CHAPTER 11

FILL-IN-THE-BLANK ITEMS

Introduction

Visualization of ANOVA concepts

The two components of variability in which we're interested are based on within-groups	variability and
(15) variability, and the (16)	_ for these
components are $(X_g - \overline{X}_g)$ and $(\overline{X}_g - \overline{X}_{tot})$, respectively. \overline{X}_{tot} is often called the (17)	
To analyze the variances, we are interested in comparing the	
(18) variability to the within-groups variability. If the between-grou	ups variability is
(19) relative to within-groups variability, we will probably conclud	e that the
treatments had an effect.	

Everyday ANOVA.

The static on your cellular phone or the distracting noise at a party is analogous to

(20) ______ variability; the message or signal you're trying to detect is analogous to

(21) variability.

Three sources of variability in some data are discussed: (22) ________ variability, betweengroups variability, and (23) ________ variability. The variability within groups is caused by experimental error and (24) ________. The variability between groups comes from experimental error, individual differences, and the (25) ______. The ANOVA test is the ratio of the variability (26) _______ groups to the variability (27) _______ groups. If there is no treatment effect, the *F* ratio will be near (28) _______, whereas a treatment effect will make the statistic relatively

(29) _____.

Measuring variability: The sum of squares

The (30) _______ sum of squares is the sum of the squared deviation of each score from the total mean. The sum of squares (31) ______ groups is the sum of the squared deviations of each group score from a group mean, with the deviations summed across groups. The sum of squares (32) ______ groups is based on the deviation between each group mean and the total mean.

Computing the sums of squares

Although computation of the sums of squares can be tedious, the "trick" is to first compute the sum of the

(33) in each	n group, the sum of the (34) in
each group, the (35)	sum of scores, the total sum of squared scores, the number of
subjects per group, and the (36)	number of subjects. The symbols are ΣX_{g} ,
(37), ΣΧ, (3	(8), N _g , and N, respectively.

Remember that variance is additive. In one-way between-subjects ANOVA, once SS_{tot} and one of its components (either SS_b or SS_w) have been computed, the other component can be found by (39) ______, although the value should be computed as a check on the accuracy of your calculations.

The analysis of variance summary table

The ANOVA summary ta	able provides a place for the	e sums of squares; the (40)	for
each of the sums of squar	res; the (41)	squares, which are computed by dividing	each
SS by its df; and the (42)		. <i>F</i> is computed by dividing the	MS _b by
(43)	$df_{\rm b}$ is equal to $K-1$, whe	re <i>K</i> is the number of (44)	$df_{\rm w} =$
(45)	If the computed F ratio is	s larger than the critical F ratio from Table	
(46)	, the null hypothesis is (47) Instead of being symmet	trical
like the <i>t</i> distributions, the	e <i>F</i> distributions are (48)	skewed with a peak around	
(49)	(50)	_ tests are tests that follow a significant <i>F</i> ratio.	

Post Hoc Comparisons

There are many post hoc tests available that avoid the problem of inflation of Type I error by

(51) ______ the critical value needed to reject H_0 . Because a posteriori or post hoc tests

follow a significant F ratio, they are also called (52) ______ tests. On the other hand,

(53) ______ tests are tests designed to look at specific hypotheses

before the experiment is performed. When the experimenter cannot predict the patterning of

(54) ______ before the research is performed, post hoc tests are appropriate.

The Fisher LSD

As presented in the te	xt, the LSD test does not requi	re equal (55)	
·	Also, the LSD test is a (56) _	tes	st, which means that we are more
likely to be able to rej	ect the null hypothesis with it	than with many other p	post hoc tests available. The LSD
test is sometimes calle	ed a (57)	t test because it follow	vs a significant
(58)	Th	e significant F ratio tel	ls us that there is at least one
(59)	comparison, thus protecti	ng the error rate. With	the test, the difference between
two sample means is a	significant if it is greater than ((60)	, which is found with the
following formula: (6	1) As be	efore, (62)	is the level of
significance, and the	value of t is obtained from Tab	le (63)	. The results of the Fisher
LSD are best summar	ized in a		
(64)		·	
The Tukey HSD			
Although the Tukey H	ISD test can be used for more	complex comparisons,	we used it for making all
(65)	comparisons when the sa	mple sizes are (66)	Like the
Fisher LSD, the differ	ence between two sample mea	ans is significant if it is	greater than
(67)	, which is found with the	following formula: (68) The
value of q comes from	n the distribution of the (69)		
,	whose critical values are four	id in Table (70)	HSD stands for
(71)			

Repeated Measures ANOVA

Repeated measures ANOVA is appropriate in situations in which the (72) ______ participants are measured on more than (73) ______ occasions. In repeated measures ANOVA, each

participant serves as his or her own (74) ______. By using a person as his or her own control, we are able to extract some of the (75) ______ from our scores.

There are two sources of variability that contribute to SS_w : experimental (76) ______ and variability in (77) ______. Thus, $SS_w = SS_{subj} + (78)$ ______. SS_{error} is used as the (79) ______ in computing the *F* ratio in one-way repeated measures ANOVA. Because the property of additivity applies, $SS_{tot} = SS_b + SS_{subj} + (80)$ ______. As compared to one-way between-subjects ANOVA, the additional step in one-way repeated measures ANOVA is the computation of (81) ______ sum of squares.

The summary table for one-way repeated measures ANOVA is similar to that for one-way betweensubjects ANOVA except that *SS*_{tot} is divided into (82)

instead of two. For subjects, degrees of freedom are found by subtracting one from the number of (83)

_____. Degrees of freedom for error are the product of df_b and (84) ______ or

(K-1)(S-1).

Normally, an F ratio is not computed for (85) ______. In one-way repeated measures

ANOVA, *F* is found by dividing *MS*_b by (86) ______.

Troubleshooting Your Computations

Two obvious signs of trouble when computing the sums of squares are a (87) sign for			
SS and failure of SS_b and SS_w to sum to (88) The most common error in filling in the			
summary table is determining incorrectly the (89) for each SS. Remember that $df_{tot} =$			
$df_{\rm b} + df_{\rm w} = (90)$ for between-subjects ANOVA, and $df_{\rm tot} = df_{\rm b} + df_{\rm subj} + df_{\rm error} =$			
(91) for repeated measures ANOVA.			
The most common computational error made in calculating either LSD or HSD is to use N instead of			
(92) in the expression under the radical sign. Another error that is sometimes made is			
to use a value from the (93) table rather than the critical (94) in			
the formula for LSD or instead of the (95) value in the HSD formula. Also, be sure to			
subtract to obtain (96) differences or to use the (97) values or			
your differences in the significance tests. Remember, if your computed value is equal to or			
(98) than the critical value, then you reject the null hypothesis for that test.			