Errata to Post

Updated August 23, 2007

p. xxix

Material Balance Equation, differential form, total moles:

$$
\frac{d n_{\text {sys }}}{d t}=\sum_{\text {all } j \text { in }} n_{j}-\sum_{\text {all } j \text { out }} n_{j}+\sum_{\substack{\text { all } k \\ \text { reactionscompounds }}} \sum_{\substack{\text { all } i \\ i k}} \xi_{k}
$$

p. 44

P1.18 H2O should be $\mathrm{H}_{2} \mathrm{O}$
p. 48

P1.30 "from ammonia and oxygen with generation or consumption of NO" should read "from ammonia and oxygen with no net generation or consumption of NO"
p. 52

P1.39 top line p. 52, "oxidized" not "oxided"
Problem should state "Compare the economics of producing 1000 kg of ethylene oxide by direct oxidation versus 1000 kg of propylene oxide by the new process."(italics are additions for clarification).
p. 65 first full paragraph. Should say "Molar density is the inverse of the molar volume"
p. 67 In illustration, units are L / s, not $\mathrm{cm}^{3} / \mathrm{s}$
p. 95 Subscript in heading of $7^{\text {th }}$ column is incorrect (2 tables), should be $n_{H i}$, not $n_{O i}$.
p. 109 Total should be 5, not 6 .
p. 145

P2.23.
5 g gold per $10^{12} \mathrm{~g}$ seawater, not 5 g gold per 10.2 g seawater
p. 146

P2.27 delete "plus gases recovered from the low-pressure separator" Change "The liquid stream... is further separated into components by distillation" to "The liquid stream... is further separated into 3 product streams by distillation" Change "distillation column reflux drum" to "distillation column".
P2.28 replace dichloroethylene $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ with dichloroethane $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (3 places).
p. 149

P2.37
1 ton/day, not 1 ton/yr
p. 158

P2.65 Change "(such as SiO_{2} or $\left.\mathrm{CaCO}_{3}\right)$ " to " $\left(\mathrm{NaCl}, \mathrm{SiO}_{2}\right.$, or $\left.\mathrm{CaCO}_{3}\right)$ ".
p. 163

P2.70 Sketch should show "M E P B I", not "M E P E I" in stream 1.
p. 164

P2.71 Last sentence should read "Calculate the flow rate of raw sugar crystals and molasses, the flow rate of water added to the cane fed to the mill, and the flow rate of juice leaving the first evaporator."(italics show changes)
p. 202 above Quick Quiz, should read " we multiply", not 'we multiple"
p. 234 Case Study is written twice, second one should be deleted.
p. 252

P3.21 Problem should state that elimination rate is in units of mg / h.
p. 253

P3.24 $21.05 \mathrm{kgmol} / \mathrm{h} \mathrm{O}_{2}$ fed, not $20 \mathrm{kgmol} / \mathrm{h}$.
p. 255

P3.33
P3.37
exit solution leaves at $12 \mathrm{lb} / \mathrm{min}$, not $10 \mathrm{lb} / \mathrm{min}$
last reaction should be

$$
\mathrm{O}_{2}+\mathrm{H}_{2}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

p. 261 In the second reaction, diglycol is $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}\right)_{2} \mathrm{O}$, not $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}\right)_{2}$
p. 303 Next to equation $a_{i}=x_{i}$, should read "if i is in the liquid phase"
p. 310 change subscript, should be $K_{\mathrm{a}, 353}$, not $K_{\mathrm{a}, 353 \mathrm{~K}}$
p. 313 I found some better data for dimethyl carbonate Gibbs energy and enthalpy.

Replace tables with

Reaction	$\ln K_{a, T}(T$ in K$)$
R1	$-8.55+15970 / T$
R2	$-32.5+36000 / T$
R3	$-6.77+3010 / T$
R4	$-22.0+1990 / T$

Reaction	K_{a} at $100 * \mathrm{C}(373 \mathrm{~K})$	K_{a} at $500^{*} \mathrm{C}(773 \mathrm{~K})$
R1	7.5×10^{14}	1.8×10^{5}
R2	7×10^{27}	1.4×10^{6}

R3	3.7	0.057
R4	5.6×10^{-8}	3.6×10^{-9}

p. 335 minus sign is missing in definition of fractional conversion, should be

$$
f_{C i}=-\frac{\sum_{\begin{array}{c}
\text { reactions }
\end{array}}^{v_{i k} \dot{\xi} \xi_{k}}}{\dot{x}_{\mathrm{i}, \text { in }}}
$$

p. 341

P4.6
P4.8
should be $f_{C B}$, not $f_{C C}$.
Citric acid is $\mathrm{HOC}\left(\mathrm{CH}_{2} \mathrm{COOH}\right)_{2} \mathrm{COOH}$.
p. 342

P4.10
hyphenation should be isobutyl-acetophenone
p. 345

P4.20
"handyman proposal" should be 'handyman's proposal"
p. 348

P4.26
process stream flow rate is $100 \mathrm{gmol} / \mathrm{h}$, not 100 gmol .
p. 352

P4.38
In table heading, delete "fractional"
P4.40
process "includes", not process "operates"
p. 354

P4.45
"Isobutane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ ", not "isobutene $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ "
p. 355

P4.49
Delete "and 20\% excess air is bubbled through the mixture."
p. 357

P4.50
P4.51
omit "and" before "(c)"
change " $43 \mathrm{~mol} \% \mathrm{HCHO}$ " to " $30.3 \mathrm{~mol} \% \mathrm{HCHO}$ "
P4.53
(R2) should be $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$
p. 394 Flow Tru membrane drawing is incorrect, should be

p. 452 In flow diagram, sour gas stream should be $98 \mathrm{~mol} \% \mathrm{H}_{2}, 2 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{~S}(\%$ sign missing)
p. 463

P5.4
"What is the temperature..", not "What is the pressure..."
p. 468

P5.27
P5.30
add "at 2 bar" to parts (a) and (c)
Insert "(a)" before "Assume that the flash tank...", insert "(b)" before "Suppose the tank pressure...,", insert "(c)" before "Suppose the tank temperature..."
p. 471

P5.41
p. 475 In flow diagram at bottom of page, arrowhead is missing on feed stream to mixer
p. 477

P5.54
p. 479

P5.58
P5.59
p. 482

P5.66
p. 483

P5.69
"economical", not "economical"

Solubility limit is $17.7 \mathrm{lb} / 100 \mathrm{lb}$, not 1.17 lb
"naphthalene", not "naphthalene" (two times)
"humidifying", not "humidifying"

Product requirements should read
Product 1: 98% ethylbenzene
Product 2: 95\% p-xylene
Product 3: 90\% m-xylene
Product 4: 95\% o-xylene
p. 488 Data are in moles $\mathrm{CO}_{2} /$ mole MEA, not moles $\mathrm{CO}_{2} /$ mole solution
p. 489

P5.80
P5.81
p. 528 Second illustration, a minus sign is missing, should be "-890.6 kJ/gmol"
p. $557 \quad T_{\text {ref }}$ and $T_{\text {reactor }}$ are switched, should be

$$
\sum_{\text {input }} n_{i} C_{p i}\left(T_{\text {ref }}-T_{\text {reactor }}\right)+\dot{\xi}_{1}^{\prime} \Delta \hat{H}_{r 1}^{\circ}+\dot{\xi}_{3}^{\dot{s}} \Delta \hat{H}_{r 3}^{\circ}+\sum_{\text {output }} n_{i} C_{p i}\left(T_{\text {reactor }}-T_{\text {ref }}\right)
$$

p. 601

P6.38,
after ADP reaction, should read, "... for every mole of oxygen consumed by aerobic metabolism of glucose"
"beaker containing 100 mL water"
p. 603

P6.54. Delete "Calculate the cooling required in the condenser."
p. 604

P6.55
p. 607

P6.66
150 psig steam, not 15 psig
p. 610

P6.74
(aq), not (ag). http://www.milleniumcell.com/solutions/white.html
p. 612

P6.80
insert "and reactants are fed at $25^{\circ} \mathrm{C}$." at end of sentence that begins "first, calculate the temperature...."
p. 617

P6.89
p. 647 There should be no "o" on $\Delta \hat{G}_{T}$

Ammonium nitrate values should be

$$
\begin{align*}
& \Delta \hat{G}_{f}^{\circ}=-184 \mathrm{~kJ} / \mathrm{gmol}, \Delta \hat{H}_{f}^{\circ}=-365.56 \mathrm{~kJ} / \mathrm{gmol} \tag{s}\\
& \Delta \hat{G}_{f}^{\circ}=-190.7 \mathrm{~kJ} / \mathrm{gmol}, \Delta \hat{H}_{f}^{\circ}=-340 \mathrm{~kJ} / \mathrm{gmol} \tag{aq}
\end{align*}
$$

p. 648 Dimethyl carbonate values should be
(g)

$$
\Delta \hat{G}_{f}^{\circ}=-452.4 \mathrm{~kJ} / \mathrm{gmol}, \Delta \hat{H}_{f}^{\circ}=-570.1 \mathrm{~kJ} / \mathrm{gmol},
$$

Ethylene glycol is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ (subscript on H is missing)

p. 649	add -518.7 for $\Delta \mathrm{H}_{\mathrm{c}}$ of hydrogen sulfide Naphthalene is $\mathrm{C}_{10} \mathrm{H}_{8}$, not $\mathrm{C}_{8} \mathrm{H}_{10}$ Hydrazine: $\Delta \mathrm{H}_{\mathrm{C}}=-534$, not -5342 .	
p. 650	change $\Delta \mathrm{H}_{\mathrm{f}}$ to -371.1 for nitroglycerin	
p. 653	o-xylene, not n-xylene	
p. 664	Ethane (l), not ethane (e) Ethylene glycol is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ (subscript on H is missing)	
p. 665	Values for polynomial expression for oxygen should be: $28.11 \quad-3.68 \times 10^{-6} \quad 1.746 \times 10^{-5}$	-1.065×10^{-8}

p. 666 Value for "B" in polynomial expression for water vapor should be 0.001924 , not 0.01924
p. 669 add methanol $\Delta \hat{H}_{v}=37.8 \mathrm{~kJ} / \mathrm{gmol}$
p. 671 Note Table B. 21 and B. 22 have different definitions for the sign of the enthalpy change. Change all "-" to "+" and "+" to "-" in Table B. 21 (including footnote) to be consistent with B. 22
p. $673 \quad$ P1.27 solution: $\sim 1 / 3$ consumed in yeast production.

P1.29 solution: (a) lose $\$ 0.17 / \mathrm{kg}$, (b) make $\$ 0.15 / \mathrm{kg}$
p. $674 \quad$ P2.3 solution: $76.8 \mathrm{wt} \%$, not $76.6 \mathrm{wt} \%$

P2.5 solution: 45.4 g , not 48.8 g
P2.9 solution: $4.44 \times 10^{-3} \mathrm{~kg}$, not $1.5 \times 10^{-4} \mathrm{~kg}$
p. $675 \quad$ P2.57 solution: 0.5 oz NaCN , not 0.05 oz .

P2.59 solution: 180 h , not $18 \mathrm{~h} ; 8.57 \mathrm{~g}$ nitrates/L, not 60 g nitrates/L
P2.65 solution: 7\%, not 9\%
P2.67 solution: 3.8 tons millscale, 79.3 tons limestone, 29.1 tons clay, 41.1 tons oyster, \$105/ton
P2. 71 solution: $2500 \mathrm{lb} / \mathrm{h}$ water added, not $2560 \mathrm{lb} / \mathrm{h}, 2325 \mathrm{lb} / \mathrm{h}$ leaves evaporator P3.31 solution, 2433(0.9) ${ }^{\text {d-1 }}$, not 2413.6(0.9) ${ }^{\text {d-1 }}$
p. $676 \quad$ P3.41 solution: 5.1 kg , not 6.28 kg

P3.43 solution: 15.8 h, not 15.35 h
P3.45 solution: $590 \mathrm{~kg} /$ day, not $349 \mathrm{~kg} /$ day

P4.21 solution: 954, not 1077, kgmol waste
P4.39 solution: "purge gas" not "pure gas"
p. $677 \quad$ P5.9 solution: numbers given are mass fraction, not mole fraction.

In mole fractions, $x_{\mathrm{SO} 2}=0.0032, x_{\mathrm{SO} 2}=0.0166$
P5.19(a) solution: 2696, not 2969
P5. 21 solution: $105,000 \mathrm{~L} / \mathrm{h}$, not $123,805 \mathrm{~L} / \mathrm{h}$
P5.37 (b) solution: 1.82×10^{5}, not $1.58 \times 10^{5} \mathrm{kmol} / \mathrm{h}$
P5.51 solution: Scheme A is better.
P5.55 solution: Separation factor is $\sim 86,500$.
P5.63 solution: $15.9^{\circ} \mathrm{C}$, not $17.8^{\circ} \mathrm{C}$; $0, .0043$ not 0.0048
P5.75 solution: change "Zooey" to "Frannie"
p. $679 \quad$ P6.13 solution: $2.5^{\circ} \mathrm{C}$, not $2.39^{\circ} \mathrm{C}$

P6.19(b) solution: $W_{s}>0$
P6.29 solution: $506 \mathrm{~kJ} / \mathrm{s}$ (approximate C_{p}), $938 \mathrm{~kJ} / \mathrm{s}$ (polynomial C_{p})
P6.25 solution: $\$ 7.78 /$ metric ton, $\$ 13.38 /$ metric ton
P6.31 solution: ethanol: 25,680 kJ/kg. Hydrazine: 20,850 kJ/kg.
P6.39 solution: 90\% vapor
P6.53 solution: change $2180 \mathrm{~kJ} / \mathrm{s}$ to $1870 \mathrm{~kJ} / \mathrm{s}$
P6.59 solution: change 8.35 to $9130 \mathrm{~kJ} / \mathrm{min}$
P6.37 solution: change "to $63^{\circ} \mathrm{C}$ " to "by $65^{\circ} \mathrm{C}$ ".
P6.45 solution: $5.6 \mathrm{~kg} / \mathrm{min}$ (rule of thumb); $6.36 \mathrm{~kg} / \mathrm{min}$ (accurate)
P6.53 solution: $1868 \mathrm{~kJ} / \mathrm{s}$
P6.59 solution: $10.77 \mathrm{~kJ} / \mathrm{min}$
P6.67 solution: maximum T reached is about $140 * \mathrm{~F}$, so drugs are not OK
p. $680 \quad$ P6.87 solution: (a) $800,000 \mathrm{Btu} / \mathrm{h}, 193^{\circ} \mathrm{F}, 430 \mathrm{ft}^{2}$

