CHAPTER 14

FILL-IN-THE-BLANK ITEMS

Introduction

The *t* test and the *F* test are examples of (1) ________ tests, or tests designed to test hypotheses about population parameters. Tests that don't test hypotheses about population parameters are called (2) ________ tests. Also, because the tests don't assume any particular distribution, they are often called (3) ________ tests. The (4) _______ tests. The (4) _______ scale is used for labeling only; all we can do with it is to record (5) _______ of occurrence. (6) _______ is an appropriate

test with categorical or nominal scale data.

The Chi-Square Goodness-of-Fit Test

Expected frequencies may also be based on percentages observed in (10)

The results for each cell are (11)	for all cells to give the chi-square statistic. The
computed chi square is compared with critical value	es from Table G with $df = (12)$,
where <i>K</i> is the number of (13)	of the categorical variable.

Confirming hypotheses with chi square

.

Sometimes the chi-square goodness-of-fit test null hypothesis is the (14)

______ that the investigator seeks to confirm. If this is the case, then failure to reject H_0 may provide some (15) ______ of the theory under investigation. The degree of confirmation depends on the statistical (16) ______ in the analysis and on whether (17)

_____ leads to the same conclusion.

The Chi-Square Test of Independence

The chi-square test based on (18)	categorical variables is called the chi-square test of		
(19), the (20)	chi square, or the chi-square test of significance.		
The test tries to determine whether the two categorica	al variables are (21)		
The frequency table formed from the observations ma	ade under each categorical variable is called a		
(22) table.			
An alternative method for finding expected values			
Occasionally, expected frequencies are known because of theory or previous (23)			
More often, however, the expected frequencies for a given cell are found by multiplying the (24)			
totals for the cell and dividing b	by (25) Many expected		
frequencies can be determined by (26)	, because the expected frequencies for a given		
row or column must sum to the row or column total.	df for the chi-square test of independence equals (27)		
, where R is the number of rows	s and C is the number of columns.		

Restrictions on Chi Square

Chi square can be used or	ıly with (28)	data. Also, the events or observations that
make up the data must be	(29) of or	he another. A third restriction on chi square is that
we must have in the data	both the frequency of (30)	and the frequency of
(31)	, if we are recording whether ar	event occurs. No expected frequency should be
less than (32)	, although this rule may be relaxed if there are more than	
(33)	cells and only a few have smal	l expected frequencies.

Troubleshooting Your Computations

If you're finding *E* by subtraction, remember that both the (34) ______ frequencies and the observed frequencies must sum to give you a particular row or column total. Be sure you don't get any (35) ______ signs for a cell total.