components (either $S S_{\mathrm{b}}$ or $S S_{\mathrm{w}}$) have been computed, the other component can be found by (39) \qquad , although the value should be computed as a check on the accuracy of your calculations.

The analysis of variance summary table

The ANOVA summary table provides a place for the sums of squares; the (40) \qquad for each of the sums of squares; the (41) \qquad squares, which are computed by dividing each $S S$ by its $d f$; and the (42) \qquad . F is computed by dividing the $M S_{\mathrm{b}}$ by (43) \qquad . $d f_{\mathrm{b}}$ is equal to $K-1$, where K is the number of (44) \qquad . $d f_{\mathrm{w}}=$
(45) \qquad . If the computed F ratio is larger than the critical F ratio from Table (46) \qquad , the null hypothesis is (47) \qquad . Instead of being symmetrical
like the t distributions, the F distributions are (48) \qquad skewed with a peak around (49) \qquad . (50) \qquad tests are tests that follow a significant F ratio.

Post Hoc Comparisons

There are many post hoc tests available that avoid the problem of inflation of Type I error by (51) \qquad the critical value needed to reject H_{0}. Because a posteriori or post hoc tests follow a significant F ratio, they are also called (52) \qquad tests. On the other hand, (53) \qquad tests are tests designed to look at specific hypotheses before the experiment is performed. When the experimenter cannot predict the patterning of
(54) \qquad before the research is performed, post hoc tests are appropriate.

The Fisher LSD

As presented in the text, the LSD test does not require equal (55) \qquad
. Also, the LSD test is a (56) \qquad test, which means that we are more
likely to be able to reject the null hypothesis with it than with many other post hoc tests available. The LSD test is sometimes called a (57) \qquad t test because it follows a significant
\qquad . The significant F ratio tells us that there is at least one (59) \qquad comparison, thus protecting the error rate. With the test, the difference between two sample means is significant if it is greater than (60) \qquad , which is found with the
following formula: (61) \qquad . As before, (62) \qquad is the level of significance, and the value of t is obtained from Table (63) \qquad The results of the Fisher LSD are best summarized in a
(64) \qquad .

The Tukey HSD

Although the Tukey HSD test can be used for more complex comparisons, we used it for making all (65) \qquad comparisons when the sample sizes are (66) \qquad . Like the

Fisher LSD, the difference between two sample means is significant if it is greater than (67) \qquad , which is found with the following formula: (68) \qquad . The value of q comes from the distribution of the (69) \qquad
\qquad whose critical values are found in Table (70) \qquad . HSD stands for (71) \qquad -

Repeated Measures ANOVA

Repeated measures ANOVA is appropriate in situations in which the (72) \qquad participants are measured on more than (73) \qquad occasions. In repeated measures ANOVA, each
participant serves as his or her own (74) \qquad . By using a person as his or her own control, we are able to extract some of the (75) \qquad from our scores.

There are two sources of variability that contribute to $S S_{\mathrm{w}}$: experimental (76) \qquad and variability in (77) \qquad . Thus, $S S_{\mathrm{w}}=S S_{\text {subj }}+(78)$ \qquad . $S S_{\text {error }}$ is used as the (79) \qquad in computing the F ratio in one-way repeated measures ANOVA. Because the property of additivity applies, $S S_{\text {tot }}=S S_{\mathrm{b}}+S S_{\text {subj }}+(80)$ \qquad . As compared to one-way between-subjects ANOVA, the additional step in one-way repeated measures ANOVA is the computation of (81) \qquad sum of squares.

The summary table for one-way repeated measures ANOVA is similar to that for one-way betweensubjects ANOVA except that $S S_{\text {tot }}$ is divided into (82) \qquad instead of two. For subjects, degrees of freedom are found by subtracting one from the number of (83)
\qquad . Degrees of freedom for error are the product of $d f_{\mathrm{b}}$ and (84) \qquad or $(K-1)(S-1)$.

Normally, an F ratio is not computed for (85) \qquad . In one-way repeated measures ANOVA, F is found by dividing $M S_{\mathrm{b}}$ by (86) \qquad .

Troubleshooting Your Computations

Two obvious signs of trouble when computing the sums of squares are a (87) \qquad sign for $S S$ and failure of $S S_{\mathrm{b}}$ and $S S_{\mathrm{w}}$ to sum to (88) \qquad . The most common error in filling in the summary table is determining incorrectly the (89) \qquad for each $S S$. Remember that $d f_{\text {tot }}=$ $d f_{\mathrm{b}}+d f_{\mathrm{w}}=(90)$ \qquad for between-subjects ANOVA, and $d f_{\text {tot }}=d f_{\mathrm{b}}+d f_{\text {subj }}+d f_{\text {error }}=$
(91) \qquad for repeated measures ANOVA.

The most common computational error made in calculating either LSD or HSD is to use N instead of (92) \qquad in the expression under the radical sign. Another error that is sometimes made is to use a value from the (93) \qquad table rather than the critical (94) \qquad in the formula for LSD or instead of the (95) \qquad value in the HSD formula. Also, be sure to subtract to obtain (96) \qquad differences or to use the (97) \qquad values or your differences in the significance tests. Remember, if your computed value is equal to or (98) \qquad than the critical value, then you reject the null hypothesis for that test.

