Chapter
1

Introduction to problem solving

Introduction

One of the most useful tools in developing a program, mapping a process, or representing a system is the Flowchart.  A Flowchart is a diagram or pictorial representation of the logic flow of a program.  A program flowchart is usually drawn during the development portion of the System Development Life Cycle.  The flowchart can be viewed as a type of blueprint, similar to what an architect would use before a house is built.  The programmer will use a flowchart to perfect his or her logic steps prior to the development of the program.  Verification of the logic will be much easier using a flowchart before the coding process begins.

This book is designed to provide the Student with exposure to several logic models that will be helpful throughout the Programming Curriculum in the Computer Science Department.  The examples used are presented in a linear format or a straight line approach, as opposed to a structured or top-down design used with higher level languages such as COBOL or C++.  This will enable you to code an Assembler Language Program directly from a flowchart. 

As stated above, flowcharts are used for many purposes, not only in Information Technology, but also to simply map a daily business process in a company.  The approach of this text will be to present flowcharting as a way to solve a typical business problem and to use the flowchart as a step-by-step guide to develop a program.  Once you have learned the techniques presented here, flowcharting will become a useful tool throughout your career. 

As a Programming Student in the Computer Science Department, you will be required to create and turn-in a logic flowcharts as part of your Lab assignments. You will also be required to develop System Flowcharts in your System Analysis courses, and you will be required to map business processes in Management/Systems courses. 

Rules must be followed

As in learning any programming language, flowcharting has rules that must be followed.  This book will follow the American National Standards Institute (ANSI)  standards set for usage of flowcharting symbols.  The following section presents rules and guidelines for flowcharting as dictated by ANSI and the Computer Science Department:

A logic flow in a flowchart is read from top to bottom, left to right unless a specific condition alters the path.

Different symbols are used for different functions.  All symbols have explanatory notes indicating the specific operations to be performed.  The reasoning behind this is that a symbol denotes a major class of functions such as INPUT, OUTPUT, or PROCESSING.

Symbols must be connected using connector lines.  Arrows must be used when more than one path is leaving a symbol.

When multiple paths lead from one location, text must be used to indicate the conditions or results of conditions.

The symbols and how they are used are important.  In order for the audience to understand what the author of a flowchart is representing, standards must be adhered to. For the purposes of flowcharting program logic, the following symbols will be used to represent their associated operation:

Terminal Symbol

The Terminal Symbol is used to indicate the beginning or end of the program.  In most cases the explanatory text in this symbol will be START, BEGIN, STOP, HALT, or END.

Input/Output Symbol

This symbol is used to indicate that data is being  brought into the program or being written out.  Typically this symbol means that data is being brought into the program as an individual record and is available for processing. It also can indicate the data is being transferred from the program or written-out.  The actual medium the data is coming from or going to is not as important at this point.  Most explanatory text used in this symbol will be READ A RECORD or WRITE A RECORD.

Processing Symbol
One of the more difficult symbols to be specific about is the Processing Symbol.  This is used primarily to indicate the movement of data from one location to another, a calculation or arithmetic operation, or any type of process that is being performed.  Most often a single process will be indicated in this symbol, but several operations may  be indicated in one symbol if the text can be worded so it is not confusing.  The author will need to make the decision as to how detailed the text will be in the process symbol.  Most explanatory text used in this symbol will be  Move name to output,  Multiply Hours time Rate giving Gross Pay, etc.

Decision Symbol

The power of logic lies in the usage of the decision symbol.  Here you are asking a question or interrogating data to make a decision.  Once the question has been asked then 2 or more paths will lead out of the decision symbol. These paths are often called conditions.  If there is only one path or answer to the question being asked, then the decision symbol may not be necessary.  Each path exiting the decision symbol will create multiple legs or paths in the logic flow.  The author will identify the conditions with text to aid the audience in determining the flow direction.  Explanatory text in a Decision Symbol might be:   Is Amount > 5?  Resulting paths or conditions would be YES or NO, TRUE, FALSE, etc.

On Page Connector

Many times it is necessary to Branch or Jump from one location to another in a flowchart.  

When the location you are branching to is on the same page, use the On Page connector symbol.  The symbol has two uses, 1) to indicate an entry point into the flow, or 2) to indicate an exit point from the flow.  Usually text is used to indicate the name or label on the page that the flow is jumping to.  Arrows must be used on the connecting line to indicate the flow direction.

Perform Symbol

The Perform Symbol is used to indicate that a closed subroutine is being “called”.  The subroutine is “Performed” and control is passed back to the next symbol following the Perform Symbol.  In most cases, the performed subroutine will be on a different page or location in the flowchart.  It is important to identify the subroutine name and page number if possible.  Calling subroutines will be discussed in more detail in Chapter 6.
Off Page Connector

The Off Page Connector is used the same as the On Page Connector above except the branch or jump will occur to a different page of the flowchart.  Usually the author will indicate the label where he or she is branching to, and also indicate the page number.

Connector Lines

[image: image1.png]
Connector lines must be used between all symbols in a flowchart.  In most cases the connector lines can be drawn with automatic arrows that will aid the reader in determining flow direction.

Creating or drawing the Flowchart

In most cases, the flowchart will be drawn using Microsoft VISIO, a graphical diagramming software package available in all Computer Science Labs.  Other flowcharting software is available to create flowcharts, but VISIO is the preferred software for Programming Students.  A Brief Introduction to Visio will be presented in Chapter 2 of this text.

A Sample Flowchart

Refer to the sample program flowchart.  The flowchart depicts the logic flow used to print a Payroll Register for all Salespeople in a company.  You will note that 3 segments or parts of the flowchart are identified as In Initialization, Mainflow Processing, and End of Job.  Each of these sections has an important role of function that must be understood.  Their definitions are:


Initialization:

Instructions or processes that are performed only one time at the beginning of the logic.  Many things are initialized or made ready for processing here that once they are done, never need to be done again.  Much of what will occur in the Initialization Section are: Defining Files, Opening Files, Defining Accumulators and Counters, and Setting initial field value constants.
Mainflow:
The largest and most important part of the flowchart is the Mainflow section.  Here the is where the main “Loop” of logic will be developed. This set of instructions or processes will be performed many times until there is no more data to be processed.  Each cycle or execution of the Mainflow process is called an iteration.  It is also referred to as a loop since the bottom of the mainflow section jumps or branches back to the top section after every record is processed. 

The beginning of the Mainflow processing section will bring data into the program.  Once data has been brought in, it is moved to an output area for printing and calculations are performed. 

At the bottom of the Mainflow section, you will notice that data is sent out of the program in the form of a printed line. Each printed line in this example is known as a detail line. In the case of our Payroll Register Report example, each line represents a single employee, or 1 data record.  Once the processing for each record or employee has been completed in the Mainflow section, control is passed back to the Read Input symbol and the process repeats for another record or employee. Hence creating the loop mentioned above. 

One problem with a loop in programming is that it will occur forever until some means of exiting or leaving the loop is built into it.  In the Mainflow Section, we provide this exit by means of the decision symbol which checks for the END OF FILE condition.  You will notice there are two paths exiting from the Decision Symbol, each marked with a YES or NO.  After every Read of an Input record, the check for END of FILE is made and if there is no more data to be processed, we will take the YES path.  If there is still data to be processed, the NO path will be taken, or we will execute another iteration of the Mainflow section.  

End of Job

As discussed in the previous paragraph, once we have processed all the data, the YES path will be taken from the End of File decision symbol in the flowchart.  This path is called the End of Job section.  Like the Initialization section, this set of instructions or processes will be executed only once.  These are the instructions we execute at the end of the program to do such things as print Final Totals, or those instructions necessary to “Close Down” the program before Halting Execution.

How do I know what to do?

This is a valid and most commonly asked question for students new to Programming and Flowcharting.  Many times teaching flowcharting is difficult because it is an attempt to make you think a certain way.  No two individuals think alike and of course may not always produce the same solution to a single question or problem.  In many cases there may be more than 1 solution to a business problem that you are about to flowchart.  The question is, have you created a set of instructions that is efficient, with little or no redundancy?

It is important to note that a flowchart allows you to view your solution symbolically first and make changes before committing your solution to code.  Many times you are not creating the flowchart for yourself alone, but for someone else to read and understand.  It is always critical to remember that you must always keep in mind your audience when developing a flowchart or even a program.  Chances are someone else will be given responsibility for a program you create after you have left an organization or moved-on to another area of responsibility.  Streamlining or developing clean code is done through the usage of tools such as a flowchart and investing valuable time in planning up-front. 

This text will present several models or templates to help you understand some of the basic techniques in programming and how to get them accomplished.  The individual who can take his or her flowchart and apply it directly to a programming language will be more productive and successful in developing good, clean code.

The Basics of Manipulating Data

So you want to be a Programmer!  When writing a program in any language, you will develop the solutions that turn Data into Information.  The information presented in this section will provide you with some terminology and processes that will typically be used in any program you create.  We will be referring to the processes executed in the Mainflow section here, and what must be done with Data once we get it into our program.

Most applications involve the basic operation of reading form type of data from an input device such as a disk, or CRT, processing the data in RAM or Main Storage, and writing the result as information back to a disk, CRT, or printer.  This type of processing which occurs is dependent on the requirements given to you as part of the System Development Life Cycle (SDLC).  Each I.T. organization will have its own level of sophistication in how the SDLC is implemented.  Your requirements may be given to you as a sophisticated document, or may even be as simple as a verbal request.  The importance of understanding your requirements or what it is you are being asked to do cannot be stressed enough!  If you don’t know what problem you need to solve, you can’t develop a solution.  It is ok to ask questions for verification!  

There are many techniques used to make certain a Programmer or Developer understands the problem.  In this text you will be given a short description of your problem, the INPUT data and the OUTPUT requirements.  We will not be concerned as much with the medium of the Input data and the Output will consist of a printed report unless otherwise specified. It is important you understand what your problem is prior to developing a flowchart.  Make certain you ask first, develop second.

INPUT

The basic operation of reading data into a program remains the same from one to another, what changes is the format of the data itself.  In order to understand the format or what FIELDS are part of the Input Record, an Input Data Dictionary will be used such as the one in the figure below.  

Notice the Input Record Dictionary contains several columns which give the characteristics of each FIELD.   The columns are used as follows:

· Field Name 
Provides a Short Description of the Field itself.  In this case you will note that the fields in this input record are EMPLOYEE NUMBER, NAME, ADDRESS, CITY, STATE, ZIP CODE, HOURS WORKED, HOURLY RATE, and SHIFT CODE.

· Starting Position 
The Starting Position column indicates in which byte the field starts relative to the start of the record.  As in the EMPLOYEE NUMBER field, it starts in the 1st byte of the record or the 1st position.  This column is also useful for indicating where there is the absence of a field or no data.  Many times there may be an unused space or empty area on the input record.   These unused spaces must also be identified and defined by the programmer for proper positioning of all fields in the input record.

· Ending Position
This column indicates what byte the associated field ends.  This is necessary to calculate the length of the field.  For example, if a field starts in position 12 and ends in position 22, it is easy to determine the field length by using the following formula: 

Field Length = (End Position – Start Position) + 1  

Using the formula above then our sample field length would be 11 using the following formula:

 (22 – 12) + 1   =  11

The Starting and Ending Positions will define the INPUT AREA of the program when coding the program.  

· Format

The format of the field is simply it’s characteristics.  Acceptable formats are:


Alphabetic (ALPHA)
A Text Field


Numeric
A Numeric Field


Alphanumeric
Containing Text and Numbers

· Decimal
The Decimal column is for Numeric Fields only. This will indicate a value representing the number of decimal positions contained in the field. Not all numeric fields will contain a Decimal value.

· Description
A short description of the field that gives additional information about its characteristics.  Here you may find coding definitions, etc.

OUTPUT

Once the Input specifications are understood, the Output must be reviewed.  Here you will determine what format and what medium will be used. As mentioned earlier, we will be printing a report throughout the text, therefore, a Printer Spacing Chart such as the one in the figure below will be utilized to assist the programmer in determining where the fields will be in the printed report.

You will notice the printer spacing chart has 132 columns.  Each column represents a single byte in the program. The Printer Spacing Chart will be used to define OUTPUT AREA that will be used when coding the program.

The Note in the Printer Spacing Chart and the Sample Report illustrated above that the Name, Address, City, State, Hours Worked and Hourly Rate are simply moved from the Input Record to the Output.  The Gross Pay field is a created field or column on the report which did not exist in the Input Record. Finally, the Code field on the Input Record was not moved to the output.  From the specifications given, the Code field was not needed on the report.  

It is also important to understand the spacing and order of the Input Fields DO NOT match the spacing and order of the Output Fields. However, the lengths of the fields did not change from the input to the output.  Once again, it is critical to note a complete understanding of the Specifications given must be mastered before you begin to develop a Logic Flowchart.

Defining the Input and Output Areas in Assembler and COBOL.

Chapter

2

brief introduction to visio
What is Visio?

Visio is a business-diagramming tool.  Using Visio, you can create virtually any type of diagram.  In this class, you will use Visio to create flowcharts. This brief introduction will explain the Visio features you will be using in this class.

Starting Visio and the Visio Interface

Start Visio by clicking Start, Programs, Microsoft Visio.  When you first start Visio, your screen will look like Figure 2.1

	Figure 2.1

Visio Opening Screen
	[image: image2.png]



In this class, you will start Visio, and at the opening screen, you will:

1. Click the Flowchart category on the left.

2. Choose Basic Flowchart (US Units)

At that point, your screen will look like Figure 2.2.  Notice that Visio creates a blank document and opens three stencils for you to use in your diagram.  You may not need all three stencils in this class, but you will use the Basic Flowchart Stencil.

	Figure 2.2

Basic Flowchart Template 
	[image: image3.png]


How Visio Works

Visio works with Stencils and Shapes.  Stencils appear on the left side of the screen and resemble the traditional plastic stencils used by draftspersons.  The individual icons on each stencil are Shapes.  To get a shape on the page, you drag it from the stencil to the page.  

The Basic Flowchart Stencil appears in front, but you’ll notice there are two other stencils positioned behind it.  To bring another stencil to the front, click on its title.

Connecting Shapes

Once you have the desired shapes on the page, you’ll want to connect them.  There are two methods you can use to accomplish this.

To Connect Shapes Automatically:
Before dragging a shape onto the page, click the Connector Tool [image: image4.bmp] on the Standard Toolbar.  

Drag shapes onto the page.  Each shape will be automatically connected to the previous shape.  

This works well as long as you want all the shapes connected in a linear fashion.  

To Connect Shapes Manually:
Drag the desired shapes onto the page.

Click the Connector Tool [image: image5.bmp] and position your cursor at the bottom of the first shape you want to connect.  Your screen will be similar to Figure 2.3.

	Figure 2.3

Connector Tool positioned by Shape 
	[image: image6.png]


Drag to the shape you want to connect to.  Make sure the second shape displays a red square as shown in Figure 2.4.

	Figure 2.4

Two Shapes Connected and Glued
	[image: image7.png]


The two red squares indicate that the shapes are “glued” together.  This means that if you move one of the shapes, it will remain attached to the other shape.

Entering Text into Shapes
To enter text into a shape, perform these steps:

1. Using the Pointer Tool [image: image8.bmp] double-click in the desired shape.

2. Begin typing.  As you begin typing, Visio will zoom in on the text so that you can view the text. 

3. When you are finished typing, click on another shape and repeat steps 1 and 2 or click in a blank area of the document.

Viewing your Drawing

As a default, Visio displays the entire drawing page.  If you want to display your drawing in any other view, click F6.  You will see the dialog box shown in Figure 2.5.  Choose the desired magnification level and click OK.

	Figure 2.5

Zoom options dialog box 
	[image: image9.png]


Saving and Printing

To save a drawing, click File, Save, and specify a location.  Visio files are saved with the extension .vsd.

To print a drawing, click File, Print, and choose the desired print options.

Document Management

If your flowchart is too large to fit on a single page, you can add a new page by clicking Insert, New Page.  You can also right-click on the Page icon [image: image10.png]at the bottom of the screen and choose Insert, Page.

To rename a page, right-click on the Page icon at the bottom of the screen. Choose Rename Page and type a different name.

To delete a page, right-click on the Page icon at the bottom of the screen and choose Delete Page.   WARNING:  Visio will not prompt you to confirm your delete, so be sure this is what you want to do.
Chapter

3

basic arithmetic operations

Introduction

As noted in Chapter 1, when data is read into main storage, many different types of processing may take place.  One of the more common types of processing involves adding or subtracting of two or more numbers, referred to as crossfooting.  Additionally, you’ll often want to accumulate values as the program is processing the data and calculate a final total at the conclusion of the processing.

The sample program in this chapter illustrates the logic required to perform a crossfooting operation and obtain a final total of the calculated amount.  The format of the record layout is illustrated in Figure 3-1.

	Field Name
	Field Length
	Start Record Position
	End Record Position
	Format
	Dec Pos
	Comments

	Emp No
	5
	1
	5
	
	
	

	Name
	20
	6
	25
	
	
	

	Budget Amount
	7
	39
	35
	
	
	

	Current Expenses
	7
	36
	42
	
	
	


Figure 3-1 Format of Record Layout
In the example above, it can be seen that the record layout contains four fields:  the Employee Number field in columns 1-5; the Employee Name field in columns 6-25; the Budget Amount in columns 29-35; and the Current Expenses in columns 36-42.

The report which is to be produced is illustrated in Figure 3-2.

[image: image11.emf]10001

10002

10003

Arbor, Robert

Bryant, Thomas

Camel, William

500.00

250.00

600.00

400.00

300.00

100.00

100.00

50.000 CR

500.00

550.00

Emp. No.Emp. NameBudget Amt.Current ExpensesBalance

Final Total


Figure 3-2 Sample Report

In the report above, Balance is to be accumulated so that after all of the data is processed, the final total of the Balance amount is printed.  The flowchart for this program is illustrated in Figure 3-3.


[image: image12.emf]Start

Set Total

“Counter” to Zero

Read Input

File

Last File?

Move Counter to

Output Area

Print Final

Total

End

Move Emp. No.

Emp. Name,

Budget Amt. and

Current Expenses

to Output Area

Subtract Current

Expenses from

Budget Amount

Move Result

(Balance) to

Output Area

Add Balance to

Counter

Write on

Priknter

Yes

No


Figure 3-3 Program Flowchart
The steps involved in preparing the budget report and calculating the final total are explained in the following steps:

Step 1:  The beginning of the program is indicated and a “counter” to accumulate the final total is set to zero as Shown in Figure 3-4.


[image: image13.emf]Start

Set Final Total

“Counter” to Zero

   0      0      0      0      0       0      0      0

Decimal

Point


Figure 3-4 Counter is set to zero
The beginning and ending of a program are always indicated by the Terminal symbol shown in Figure 3-4.
The second symbol indicates that a counter is to be set to zero before any other processing begins. The counter stores the accumulated total of the Balance from each record.  A Counter is an area of storage within the program that has been set aside to hold specific data.  It must be set to zero to ensure there is not a value already stored in the counter, which would result in an inaccurate total.
Step 2:  A record containing an Employee Number, Employee Name, Budget Amount, and Current Expenses is read into an Input Area in Core Storage.

[image: image14.jpg]
Figure 3-6 Input Record is Read

 The record is read into an area in main storage and a test is performed to determine if the last record has been read. This test should be performed whenever a record is read to determine of the end of file has been reached.

Step 3:  The Employee Number, the Employee Name, the Budget Amount and the Current Expenses, which are read from the record, are moved to the printer output area.

[image: image15.jpg]
Figure 3-7 Data is moved from Input Area to Output Area
Note in Figure 3-7 that the rectangle shape is used to indicate that some type of processing is taking place.  The explanation within the rectangle is of the programmer’s choosing.

Also, note from Figure 3-7 that the Budget Amount and Current Expenses are stored in the output area in an “edited” format; that is the leading zeros have been changed to blanks and a decimal point has been inserted in the proper location.
Step 4: The Current Expense field is subtracted from the Budget Amount field to obtain a Balance.

Insert equivalent of Figure 3-8 from book
In the example above, it can be seen that the value in the Current Expense field is subtracted from the value in the Budget Amount field and the value is stored in an area called Balance. The Balance field is an area in main storage which is reserved for the answer resulting from the arithmetic operations.  
Step 5:  The Balance is moved to the Output Area

Insert equivalent of Figure 3-9 from book
As can be seen from Figure 3-9, the balance calculated in Step 4 is moved to the output area to be printed.  Note, again, that the leading zeros are replaced with blanks and the decimal point is inserted in the number.

Step 6:  The Balance is added to the Final Total Counter.

Insert equivalent of Figure 3-10 from book
In the example above, note that before the addition operation is performed, the Final Total Counter contained all zeros.  The Final Total Counter, after all records have been processed, will contain the accumulated totals from each record.
Step 7:  The Output Line is printed on the printer and control is returned to the Read instruction to read another record

Insert equivalent of Figure 3-11 from book
Note in Figure 3-11 that the data in the output area is written on the printed report. After the Write command has taken place, the next record must be read.  The arrow symbol is used to indicate that a transfer of control to ??? is to occur.  The operation of setting the counter to zero does not take place a second time since we want to accumulate a total.

Step 8:  The second record is read and processed.

Insert equivalent of Figure 3-12 from book
As you can see from Figure 3-12, the second record is read and processed in the same manner as the first card.  After the record is read, the data is moved to the output area and the calculation to determine the balance is performed then moved to the output area.
Step 9:  The Balance from the second record is added to the Final Total Counter.

Insert equivalent of Figure 3-13 from book
The example above illustrates that the value in the Balance field is added to the value stored in the Counter field.  Since the Counter field contained the value of 100.00 from the first record, and the value in the Balance field is -50.00, the new result stored in the Counter is 50.00.

Step 10:  The second line is written on the printer and control is transferred to read another record.

Insert equivalent of Figure 3-14 from book
Note from the above example that the second line is written to the printer.  After the second line is printed, control is again transferred back to the Read command.

The third record will be read and processed in the same manner as is illustrated for the first two records.  The results of the calculations which arke involved in the processing of the third card are illustrated here.

Insert equivalent of Figure 3-15 from book
Note from Figure 3-15 that the calculations to determine the balance and to add the balance to the counter take place exactly as they did for the first two records.  This process will continue for as long as there are records to be read.  When the end of the records is reached, the end-of-file routine will be entered.

Step 11:  When the last record is read, the end-of-file routine is entered, and the final total counter is moved to the output area and printed.

Insert equivalent of Figure 3-16 from book
When the last record is read, the “Yes” path is taken in the decision symbol.  The first step to be taken in the end-of-file routine is to move the value stored in the Counter to the output area.  After the value in the Counter is moved to the printer output area, it is printed on the report as a Final Total.  After the final total has been printed, all processing within the program is complete and the program is terminated as indicated by the terminal processing symbol.

Chapter 3 Flowcharting Assignment 1

Instructions:

Using Visio, draw a flowchart to illustrate the logic required to produce a Gross Profit Report.

Input:

Input is to consist of Sales Records containing the Item Number, Description, Sales Amount, and Cost Amount.  The format of the records is indicated below.

Page 49
Output:  Gross Profit Report
Output is to consist of a listing of the Item Number, Description, Sales Amount, Cost Amount, and Gross Profit.  Gross Profit is to be calculated by subtracting the Cost Amount field from the Sales Amount field.  Final Totals are to be taken for the Sales Amount field, the Cost Amount field, and the Gross Profit.  A printer spacing chart and a segment of the report are illustrated below.

Page 49 
Chapter 3 Flowcharting Assignment 2

Instructions:

In Visio, draw a flowchart to illustrate the logic required to produce a Weekly Payroll Report.

Input: Employee Payroll Records

Input is to consist of Employee Payroll records containing the Employee Number, Employee Name, Hours Worked, Rate of Pay, and Deductions.  The format of the record is shown below.

Page 50
Output:  Net Pay Report

Output is to consist of a Net Pay report listing the Employee Number, the Employee Name, the Hours Worked, Rate of Pay, Gross Pay, Deductions, and Net Pay.  Gross pay is to be calculated by multiplying the Rate of Pay by the Hours Worked.  Net Pay is to be calculated by subtracting the deductions from the calculated gross pay.  Final totals are to be taken of Gross Pay, Deductions, and Net Pay.

A printer spacing chart and a segment of the report are illustrated below.

Page 50

Chapter
4

Comparing

Introduction

The ability of the computer to compare numeric or alphanumeric values and perform alternative operations based upon the results of this comparison provides data processing systems with great flexibility in the solution of business and mathematical problems.
Comparisons are normally made on data which is stored in main storage and alternative operations are performed based upon conditions which result from those comparisons. In addition, tests may be made to determine if data in one portion of main storage is less than or greater than data stored in another portion of main storage.  The examples below illustrate how these comparisons may be made.  In the example, an area called Sales Amount is compared to an area called Sales Quota

Example 1:  Numeric Data is Equal
Insert equivalent of Figure 4-1 from book
When the computer compares the two values above, it would indicate that they are equal and the program could then process data based upon the fact that the values are equal. 
Example 2:  Numeric Data is Unequal

Insert equivalent of Figure 4-2 from book
When the computer compares the two values above, it would indicate that they are unequal and the program could then process data based upon the fact that the values are unequal. 

Example 3:  Comparison of Alphabetic Data
Insert equivalent of Figure 4-5 from book
In Figure 4-3, you can see that the Value JONES in the area DATA1 is compared to the value of SMITH in DATA2.  When alphabetic comparisons are made, the “value” of each letter of the alphabet is greater as the alphabet progresses from A-Z.  Thus, in this example, the “J” is considered less than the “S.”  Therefore, the entire field in DATA1 is considered less than the field in DATA2.

It should be noted in all of the examples presented that the comparison proceeded from left to right.  If one of these characters is less than the other, then the entire field is considered less than the other.  If the first two characters are equal, then the next character to the right is compared.  This will continue until either an unequal condition is met or until both fields are found to be equal.

Sample Problem

The problem in this chapter illustrates the logic required to print a Sales Quota Report.  The input to the program consists of a file of Employee Sales records.  The format is illustrated below.

Insert equivalent of Figure 4-6 from book
The program is to compare the sales amount for the employee with his sales quota and prepare the following report.

Insert equivalent of Figure 4-7 from book
As you can see from Figure 4-7, the report contains the employee number, the employee name, the sales amount, the sales quota, and, if the sales are less than the quota, a message indicating that the salesperson is under quota.  The flowchart for the program is illustrated in Figure 23.

Insert equivalent of Figure 4-8 from book
The steps involved in creating the Sales Quota Report are explained on the following pages.
Step 1:  The beginning of the program is indicated and a record is read.

Insert equivalent of Figure 4-9 from book
As noted in the previous examples, the record must be read and placed in an input area which is reserved for it in main storage.  The data is always stored in the same format as it is read from the record.  The test for the last record must also be performed.

Step 2: The data in the input area is moved to the printer output area.

Insert equivalent of Figure 4-10 from book
Note in Figure 4-10 that the Sales Amount and Sales Quota values have been “edited” by inserting decimal points and a dollar sign to indicate that they are dollar values.  This editing is performed using instructions which are available in most programming languages.

Step 3:  The Sales Amount is compared to the Sales Quota.

Insert equivalent of Figure 4-11 from book
Figure 4-11 shows that the diamond-shaped decision symbol is used to indicate that a comparison is to be made concerning the relative values stored in the Sales Amount field and the Sales Quota field.  If the value in the Sales Amount field is less than that in the Sales Quota field, a special “Under Quota” message is to be written on the report.

As noted previously, the wording in the decision symbol is of the programmer’s choosing.

Step 4:  “Under Quota” message is moved to output area.

Insert equivalent of Figure 4-12 from book
Note in Figure 4-12 that the rectangle symbol is used to indicate the movement of data from the message area to the output area.

Step 5:  The Output Line is written to the printer.

Insert equivalent of Figure 4-13 from book
As you can see from Figure 4-13, the Under Quota message has been moved to the output area and the line is written on the printed report. The report will always contain the Employee Number, the Employee Name, the Sales Amount, and the Sales Quota.
After the line is printed, the program is to return to the Read instruction to read the next record.  The second record is processed in the same manner as the first card.  This processing will continue with subsequent records until the last record is read.  At that time the end-of-file routing will be entered to terminate the program.

Step 6:  A second record is read and processed.

Insert equivalent of Figure 4-14 from book
Step 7:  The last record is read.

Insert equivalent of Figure 4-15 from book
As in previous examples, when the last record is read, an “end-of-file” routine is entered.  In the figure above, there is no special processing which must take place after the last record is read.

The problem in this chapter has illustrated the basic concept of comparing two values and taking alternative action dependent on the results of the comparison.  The complexity of a program is normally dependent upon the number of comparisons and processing which is to take place as a result of these comparisons.  Subsequent chapters will illustrate the use of comparisons in more complex programming problems.

Chapter 4 Flowcharting Assignment 1
Instructions

Using Visio, draw a flowchart to illustrate the logic required to produce a Sales Commission Report.  For Sales less than $1,000.00 the Salesperson receives a 2% commission; for sales greater than $1,000.00, the Salesperson receives a 5% commission.

Input:  Sales Records

Input is to consist of Sales Cards containing the Salesperson Number, Salesperson Name, and Sales Amount.  The format of the Sales records is illustrated below:

	Field Name
	Field Length
	Start Record Position
	End Record Position
	Format
	Dec Pos
	Comments

	Salesperson Number
	
	
	
	
	
	

	Salesperson Name
	
	
	
	
	
	

	Sales Amount
	
	
	
	
	
	


Output:  Sales Commission Report

Output is to consist of a Sales Commission Report.  The report is to contain the Salesperson Number, Salesperson Name, Sales Amount, Commission Rate, and Commission Amount.  Note:  The commission rate is not a field, but it may be established as a “constant” in storage through the program.”  For example, if the Sales Amount on the card is $900.00, the Sales Amount field would be multiplied by the constant 2% in storage.  A final total is to be taken of the Sales Amount field and the calculated commission amount.

Chapter 4 Flowcharting Assignment 2

Instructions

In Visio, draw a flowchart to illustrate the logic required to prepare a Weekly Payroll Report.  Employees are to receive time and one-half for all work in excess of 40 hours.  For example, an employee working 42 hours at $20 per hour would be paid for 40 hours at $20 per hour and 2 hours of work at $30 per hour.

Input:  Payroll Records

Input is to consist of Payroll records containing the Employee Number, Employee Name, Hours Worked, Rate of Pay, and Deductions.  The format of the records is illustrated below:

	Field Name
	Field Length
	Start Record Position
	End Record Position
	Format
	Dec Pos
	Comments

	Employee Number
	
	
	
	
	
	

	Employee Name
	
	
	
	
	
	

	Hours Worked
	
	
	
	
	
	

	Rate of Pay

	
	
	
	
	
	

	Deductions

	
	
	
	
	
	


Output:  Payroll Report

Output is to consist of a Payroll Report.  The report is to contain the Employee Number, Employee Name, Total Hours Worked, Regular Rate of Pay, Regular Earnings, Overtime Earnings, Deductions, and Net Pay.  Regular earnings added to overtime earnings, minus the deductions will give the net pay.  Final totals are to be taken of Regular Earnings, Overtime Earnings, Deductions, and Net Pay.

Chapter

5

Control Codes

Introduction 

In many applications, input records may be identified by ???????????????????????????????.  For example, if a payroll report were to be prepared listing the employee name and the regular earnings, it may also be required to specify the bonus pay which an employee may receive if he/she works on a shift other than the day shift.  The problem in this chapter illustrates an application of this type.

Record Input

The input to the program is a file of records which contain the payroll information.  The format of the records is illustrated below:

	Field Name
	Field Length
	Start Record Position
	End Record Position
	Format
	Dec Pos
	Comments

	Employee Number
	
	1
	5
	
	
	

	Employee Name
	
	6
	20
	
	
	

	Regular Earnings
	
	25
	29
	
	
	

	Code
	
	80
	
	
	
	


In the example above, it can be seen that the records contain the employee number in columns 1-5, the employee name in columns 6-20, the regular earnings in columns 25-29, and a “Code” in column 80.  The Code is used to indicate the shift during which the employee works.  A value of 1 indicates the day shift; a value of 3 indicates second shift; and a value of 5 indicates the “graveyard” shift.

Output
The output of the program is a report which contains the Employee Number, the Employee Name, the Shift Number, the Regular Earnings, the Bonus Earnings, and the Total Pay for the employee.  The format of the report is illustrated in Figure 5-1.

Insert equivalent of Figure 5-2 from book
Note that if an employee works on the day shift (code 1) he/she receives no bonus pay.  If an employee works on the second shift (code 3), he/she receives 5.00 in bonus pay, and employees on the third shift (code 5) receive 10.00 in bonus pay.  Note the message “IMPROPER SHIFT-CODE RECORD NOT PROCESSED.”  This message is printed on the report when the code in column 80 is not equal to 1, 3, or 5.

The flowchart for the program is illustrated in Figure 5-2.

Insert equivalent of Figure 5-3 from book
The processing within the program is explained in the following steps:
Step 1:  The beginning of the program is indicated and a record is read.

Insert equivalent of Figure 5-4 from book
As with all programs illustrated so far, the beginning of the program must be indicated with a terminal symbol.  Since there is no initialization which must be performed, the next step is to read a record.  Again, as in all programs which read input data files, a test must be performed to determine if the last record has been read.  The “yes” path of the decision is taken if the last record is read; the “no” path is taken if the last record has not been read.  In this example, a record is read, so the “no” path is taken.
Step 2:  The Employee Number, the Employee Name, and the Shift Code are moved to the output area.

Insert equivalent of Figure 5-5 from book
Note from the example in Figure 5-3 that the fields that are moved from the input record area to the output area.  The fields moved are those which will always be contained in the report, regardless of the value in the shift code field.  The values in the other fields may vary dependent upon the Shift Code value.
Step 3:  A test is made to determine the value of the Shift Code.

Insert equivalent of Figure 5-6 from book
In this example, you can see that the value in the shift code field may be compared to the values 1, 3, and 5, which are the valid codes which may be contained in the shift code field.  These values, called “constants,” are stored in main storage within the program.  The portion of the flowchart illustrated indicates that if the shift-code in the input record is equal to 1, the other two comparisons are bypassed.
Step 4:  Zeros are moved to the Bonus Pay area.

Insert equivalent of Figure 5-7 from book
As previously noted, when the shift-code is equal to 1, it indicates the employee worked the day shift and is not entitled to bonus pay for working second or third shifts.  Therefore, zeros are moved to the bonus pay area and added to the regular earnings to determine the total pay for the employee.

Step 5: Doug…what is this?  The book omits this step but I know it’s there.

Insert equivalent of Figure 5-8 from book
Note from Figure 5-8 that the regular earnings from the record input are and the zeros which were placed in the Bonus Pay area are moved to the printer output area. 

Step 6:  The value in the regular earnings field is added to the value in the Bonus Pay area in order to determine a Total Pay.

Insert equivalent of Figure 5-9 from book
In this example, it can be seen that the value in the regular earnings field is added to the value contained in the Bonus Pay area. The sum of these two values is the Total Pay for the employee.  Even though the bonus pay is zero in this example, it is still added to the regular pay.  Once again, this is because the same routine is used every time in the program.

Note also from Figure 5-9 that after the addition operation is complete, control is passed back to the Move Total Pay to Ouput Area portion of the program.

Step 7:  The Total Pay is moved to the output area and a line is printed.

Insert equivalent of Figure 5-10 from book
Note from Figure 5-10 that the total pay is moved to the output area and is edited with a decimal point and a dollar sign.  After the total pay has been moved to the output area, the entire print line has been completed and the line may be printed on the report.

After the line has been printed, the record has been completely processed and the next step is to read another record.  Note that control is passed back to the Read instruction.

Step 8: The second record is read and the Employee Number, Employee Name, and Shift Code are moved to the output area.
Insert equivalent of Figure 5-11 from book
In Figure 5-11, the second record is read into the input area and selcted fields are moved to the output area.
Step 9:  The second record is processed.  As this record contains a code 3, the employee is to receive $5.080 in bonus pay.

Insert equivalent of Figure 5-12 from book
As can be seen from Figure 5-12, the second record is processed in the same manner as the first.  The regular earnings and bonus pay are moved to the output area and added in order to obtain the Total Pay for the employee.  Control is then passed back to the Move Total Pay to Output Area portion of the program.

Step 10: The Total Pay is moved to the output area and the line is printed.

Insert equivalent of Figure 5-13 from book
In Figure 5-13, you can se that after the Total Pay is calculated, it is moved to the printer output area and the print line is then printed.  Subsequent records will be processed in the same manner.  The printed report after the third record is processed is illustrated in Figure 5-14.
Step 11:  The third record is read, processed, and printed.

Insert equivalent of Figure 5-14 from book
As can be seen from Figure 5-14, the third card is processed in the same manner as the first two records.
Any program which is to use codes to designate a specific condition must make provision for processing an invalid code.  In the sample program used in this chapter, valid codes are 1, 3, or 5.  Each time a record is processed, the program looks for one of these codes.  If anything else is found in the field, an error message, “IMPROPER SHIFT CODE CARD NOT PROCESSED” is printed on the report in place of regular earnings, bonus pay, and total pay.  The fourth record in the file contains an invalid code.  The processing of this record is illustrated in Figure 5-15.

Step 12:  The fourth record is read

Insert equivalent of Figure 5-15 from book
In this example, you can se that the fourth record is read into the input area and that the record contains a value of “2” in the shift code field.  Consequently, the record may not be processed in the normal manner and, when this occurs, an error message is printed on the report.  This processing is illustrated in Figure 5-16.
Insert equivalent of Figure 5-16 from book
Figure 5-16 shows that the Employee Number, the Employee Name, and the Shift Code are moved from the input area to the output area in the same manner as previous records containing a valid shift code.  This is done for two reasons:

1. The data which is to be moved is correct regardless of whether the shift code is correct or incorrect.

2. The data moved to the output area may be used to identify the record in error so that it may be corrected and resubmitted in subsequent runs.

After the data is moved to the output area, comparisons are performed on the value in the shift code field.  Note from Figure 5-16 that the value in the record, “2”, is not equal to the values 1, 3, or 5.  Therefore, the error message is moved to the printer output area.  Note that the regular earnings, the bonus pay, and the total pay are not moved to the output area because there is not way of determining the correct bonus pay since the shift code field does not contain a valid value.  Therefore, the total pay cannot be properly calculated.

After the line is printed on the report, control is passed back to the Read instruction which reads the next record.  Processing continues until the last record is read.

Step 14:  The last data record is read.

Insert equivalent of Figure 5-17 from book
When the last record is read, the program is terminated.  In this example, there is not special processing which must take place at the conclusion of the processing of the records, so the program is ended.
Chapter 5 Flowcharting Assignment 1

Instructions

In Visio, draw the flowchart to illustrate the logic required to produce a Customer Sales Report.  Input records will contain a control code indicating whether the customer balance punched on the card is current, over 30 days old, or over 60 days old.  A “1” code indicates a current account, a “2” indicates an account 30-60 days old, and a “3” indicates an account over 60 days past due.  If the account is current, a 10% cash discount is given.  If the account is 30-60 days pas due, not cash discount is given.  For accounts over 60 days past due, a 10% service charge is added to the account.

Input:  Customer Sales Records

Input is to consist of Customer Sales records containing the Customer Number, the Customer Name, the Balance, and a Code field containing a 1, 2, or 3 code.  The format of the Sales Records is illustrated below.

	Field Name
	Field Length
	Start Record Position
	End Record Position
	Format
	Dec Pos
	Comments

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	


Output:  Customer Sales Report
Output is to consist of a Customer Sales Report.  The report is to contain the Customer Number, the Customer Name, the Balance, the Discount Percentage or Service Charge, and the Balance Due.  The Balance Due is obtained by multiplying the Balance by the Discount Percentage and subtracting the answer from the original balance; or by multiplying the balance due by the Service Charge and adding the answer to the original balance.  Each customer is to be identified as being “Current,” “30-60 Days”, or “Over 60 Days.”

Insert equivalent of figure on page 83.
Chapter 5 Flowcharting Assignment 2

Instructions

In Visio, draw the flowchart to illustrate the logic required to produce a Sales Commission report.  Input records will contain a control code indicating the type of employee.  A “1” code indicates a part-time employee.  No commission is paid to part-time employees.  A “2” code indicates a full-time salaried employee.  Full-time salaried employees receive a 25% commission on all sales.  A “3” code indicates employees working on a commission only.  Employees working on commission only receive a 30% commission on all sales up to $1,000 and a 25% commission on all sales over $1,000.  For example, a commission only employee with sales of $1,200 would receive a commission of 30% on $1,000 and 25% on $200.

Input:  Sales Records

Input is to consist of Sales Records containing the Salesperson number, Salesperson Name, Sales Amount, and a Code.

	Field Name
	Field Length
	Start Record Position
	End Record Position
	Format
	Dec Pos
	Comments

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	


Output:  Sales Commission Report
Output is to consist of a Sales Commission Report.  The report is to contain the salesperson number, salesperson name, sales amount, and commission.  Employee records which contain a 1 code are to be identified as part-time on the report.  Employee records containing a 2 code are to be identified as full-time on the report.  Employee records containing a 3 code are to be identified as commission on the report.  Final totals are to be taken of the sales amount and commission amount.

Insert equivalent of diagram on page 85
Chapter
6

report headings, subroutines, and program switches

Introduction

In the reports illustrated in previous examples, the information on the report was obtained from data read in records.  Report headings and column headings or other identifying information were not printed.  It is a good idea to print headings on a report to identify the contents of the report.  The use of headings is illustrated in Figure 6-1.
Insert equivalent of Figure 6-1 from book

In Figure 6-1 you can se that the title EMPLOYE LISTING is printed as a part of the report on the first page and each subsequent page.  In addition, column headings and a page number are also included.

Although in previous examples, one line has been written for each record which is read, this does not necessarily have to occur.  More than one input record may be read for each line which is printed.  The example in this chapter will illustrate the programming technique required to place headings on a report and print more than one input record on an output line.

The report to be created is an Employee Listing.  The format of the records which will be read is illustrated below.

	Field Name
	Field Length
	Start Record Position
	End Record Position
	Format
	Dec Pos
	Comments

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	


Figure 6-2 Format of Record Input
Note from the record format illustrated in Figure 6-2 that each record contains an Employee Number in columns 2-6 and the Employee Name in columns 12-36.  There is one record for each employee.  The employee listing report to be created is illustrated in Figure 6-3.  Note the use of page numbering, report and column headings, and the message TOTAL EMPLOYEES after all records have been processed.

Insert equivalent of Figure 6-3 from book

As you can see from this report, headings are used to identify the fields on the report.  Also, each line on the report contains the information for two employees.  Each line printed on the report will contain two employee records.  The diagram illustrated in Figure 6-4 illustrates this concept.

Insert equivalent of Figure 6-4 from book

Since headings are to be printed on each page of the report, a programming technique utilizing what is commonly called a “closed subroutine” will be used.  Also, because two records are to be utilized to form a single line of printing, the programmer must develop the logic to assure that all records are properly processed at the end of the job.  Therefore, this flowchart illustrates a programming concept called a “program switch.”  The flowchart is illustrated in Figure 6-5.

Insert equivalent of Figure 6-5 from book

The step-by-step processing is described here.

Step 1:  The beginning of the program is indicated and the initialization processing is performed.
Insert equivalent of Figure 6.6 from book

Note from the report format shown in Figure 6-3 that the report contains a page number and the total number of employees.  Whenever values are to accumulate during a program, the counters used to store the accumulated totals must be initialized to zeros prior to processing.  Therefore, the counter for the page number and the counter for the employee count are set to zero prior to any processing.  It should be noted that these counters may be initialized to zero at the beginning of the processing of the program.  The method of initialization is normally dependent upon the programming language used.
Step 2:  The Heading Subroutine is performed.

Insert equivalent of Figure 6-7 from book

In Figure 6-7, the rectangular symbol which normally indicates some type of processing is used to indicate that the Heading Subroutine is to be processed.  The difference in this symbol is that two vertical lines are included within the rectangle.  This indicates that the instructions within the program are to cause a Subroutine to be executed.

A subroutine is defined as a “standardized set of instructions which may be used at more than one point in a program to direct the computer to execute a particular operation.”  Subroutines are used when the same set of instructions are required at several different points in a program.  The Heading Subroutine which is used to print the headings on the report is a Closed Subroutine.  A Closed Subroutine is a set of instructions required by the program that is not stored in the main line of the program and may be utilized repeatedly when needed.  This is illustrated in Figure 6-8.
Insert equivalent of Figure 6-8 from book

In this example, you can se that the main program must “link” to the closed subroutine.  The term “link” is used because upon completion of processing within the subroutine, control is returned to the instruction following the instruction which caused control to be passed to the subroutine.  Control is always returned to the next instruction in the main program when the processing of the subroutine is completed.

The instructions which are to be used to write the headings on the report are set up as a subroutine because the heading routine is to be called from more than one place within the main program.  The heading subroutine must be called prior to processing any data and also following the Write instruction to the printer if a full page of data has been written.

Step 3:  The heading routine is performed.

Insert equivalent of Figure 6-9 from book

In Figure 6-6, the page number field was set to zero.  In the example in Figure 6-9, 1 is added to the page number counter so that the first page on the report will be numbered 1.  The constant value “1,” which is always added to the page number counter, is stored in main storage within the program.  This value is normally initialized when the program is assembled or compiled.

Step 4:  The page number is moved to the Report Heading area.

Insert equivalent of Figure 6-10 from book

Note in Figure 6-10 that the page number is moved to the Report Heading line.  This heading is a constant value which is stored in main storage and is normally established when the program is assembled or compiled.  Leading zeros have been removed.

Step 5:  Report Heading is moved to the output area and is printed.

Insert equivalent of Figure 6-11 from book

In Figure 6-11, you can see that the report heading is moved to the output area and printed as the first line on the report.  This requires that the page in the printer be positioned in such a way that the first heading line is always the first line on a new page.  In order to accomplish this, the page must be positioned at the first line of the new page.  The method of performing this depends on the programming language you are using.

Regardless of the method used, there must be some type of mechanism on the printer itself which can recognize the beginning of a page.  
Doug:  I’m not sure how much of page 94-95 is relevant.  Please edit this section as you think it should be.
Step 6:  Column Headings are moved to the output area and printed.

Insert equivalent of Figure 6-13 from book

Figure 6-13 shows that the second line is printed on the report in the same manner as the first heading line.  Note that the second heading line is double-spaced.  This double-spacing is usually controlled through commands issued to the printer to cause it to automatically space multiple lines.  

Step 7:  The line counter is set to zero and control is returned to the main program.

Insert equivalent of Figure 6-14 from book

As noted previously, the heading subroutine is entered whenever a heading is to print on the report.  A heading must be printed each time the preceding page has been fully printed.  One method of determining if a page has been fully printed is to count the number of lines which have been printed on the page.  When the required number of lines has been printed, the heading subroutine must be entered in order to skip to the next page and print the new headings. In the example, after the headings are printed. 50 detail lines will be printed and then the computer will be instructed to skip to a new page and again print the report headings on the next page.

When the number of lines printed is to be used to determine when the heading subroutine is to be entered, a counter is used.  The counter is initialized to zero in the heading subroutine and when a line is printed on the report, the counter is incremented by 1.  When the counter reaches a specified value, the heading subroutine is entered.  In addition, the heading subroutine must reset the counter to zero so that the number of lines on the new page will be countered properly.  In Figure 6-14, the line counter is set to zero so that when lines other than the headings are printed on the page, the counter will be incremented to indicate the number of lines printed.  The line counter in Figure 6-14 should not be confused with the page number counter shown earlier.  
After the line counter has been set to zero, the heading subroutine returns control to the main program. 

Step 8:  A record is read

Insert equivalent of Figure 6-15 from book

After the page number and employee count fields have been initialized to zero and the heading is printed on the first page, the program is ready to begin processing.  The first record is read and, as with all programs, a test must be made to determine if the last record has been read. In the example, the last record has not been read; the “No” path of the decision symbol is taken.

Step 9:  The Employee Count Field is incremented by 1 and the input data is moved to the output area.

Insert equivalent of Figure 6-16 from book

After the record is read, the value in the employee counter is incremented by 1.  Each time a new record is read, the value is incremented by 1 to reflect the number of employees.  After the employee counter is updated, the input data is moved to the output area. The input data consists of the Employee Number and the Employee Name.
Step 10:  A switch is set to indicate the output data is in the output area.

Insert equivalent of Figure 6-17 from book

A program switch is a programming technique which is commonly used to allow alternative processing to be accomplished within a program dependent upon the value in the switch. In the example flowchart in this chapter, the use of a switch is necessary to allow for the printing of a record when the end of job routine is entered. 

In the example in Figure 6-17 you can se that the value “1” is moved to the switch area to set the switch “ON.”  The value “1” in this area indicates that a portion of the output line is stored in the output area.  If the switch was not equal to “1,” it would indicate that a portion of the output line was not in the output area.  If the value is not set in the switch field, the output line will not be printed prior to printing the total employee line.  

It should be noted that the value “1” in the switch area is not required; any value can be used as long as it has meaning within the program.

Step 11: The second record is read

Insert equivalent of Figure 6-18 from book

As you can see from Figure 6-18, the second record is read into the input area and a test is made for the last record.  Since a record has been read, the “no” path of the decision symbol is taken. 

Step 12: The Employee Counter is updated by one and the input data is moved to the output area.

Insert equivalent of Figure 6-19 from book

In this example it can be seen that the employee counter is incremented by one because the second record has been read.  Note that the output area now contains the data from both the first and the second record.

Step 13: The output line is printed and the line counter is updated by one.

Insert equivalent of Figure 6-20 from book

In Figure 6-20, you can see that when a line is printed, it contains two employees.  This is because the two cards are read and moved to the output area. After the line is written, the line count is incremented by one to indicate that one line has been written on the report.
Step 14: Determine if an entire page has been printed.

Insert equivalent of Figure 6-21 from book

In this example, the value in the line count field is compared to a constant of 50 which is stored in main storage within the program.  If the line count is equal to 50, it indicates that an entire page has been printed.  When this occurs, the heading subroutine is entered to skip to a new page and print the headings. 

Step 15:  Set Switch to “0” (off) to indicate no data in the output area and return to read the next record.

Insert equivalent of Figure 6-22 from book

After the second record has been read and the entire line has been printed, there is no data in the output area which remains to be printed.  Therefore, the switch must be set to indicate that no data is in the output area to be printed.  In Figure 6-22, this is accomplished by moving the value “0” to the switch area.

Step 16: The remaining forty-nine lines are printed on the first page of the report.

Insert equivalent of Figure 6-23 from book

As noted, there will be 50 lines of detail printing on each page of the report.  When the fiftieth line has been printed, the header routine will be entered as illustrated in Figure 6-24.

Step 17: The Heading Subroutine is entered when 50 lines are printed.

Insert equivalent of Figure 6-24 from book

As shown in Figure 6-24, the line count will contain the value 50 when fifty detail lines have been printed on the report, and the heading subroutine will be entered.

Step 18:  The Heading Subroutine is performed for the second page.

Insert equivalent of Figure 6-25from book

In Figure 6-25, you can see that the page number is incremented from 1 to 2 to be printed in the heading.  The first and second headings are then printed on the report.  The last step in the heading subroutine is to reset the line count to a value of zero.  This is done because fifty more lines are to be printed on page 2 before the heading routine is entered again.

The program will continue to process data until the end of file is reached on the record input file.  When this occurs, the end-of-file routine will be entered.  As noted previously, two situations may occur when the end-of-file routine is entered.

1. If the routine is entered after the first read instruction to the program, there will be no data in the output area which must be printed.

2. If the routine is entered after the second read instruction, there will be data in the output area to be printed.

This status is indicated by the value in the program switch which, if equal to 0, indicates there is no data in the output area.  If the value is equal to 1, there is data to be printed.

Step 19:  Last data record is read

Insert equivalent of Figure 6-27 from book

When the last record is read, a 1 is added to the employee counter, the data in the input area is moved to the output area, and the switch is set to “1” to indicate there is data in the output area to be printed. The next step is to read another record through the read instruction.  Since this is the last record, the end-of-file routine is entered.

Step 20:  The end-of-file routine is entered and the status of the program switch is checked.

Insert equivalent of Figure 6-28 from book

If there is data to be printed, the data is merely printed by a Write instruction in the same manner as all of the other detail lines.  Note that if the switch contained a zero, the Print instruction would not be executed. This condition would occur if the read instruction of the flowchart read the /* or end-of-file card.

Step 21: The End Message is printed and the program is terminated.

Insert equivalent of Figure 6-29 from book

As shown in Figure 6-29, the employee count contains the value 205, which indicates there have been 205 records read and processed.  This value is moved to the End Message area and then the End Message is moved to the output area where it is printed as the final line on the report.
After the end message has been printed, there is no more processing to be done in the program so it is terminated. 
Programmed Switch

The previous example illustrated the use of a programmed switch to control the proper printing of the data at the end of file routine.  Programmed switches are an effective programming technique and have many applications.  The effective use of switches in a program can often dramatically reduce the number of steps required in the solution of a problem by using routines or parts of routines that are common to several parts of the program.

In the previous example, two READ steps were used in the solution of the problem. The first read was used to read the first record; the second read operation was used to read the second record.  By slight modifications in the flowchart in Figure 6-5 through the use of a programmed switch, several steps can be eliminated.  Figure 6-30 illustrates a modification of the flowchart in Figure 6-5.  The use of the switch at this point in the logic permits all processing to be performed using a single Read operation.

Insert equivalent of Figure 6-30 from book

Chapter 6 Flowcharting Assignment 1

Instructions

In Visio, draw a flowchart to illustrate the logic required to produce a Daily Sales Report.

Input:  Salesperson Name Records and Sales Records

Input is to consist of two types of records for each salesperson:  a salesperson name record and a daily sales record reflecting the amount sold to each customer contacted for the day.  There is one salesperson name record for each salesperson.  This record is identified by a “1” control code in column 80.  There will be one or more daily sales records for each salesperson.  These records will be identified by a “2” control code in column 80.  The format of the records is illustrated below.

	Field Name
	Field Length
	Start Record Position
	End Record Position
	Format
	Dec Pos
	Comments

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	


Output: Daily Sales Report
Output is to consist of a Daily Sales Report listing the salesperson number and salesperson name from the first record.  The date, customer number, and sales amount are to be printed for each of the daily sales records. Note that the data which is identical for each of the daily sales reports is to be printed only on the first line for each salesperson.  Include report and column headings and a page number.

Chapter 6 Flowcharting Assignment 2
Instructions

Modify the problem presented in flowcharting assignment 1 to illustrate the logic to produce a daily sales report in cases where there may be no sales for the day.  In other words, there may be a salesperson name card (code 1) but no daily sales records.  If there are no daily sales records for the salesperson, the message “NO SALES” should be printed adjacent to the salesperson number and salesperson name.

Output:  Daily Sales Report

Insert equivalent of Figure on page 115 from book

Terminal Symbol





1

_1075265973.vsd
�

10001
10002
10003�

Arbor, Robert
Bryant, Thomas
Camel, William�

500.00
250.00
600.00�

400.00
300.00
100.00�

100.00
50.000 CR
500.00


550.00�

Emp. No.�

Emp. Name�

Budget Amt.�

Current Expenses�

Balance�

Final Total�


_1075266432.vsd
�

�

�

�

Start�

Set Total �Counter� to Zero�

Read Input File�

Last File?�

Move Counter to Output Area�

Print Final Total�

End�

Move Emp. No. Emp. Name, Budget Amt. and Current Expenses to Output Area�

Subtract Current Expenses from Budget Amount�

Move Result (Balance) to Output Area�

Add Balance to Counter�

Write on Priknter�

Yes�

No�


_1075265434.vsd
�

�

1�

�

Start�

Set Final Total �Counter� to Zero�

�

   0      0      0      0      0       0      0      0�

�

Decimal Point�


