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C h a p t e r

The Karnaugh Map

The algebraic methods developed in Chapter 2 allow us, in theory,
to simplify any function. However, there are a number of prob-
lems with that approach. There is no formal method, such as first

apply Property 10, then P14, etc. The approach is totally heuristic, de-
pending heavily on experience. After manipulating a function, we often
cannot be sure whether or not it is a minimum. We may not always find
the minimum, even though it appears that there is nothing else to do.
Furthermore, it gets rather difficult to do algebraic simplification with
more than four or five variables. Finally, it is easy to make copying
mistakes as we rewrite the equations.

In this chapter we will examine an approach that is easier to imple-
ment, the Karnaugh map (sometimes referred to as a K-map). This is a
graphical approach to finding suitable product terms for use in sum of
product expressions. (The product terms that are “suitable” for use in
minimum sum of products expressions are referred to as prime impli-
cants. We will define that term shortly.) The map is useful for problems
of up to six variables and is particularly straightforward for most prob-
lems of three or four variables. Although there is no guarantee of finding
a minimum solution, the methods we will develop nearly always produce
a minimum. We will adapt the approach (with no difficulty) to finding
minimum product of sums expressions, to problems with don’t cares,
and to multiple output problems.

We introduced the Karnaugh map in Section 2.6. In this chapter, we
will develop techniques to find minimum sum of product expressions
using the map. We will start with three- and four-variable maps and will
include five- and six-variable maps later.

We can plot any function on the map. Either, we know the minterms,
and use that form of the map (as we did earlier), or we put the function
in sum of products form and plot each of the product terms. 
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Map

F � AB� � AC � A�BC�

The map for F is shown below, with each of the product terms circled. Each
of the two-literal terms corresponds to two squares on the map (since one
of the variables is missing). The AB� term is in the 10 column. The AC term
is in the C � 1 row and in the 11 and 10 columns (with a common 1 in
the A position). Finally, the minterm A�BC� corresponds to one square, in
the 01 (A�B) column and in the C � 0 row.

We could have obtained the same map by first expanding F to minterm
form algebraically, that is, 

F � AB�(C� � C) � AC(B� � B) � A�BC�

� AB�C� � AB�C � AB�C � ABC � A�BC�

� m4 � m5 � m5 � m7 � m2

� m2 � m4 � m5 � m7

(removing duplicates and reordering)

We can then use the numeric map and produce the same result.

We are now ready to define some terminology related to the
Karnaugh map. An implicant of a function is a product term that can be
used in a sum of products expression for that function, that is, the func-
tion is 1 whenever the implicant is 1 (and maybe other times, as well).
From the point of view of the map, an implicant is a rectangle of 1, 2, 4,
8, . . . (any power of 2) 1’s. That rectangle may not include any 0’s. All
minterms are implicants.

Consider the function, F, of Map 3.1. The second map shows the
first four groups of 2; the third map shows the other groups of 2 and the
group of 4.
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Map 3.1 A function to illustrate definitions.
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The implicants of F are

Minterms Groups of 2 Groups of 4

A�B�C�D� A�CD CD

A�B�CD BCD

A�BCD ACD

ABC�D� B�CD

ABC�D ABC�

ABCD ABD

AB�CD

Any sum of products of expression for F must be a sum of implicants.
Indeed, we must choose enough implicants such that each of the 1’s of
F are included in at least one of these implicants. Such a sum of products
expression is sometimes referred to as a cover of F and we sometimes
say that an implicant covers certain minterms (for example, ACD covers
m11 and m15).

Implicants must be rectangular in shape and the number of 1’s in the
rectangle must be a power of 2. Thus, neither of the functions whose
maps are shown in Example 3.2 are covered by a single implicant, but
rather by the sum of two implicants each (in their simplest form).
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132 Chapter 3 The Karnaugh Map

G consists of three minterms, ABC�D, ABCD, and ABCD�, in the shape of a
rectangle. It can be reduced no further than is shown on the map, namely,
to ABC � ABD, since it is a group of three 1’s, not two or four. Similarly, H
has the same three minterms plus A�BC�D; it is a group of four, but not in
the shape of a rectangle. The minimum expression is, as shown on the
map, BC�D � ABC. (Note that ABD is also an implicant of G, but it includes
1’s that are already included in the other terms.)

A prime implicant is an implicant that (from the point of view of the
map) is not fully contained in any one other implicant. For example, it is
a rectangle of two 1’s that is not part of a single rectangle of four 1’s. On
Map 3.2, all of the prime implicants of F are circled. They are A�B�C�D�,
ABC�, ABD, and CD. Note that the only minterm that is not part of a
larger group is m0 and that the other four implicants that are groups of
two 1’s are all part of the group of four.

From an algebraic point of view, a prime implicant is an implicant
such that if any literal is removed from that term, it is no longer an
implicant. From that viewpoint, A�B�C�D� is a prime implicant because
B�C�D�, A�C�D�, A�B�D�, and A�B�C� are not implicants (that is, if we
remove any literal from that term, we get a term that is 1 for some input
combinations for which the function is to be 0). However, ACD is not a
prime implicant since when we remove A, leaving CD, we still have
an implicant. (Surely, the graphical approach of determining which
implicants are prime implicants is easier than the algebraic method of
attempting to delete literals.)

The purpose of the map is to help us find minimum sum of products
expressions (where we defined minimum as being minimum number of
product terms (implicants) and among those with the same number of
implicants, the ones with the fewest number of literals. However, the
only product terms that we need consider are prime implicants. Why?
Say we found an implicant that was not a prime implicant. Then, it must
be contained in some larger implicant, a prime implicant, one that covers
more 1’s. But that larger implicant (say four 1’s rather than two) has
fewer literals. That alone makes a solution using the term that is not a
prime implicant not a minimum. (For example, CD has two literals,
whereas, ACD has three.) Furthermore, that larger implicant covers more
1’s, which often will mean that we need fewer terms.

An essential prime implicant is a prime implicant that includes at
least one 1 that is not included in any other prime implicant. (If we were
to circle all of the prime implicants of a function, the essential prime
implicants are those that circle at least one 1 that no other prime impli-
cant circles.) In the example of Map 3.2, A�B�C�D�, ABC�, and CD are
essential prime implicants; ABD is not. The term essential is derived
from the idea that we must use that prime implicant in any minimum
sum of products expression. A word of caution is in order. There will

Map 3.2 Prime implicants.
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often be a prime implicant that is used in a minimum solution (even in
all minimum solutions when more than one equally good solution exists)
that is not “essential.” That happens when each of the 1’s covered by this
prime implicant could be covered in other ways. We will see examples
of that in Section 3.1.

3.1 MINIMUM SUM OF PRODUCT
EXPRESSIONS USING THE
KARNAUGH MAP

In this section, we will describe two methods for finding minimum sum
of products expressions using the Karnaugh map. Although these
methods involve some heuristics, we can all but guarantee that they
will lead to a minimum sum of products expression (or more than one
when multiple solutions exist) for three- and four-variable problems.
(They also work for five- and six-variable maps, but our visualization
in three dimensions is more limited. We will discuss this in detail in
Section 3.5.)

In the process of finding prime implicants, we will be considering
each of the 1’s on the map starting with the most isolated 1’s. By iso-
lated, we mean that there are few (or no) adjacent squares with a 1 in it.
In an n-variable map, each square has n adjacent squares. Examples for
three- and four-variable maps are shown in Map 3.3.

3.1 Minimum Sum of Product Expressions Using the Karnaugh Map 133

Map 3.3 Adjacencies on three- and four-variable maps.

1

1

1

1

Map Method 1
1. Find all essential prime implicants. Circle them on the map and

mark the minterm(s) that make them essential with an asterisk (*).
Do this by examining each 1 on the map that has not already
been circled. It is usually quickest to start with the most isolated
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1’s, that is, those that have the fewest adjacent squares with 1’s
in them.

2. Find enough other prime implicants to cover the function. Do this
using two criteria:
a. Choose a prime implicant that covers as many new 1’s 

(that is, those not already covered by a chosen prime
implicant).

b. Avoid leaving isolated uncovered 1’s.

It is often obvious what “enough” is. For example, if there are five
uncovered 1’s and no prime implicants cover more than two of them,
then we need at least three more terms. Sometimes, three may not be
sufficient, but it usually is.

We will now look at a number of examples to demonstrate
this method. First, we will look at the example used to illustrate the
definitions.

As noted, m0 has no adjacent 1’s; therefore, it (A�B�C�D�) is a prime
implicant. Indeed, it is an essential prime implicant, since no other prime im-
plicant covers this 1. (That is always the case when minterms are prime
implicants.) The next place that we look is m12, since it has only one adja-
cent 1. Those 1’s are covered by prime implicant ABC�. Indeed, no other
prime implicant covers m12, and thus ABC� is essential. (Whenever we have
a 1 with only one adjacent 1, that group of two is an essential prime impli-
cant.) At this point, the map has become

and

F � A�B�C�D� � ABC� � � � �

Each of the 1’s that have not yet been covered are part of the group of four,
CD. Each has two adjacent squares with 1’s that are part of that group. That
will always be the case for a group of four. (Some squares, such as m15 may
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have more than two adjacent 1’s.) CD is essential because no other prime
implicant covers m3, m7, or m11. However, once that group is circled, as
shown below, we have covered the function:

resulting in 

F � A�B�C�D � ABC� � CD

In this example, once we have found the essential prime implicants, we are
done; all of the 1’s have been covered by one (or more) of the essential
prime implicants. We do not need step 2. There may be other prime impli-
cants that were not used (such as ABD in this example).

Another function that is covered using only essential prime impli-
cants is shown in Example 3.4.

We start looking at the most isolated 1, m11. It is covered only by the group
of two shown, wyz. The other essential prime implicant is y�z�, because of
m0, m8, or m12. None of these are covered by any other prime implicant;
each makes that prime implicant essential. The second map shows these
two terms circled.
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That leaves two 1’s uncovered. Each of these can be covered by two differ-
ent prime implicants; but the only way to cover them both with one term is
shown on the first map below.

Thus, the minimum sum of product solution is

f � y�z� � wyz � w�xz

The other two prime implicants are w�xy� and xyz, circled in green on the
second map. They are redundant, however, since they cover no new 1’s.
Even though w�xz must be used in a minimum solution, it does not meet the
definition of an essential prime implicant; each of the 1’s covered by it can
be covered by other prime implicants.

Sometimes, after selecting all of the essential prime implicants,
there are two choices for covering the remaining 1’s, but only one of
these produces a minimum solution, as in Example 3.5.

f (a, b, c, d) � �m(0, 2, 4, 6, 7, 8, 9, 11, 12, 14) 

The first map shows the function and the second shows all essential prime
implicants circled. In each case, one of the 1’s (as indicated with an
asterisk, *) can be covered by only that prime implicant. (That is obvious
from the last map, where the remaining two prime implicants are circled.)
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Only one 1 (m8) is not covered by an essential prime implicant. It can be
covered in two ways, by a group of four (in green) and a group of two (light
green). Clearly, the group of four provides a solution with one less literal,
namely,

f � a�d� � bd� � a�bc � ab�d � c�d�

When asking whether a 1 makes a group of four an essential prime
implicant on a four-variable map, we need find only two adjacent 0’s. If
there are fewer than two adjacent 0’s, this 1 must be either in a group of
eight or part of two or more smaller groups. Note that in Example 3.5, m2

and m14 have two adjacent 0’s, and thus each makes a prime implicant
essential. In contrast, m0, m4, m8, and m12 each have only one adjacent 0
and are each covered by two or three prime implicants. For a 1 to make
a group of two essential, it must have three adjacent 0’s. That is true for
m7 and m11, but not for m8 or m9, each of which can be covered by two
prime implicants. 

We will now consider some examples with multiple minimum
solutions, starting with a three-variable function. 

There are two essential prime implicants, as shown on the following maps:
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After finding the two essential prime implicants, ac� and a�c, as shown on
the center map, m5 is still uncovered. As can be seen from the map on the
right, there are two ways to cover that term, yielding two, equally good,
minimum solutions:

f � ac� � a�c � ab�

� ac� � a�c � b�c

As an aside, we can show that these two solutions are mathematically
equal. We can take the first expression and add to it the consensus of the
last two terms, a�c ¢ ab� � b�c, leaving

f � ac� � a�c � ab� � b�c

Notice that the consensus term is the third term of the second expres-
sion. We could do the same thing with the first and third terms of the
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second expression, ac� ¢ b�c � ab� and add that to the second expres-
sion, obtaining

f � ac� � a�c � b�c � ab�

These two expressions are indeed the same set of terms in a different order. 

g(w, x, y, z) � �m(2, 5, 6, 7, 9, 10, 11, 13, 15)

The function is mapped first, and the two essential prime implicants are
shown on the second map, giving

g � xz � wz � � � �

Although m2 looks rather isolated, it can indeed be covered by w�yz� (with
m6 ) or by x�yz� (with m10 ). After choosing the essential prime implicants, the
remaining three 1’s can each be covered by two different prime implicants.
Since there are three 1’s left to be covered (after choosing the essential
prime implicants), and since all the remaining prime implicants are groups
of two and thus have three literals, we need at least two more of these
prime implicants. Indeed, there are three ways to cover the remaining 1’s
with two more prime implicants. Using the first criteria, we choose one of
the prime implicants that covers two new 1’s, w�yz�, as shown on the left
map below.
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EXAMPLE 3.8

Then, only m10 remains and it can be covered either by wx�y or by x�yz�, as
shown on the center map. Similarly, we could have started with x�yz�, in
which case we could use w�xy to complete the cover, as on the third map.
(We could also have chosen w�yz�, but that repeats one of the answers
from before.) Thus, the three solutions are

g � xz � wz � w�yz� � wx�y

g � xz � wz � w�yz� � x�yz�

g � xz � wz � x�yz� � w�xy

All three minimum solutions require four terms and 10 literals.

At this point, it is worth stating the obvious. If there are multiple
minimum solutions (as was true in this example), all such minimums
have the same number of terms and the same number of literals. Any
solution that has more terms or more literals is not minimum!

Once again there are two essential prime implicants, as shown on the right
map. The most isolated 1’s are m10 and m15. Each has only two adjacent
1’s. But all of the 1’s in groups of four have at least two adjacent 1’s; if there
are only two, then that minterm will make the prime implicant essential.
(Each of the other 1’s in those groups of four has at least three adjacent 1’s.)
The essential prime implicants give us

f � b�d� � bd � � � �

There are three 1’s not covered by the essential prime implicants. There is
no single term that will cover all of them. However, the two in the 01 column
can be covered by either of two groups of four, as shown on the map on
the left (one circled in green, the other in light green). And, there are two
groups of two that cover m9 (also one circled in green, the other in light
green), shown on the map to the right.
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We can choose one term from the first pair and (independently) one from
the second pair. Thus, there are four solutions. We can write the solution as
shown, where we take one term from within each bracket

f � b�d� � bd � � � � � �

or we can write out all four expressions

f � b�d� � bd � a�d� � ac�d

� b�d� � bd � a�d� � ab�c�

� b�d� � bd � a�b � ac�d

� b�d� � bd � a�b � ab�c�

This example is one we call “don’t be greedy.”

At first glance, one might want to take the only group of four (circled in light
green). However, that term is not an essential prime implicant, as is obvious
once we circle all of the essential prime implicants and find that the four 1’s
in the center are covered. Thus, the minimum solution is

G � A�BC� � A�CD � ABC � AC�D
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The four essential prime implicants are shown on the second map, leaving
three 1’s to be covered:

F � A�C�D� � AC�D � A�CD � ACD� � � � �

These squares are shaded on the third map. The three other prime impli-
cants, all groups of four, are also shown on the third map. Each of these
covers two of the remaining three 1’s (no two the same). Thus any two of
B�D�, AB�, and B�C can be used to complete the minimum sum of products
expression. The resulting three equally good answers are

F � A�C�D� � AC�D � A�CD � ACD� � B�D� � AB�

F � A�C�D� � AC�D � A�CD � ACD� � B�D� � B�C

F � A�C�D� � AC�D � A�CD � ACD� � AB� � B�C

Before doing additional (more complex) examples, we will intro-
duce a somewhat different method for finding minimum sum of products
expressions.

Map Method 2
1. Circle all of the prime implicants.

2. Select all essential prime implicants; they are easily identified by
finding 1’s that have only been circled once.

3. Then choose enough of the other prime implicants (as in
Method 1). Of course, these prime implicants have already been
identified in step 1.
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All of the prime implicants have been circled on the center map. Note that
m0 has been circled three times and that several minterms have been
circled twice. However, m3 and m5 have only been circled once. Thus, the
prime implicants that cover them, A�B� and C�D are essential. On the third
map, we have shaded the part of the map covered by essential prime
implicants to highlight what remains to be covered. There are four 1’s, each
of which can be covered in two different ways, and five prime implicants not
used yet. No prime implicant covers more than two new 1’s; thus, we need
at least two more terms. Of the groups of four, only B�D� covers two new
1’s; B�C� covers only one. Having chosen the first group, we must use ABC
to cover the rest of the function, producing

F � A�B� � C�D � B�D� � ABC

Notice that this is the only set of four prime implicants (regardless of size)
that covers the function.

G(A, B, C, D) � �m(0, 1, 3, 7, 8, 11, 12, 13, 15)

This is a case with more 1’s left uncovered after finding the essential prime
implicant. The first map shows all the prime implicants circled. The only es-
sential prime implicant is YZ; there are five 1’s remaining to be covered.
Since all of the other prime implicants are groups of two, we need three
more prime implicants. These 1’s are organized in a chain, with each prime
implicant linked to one on either side. If we are looking for just one solution,
we should follow the guidelines from Method 1, choosing two terms that
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each cover new 1’s and then select a term to cover the remaining 1. One
such example is shown on the third map, starting with WXY� and X�Y�Z�. If
we wish to find all of the minimum solutions, one approach is to start at one
end of the chain (as shown in the second map). (We could have started at
the other end, with m13, and achieved the same results.) To cover m1, we
must either use W�X�Z, as shown in green above, or W�X�Y� (as shown on
the maps below). Once we have chosen W�X�Z, we have no more freedom,
since the terms shown on the third map above are the only way to cover the
remaining 1’s in two additional terms. Thus, one solution is

F � YZ � W�X�Z � X�Y�Z� � WXY�

The next three maps show the solutions using W�X�Y� to cover m0.

3.1 Minimum Sum of Product Expressions Using the Karnaugh Map 143

After choosing W�X�Y�, there are now three 1’s to be covered. We can use
the same last two terms as before (left) or use WY�Z� to cover m8 (right two
maps). The other three solutions are thus

F � YZ � W�X�Y� � X�Y�Z� � WXY�

F � YZ � W�X�Y� � WY�Z� � WXY�

F � YZ � W�X�Y� � WY�Z� � WXZ

We will now look at some examples with no essential prime impli-
cants. A classic example of such a function is shown in Example 3.13. 
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There are eight 1’s; all prime implicants are groups of two. Thus, we need at
least four terms in a minimum solution. There is no obvious place to start;
thus, in the second map, we arbitrarily chose one of the terms, a�c�d�.
Following the guidelines of step 2, we should then choose a second term
that covers two new 1’s, in such a way as not to leave an isolated uncov-
ered 1. One such term is bc�d, as shown on the third map. Another possi-
bility would be b�cd� (the group in the last row). As we will see, that group
will also be used. Repeating that procedure, we get the cover on the left
map below,

f � a�c�d� � bc�d � acd � b�cd�

144 Chapter 3 The Karnaugh Map

Notice, that if, after starting with a�c�d�, we chose one of the prime
implicants not included in this solution above, such as abd, shown on the
middle map, we leave an isolated uncovered 1 (which would require a third
term) plus three more 1’s (which would require two more terms). A solution
using those two terms would require five terms (obviously not minimum
since we found one with four). Another choice would be a term such as
a�b�d�, which covers only one new 1, leaving five 1’s uncovered. That, too,
would require at least five terms.

The other solution to this problem starts with a�b�d�, the only other
prime implicant to cover m0. Using the same process, we obtain the map on
the right and the expression

f � a�b�d� � a�bc� � abd � ab�c

G(A, B, C, D) � �m(0, 1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15)

All of the prime implicants are groups of four. Since there are 13 1’s, we
need at least four terms. The first map shows all of the prime implicants
circled; there are nine. There are no 1’s circled only once, and thus, there
are no essential prime implicants.
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EXAMPLE 3.14
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As a starting point, we choose one of the minterms covered by only
two prime implicants, say m0. On the second map, we used C�D� to cover
it. Next, we found two additional prime implicants that cover four new 1’s
each, as shown on the third map. That leaves just m13 to be covered. As can
be seen on the fourth map (shown below), there are three different prime
implicants that can be used. Now, we have three of the minimum solutions.

F � C�D� � B�D � BC � �AB or AC� or AD�

If, instead of using C�D� to cover m0, we use B�C� (the only other prime
implicant that covers m0), as shown on the next map, we can find two other
groups of four that each cover four new 1’s and leave just m13 to be
covered. Once again, we have three different ways to complete the cover
(the same three terms as before).

Thus, there are six equally good solutions

F � � � � � �
where one group of terms is chosen from the first bracket and an additional
term from the second. We are sure that there are no better solutions, since
each uses the minimum number of prime implicants, four. Although it may
not be obvious without trying other combinations, there are no additional
minimum solutions.

AB
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EXAMPLE 3.15
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This function has one essential prime implicant (a minterm) and ten other
1’s. All of the other prime implicants are groups of two. The second map
shows all 13 prime implicants. Note that every 1 (other than m0) can be cov-
ered by two or three different terms.

Since there are ten 1’s to be covered by groups of two, we know that
we need at least five terms, in addition to a�b�c�d�. The third map shows the
beginnings of an attempt to cover the function. Each term covers two new
1’s without leaving any isolated uncovered 1. (The 1 at the top could be
combined with m14.) The four 1’s that are left require three additional terms.
After trying several other groupings, we can see that it is not possible to
cover this function with less than seven terms. There are 32 different mini-
mum solutions to this problem. A few of the solutions are listed below. The
remainder are left as an exercise (Ex 1p).

f � a�b�c�d� � a�cd � bc�d � ab�d � abc� � a�bc � acd�

� a�b�c�d� � a�cd � bc�d � ab�d � abd� � bcd� � ab�c

� a�b�c�d� � b�cd � a�bd � ac�d � abd� � acd� � bcd�

� a�b�c�d� � b�cd � abc� � bcd� � a�bd � ab�c � ab�d

3.2 DON’T CARES
Finding minimum solutions for functions with don’t cares does not
significantly change the methods we developed in the last section. We
need to modify slightly the definitions of a prime implicant and clarify
the definition of an essential prime implicant.

A prime implicant is a rectangle of 1, 2, 4, 8, . . . 1’s or X’s not in-
cluded in any one larger rectangle. Thus, from the point of view of
finding prime implicants, X’s (don’t cares) are treated as 1’s.

[SP 1, 2; EX 1, 2, 3]

A number of other examples are included in Solved Problems 1 and 2.
Example 3.15 is one of the most complex four-variable problems, requir-
ing more terms than we might estimate at first. 
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An essential prime implicant is a prime implicant that covers at least
one 1 not covered by any other prime implicant (as always). Don’t
cares (X’s) do not make a prime implicant essential.

Now, we just apply either of the methods of the last section. When we are
done, some of the X’s may be included and some may not. But we don’t
care whether or not they are included in the function.

F(A, B, C, D) � �m(1, 7, 10, 11, 13) � �d(5, 8, 15)

3.2 Don’t Cares 147

EXAMPLE 3.16
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We first mapped the function, entering a 1 for those minterms included in
the function and an X for the don’t cares. We found two essential prime
implicants, as shown on the center map. In each case, the 1’s with an
asterisk cannot be covered by any other prime implicant. That left the two
1’s circled in green to cover the rest of the function. That is not an essential
prime implicant, since each of the 1’s could be covered by another prime
implicant (as shown in light green on the third map). However, if we did not
use AB�C, we would need two additional terms, instead of one. Thus, the
only minimum solution is

F � BD � A�C�D � AB�C

and terms AB�D� and ACD are prime implicants not used in the minimum
solution. Note that if all of the don’t cares were made 1’s, we would need a
fourth term to cover m8, making

F � BD � A�C�D � AB�C � AB�D� or

F � BD � A�C�D � ACD � AB�D�

and that if all of the don’t cares were 0’s, the function would become

F � A�B�C�D � A�BCD � ABC�D � AB�C

In either case, the solution is much more complex then when we treated
those terms as don’t cares (and made two of them 1’s and the other a 0).
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EXAMPLE 3.17
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There are two essential prime implicants, as shown on the center map, x�z
and w�yz. The group of four don’t cares, w�x�, is a prime implicant (since it
is a rectangle of four 1’s or X’s) but it is not essential (since it does not cover
any 1’s not covered by some other prime implicant). Surely, a prime impli-
cant made up of all don’t cares would never be used, since that would add
a term to the sum without covering any additional 1’s. The three remaining
1’s require two groups of two and thus there are three equally good solu-
tions, each using four terms and 11 literals:

g1 � x�z � w�yz � w�y�z� � wxy�

g2 � x�z � w�yz � xy�z� � wxy�

g3 � x�z � w�yz � xy�z� � wy�z

An important thing to note about Example 3.17 is that the three
algebraic expressions are not all equal. The first treats the don’t care for
m0 as a 1, whereas the other two (which are equal to each other) treat it
as a 0. This will often happen with don’t cares. They must treat the spec-
ified part of the function (the 1’s and the 0’s) the same, but the don’t
cares may take on different values in the various solutions. The maps of
Map 3.4 show the three functions.

Map 3.4 The different solutions for Example 3.17.
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On the first map, we have shown the only essential prime implicant, c�d�,
and the other group of four that is used in all three solutions, ab. (This must
be used since the only other prime implicant that would cover m15 is bcd,
which requires one more literal and does not cover any 1’s that are not
covered by ab.) The three remaining 1’s require two terms, one of which
must be a group of two (to cover m3) and the other must be one of the
groups of four that cover m10. On the second map, we have shown two of
the solutions, those that utilize b�d� as the group of four. On the third map,
we have shown the third solution, utilizing ad�. Thus, we have

g1 � c�d� � ab � b�d� � a�cd

g2 � c�d� � ab � b�d� � a�b�c

g3 � c�d� � ab � ad� � a�b�c

We can now ask if these solutions are equal to each other. We can ei-
ther map all three solutions as we did for Example 3.17 or we can make a
table of the behavior of the don’t cares—one column for each don’t care
and one row for each solution.

3.2 Don’t Cares 149

EXAMPLE 3.18
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From the table, it is clear that g2 � g3, but neither is equal to g1. A more
complex example is found in the solved problems.

Don’t cares provide us with another approach to solving map prob-
lems for functions with or without don’t cares. 

m7 m9

g1 1 0
g2 0 0
g3 0 0
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Map Method 3
1. Find all essential prime implicants using either Map Method 1 or 2.

2. Replace all 1’s covered by the essential prime implicants with X’s.
This highlights the 1’s that remain to be covered.

3. Then choose enough of the other prime implicants (as in
Methods 1 and 2).

Step 2 works because the 1’s covered by essential prime implicants may
be used again (as part of a term covering some new 1’s), but need not be.
Thus, once we have chosen the essential prime implicants, these
minterms are, indeed, don’t cares.

F(A, B, C, D) � �m(0, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15)

150 Chapter 3 The Karnaugh Map

EXAMPLE 3.19
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We first found the two essential prime implicants, A�B and CD. On the sec-
ond map, we converted all of the 1’s covered to don’t cares. Finally, we can
cover the remaining 1’s with AC and B�C�D�, producing

F � A�B � CD � AC � B�C�D�

Replacing covered minterms by don’t cares accomplishes the same thing
as the shading that we did in Examples 3.10 and 3.11; it highlights the 1’s
that remain to be covered.

3.3 PRODUCT OF SUMS
Finding a minimum product of sums expression requires no new theory.
The following approach is the simplest:

1. Map the complement of the function. (If there is already a map for
the function, replace all 0’s by 1’s, all 1’s by 0’s and leave X’s
unchanged.)

[SP 3, 4; EX 4, 5]
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2. Find the minimum sum of products expression for the complement
of the function (using the techniques of the last two sections).

3. Use DeMorgan’s theorem (P11) to complement that expression,
producing a product of sums expression.

Another approach, which we will not pursue here, is to define the
dual of prime implicants (referred to as prime implicates) and develop a
new method.

f(a, b, c, d) � �m(0, 1, 4, 5, 10, 11, 14)

Since all minterms must be either minterms of f or of f�, then, f� must be the
sum of all of the other minterms, that is

f�(a, b, c, d) � �m(2, 3, 6, 7, 8, 9, 12, 13, 15)

Maps of both f and f� are shown below

We did not need to map f, unless we wanted both the sum of products
expression and the product of sums expression. Once we mapped f, we did
not need to write out all the minterms of f�; we could have just replaced the 1’s
by 0’s and 0’s by 1’s. Also, instead of mapping f�, we could look for rectangles
of 0’s on the map of f. This function is rather straightforward. The maps for
the minimum sum of product expressions for both f and f� are shown below:
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EXAMPLE 3.20
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There is one minimum solution for f and there are two equally good solu-
tions for the sum of products for f�:

f � a�c� � ab�c � acd� f� � ac� � a�c � abd

f� � ac� � a�c � bcd

We can then complement the solutions for f� to get the two minimum prod-
uct of sums solutions for f:

f � (a� � c)(a � c�)(a� � b� � d�)

f � (a� � c)(a � c�)(b� � c� � d�)

The minimum sum of products solution has three terms and eight literals;
the minimum product of sums solutions have three terms and seven literals.
(There is no set pattern; sometimes the sum of products solution has fewer
terms or literals, sometimes the product of sums does, and sometimes they
have the same number of terms and literals.)

Find all of the minimum sum of products and all minimum product of sums
solutions for

g(w, x, y, z) � �m(1, 3, 4, 6, 11) � �d(0, 8, 10, 12, 13)

We first find the minimum sum of products expression by mapping g.
However, before complicating the map by circling prime implicants, we also
map g� (below g). Note that the X’s are the same on both maps.

152 Chapter 3 The Karnaugh Map

EXAMPLE 3.21

00 01 11 10

00

01

11

10

w x
y z

1 X XX

1

X1

11

X

00 01 11 10

00

01

11

10

w x
y z

1 X XX

1

X1*

11

X

00 01 11 10

00

01

11

10

w x
y z

X X XX

1

XX

11

X

g

00 01 11 10

00

01

11

10

w x
y z

X XX

11

X1 1

11

X

00 01 11 10

00

01

11

10

w x
y z

X XX

1 1*

X1* 1

11*

X

00 01 11 10

00

01

11

10

w x
y z

X

X X

X

X

X1X

X

X X

g�

mar65164_ch03A.qxd  12/2/03  12:39 PM  Page 152



For g, the only essential prime implicant, w�xz� is shown on the center map.
The 1’s covered by it are made don’t cares on the right map and the
remaining useful prime implicants are circled. We have seen similar exam-
ples before, where we have three 1’s to be covered in groups of two. There
are three equally good solutions:

g � w�xz� � � �
For g�, there are three essential prime implicants, as shown on the center
map. Once all of the 1’s covered by them have been made don’t cares,
there is only one 1 left; it can be covered in two ways as shown on the right
map:

g� � x�z� � xz � wy� � � �
g � (x � z)(x� � z�)(w� � y)� �

Note that in this example, the sum of product solutions each require only
three terms (with nine literals), whereas the product of sums solutions each
require four terms (with eight literals).

Finally, we want to determine which, if any, of the five solutions are
equal. The complication (compared to this same question in the last sec-
tion) is that when we treat a don’t care as a 1 for g�, that means that we are
treating it as a 0 of g. Labeling the three sum of product solutions as g1, g2,
and g3, and the two product of sums solutions as g4 and g5, we produce the
following table

0 8 10 12 13

g1 1 0 0 0 0
g2 0 0 0 0 0
g3 0 0 1 0 0
g�4 1 1 1 1 1
g4 0 0 0 0 0
g�5 1 1 1 1 1
g5 0 0 0 0 0

The product of sum solutions treat all of the don’t cares as 1’s of g� since
each is circled by the essential prime implicants of g�. (Thus, they are 0’s
of g.) We then note that the three solutions that are equal are

g2 � w�xz� � w�x�z � x�yz

g4 � (x � z)(x� � z�)(w� � y)(w� � x�)

g5 � (x � z)(x� � z�)(w� � y)(w� � z)

(w� � x�)
(w� � z)

wx
wz�

w�x�y� � x�yz
w�x�z � x�yz
w�x�z � wx�y

3.3 Product of Sums 153

[SP 5, 6; EX 6, 7]
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3.4 MINIMUM COST GATE
IMPLEMENTATIONS

We are now ready to take another look at implementing functions with
various types of gates. In this section, we will limit our discussion to
two-level solutions for systems where all inputs are available both un-
complemented and complemented. (In Section 2.10, we examined multi-
level circuits.) The minimization criteria is minimum number of gates,
and among those with the same number of gates, minimum number of
gate inputs. (Other criteria, such as minimum number of integrated cir-
cuit packages, were also discussed in Section 2.10 and will be examined
further in Chapter 5.) The starting point is almost always to find the min-
imum sum of products solutions and/or the minimum product of sums
solutions. That is because each term (other than single literal ones) cor-
responds to a gate. Then, unless the function has only one term, there is
one output gate. Minimizing the number of literals minimizes the num-
ber of inputs to these gates.

First, we will look for solutions using AND and OR gates. We must
look at both the minimum sum of products and minimum product of
sums solutions. In Examples 3.20 and 3.21 from the last section, the
product of sums solutions for f had one less gate input than the sum of
products solution and the sum of products solutions for g had one less
gate than the product of sums solutions. One of the minimum cost solu-
tions for each is shown in Figure 3.1. (There are three equally good ones
for f and two equally good ones for g.)

154 Chapter 3 The Karnaugh Map

Figure 3.1 Minimum cost AND/OR implementations.
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For a two-level solution using NAND gates, we need to start with a
minimum sum of products solution. Thus, for g we can use the solution
we obtained for AND and OR, but for f, we must use the sum of products
solution, the one with one more gate input, as shown in Figure 3.2.

Similarly, for a two-level solution with NOR gates, we use a mini-
mum product of sums solution, resulting in the circuits of Figure 3.3.
Note that the NOR gate solution for g uses one more gate than the
NAND gate solution.

If we are not limited to two levels, we have one additional option for
implementing NAND gate solutions (or NOR gate solutions) beyond the
algebraic manipulation of Section 2.8. We could find a minimum sum of
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products expression for f � and implement that with NAND gates. We
would then place a NOT gate at the output to produce f.

G(A, B, C, D) � �m(0, 1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15)

In Example 3.14, we found six equally good minimum sum of products
solutions, each of which has four terms and eight literals. These solutions
would require five gates. One of them is

G � C�D� � B�D � BC � AB

The map for G� is shown below

00 01 11 10

00

01

11

10

A B
C D

1

1

1
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x�
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Figure 3.2 NAND gate implementations.
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Figure 3.3 NOR gate implementations.

EXAMPLE 3.22
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and thus

G� � A�BC�D � B�CD�

We could implement G� with three NAND gates and then use a NOT gate
(or a two-input NAND with the inputs tied together) on the output as shown
below: 

This requires only four gates compared to the sum of products solution
which required five gates. (Either would require two 7400 series packages.)

3.5 FIVE- AND SIX-VARIABLE MAPS
A five-variable map consists of 25 � 32 squares. Although there are sev-
eral arrangements that have been used, we prefer to look at it as two layers
of 16 squares each. The top layer (on the left below) contains the squares
for the first 16 minterms (for which the first variable, A, is 0) and the
bottom layer contains the remaining 16 squares, as pictured in Map 3.5:

A�
B

D
C�

B�
C
D�

G
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[SP 7; EX 8]

00 01 11 10

00

01

11

10

B C
D E

51 13 9

40 12

A � 0

8

73 15 11

62 14 10

2117 29 25

2016 28

A � 1

24

2319 31 27

2218 30 26

Map 3.5 A five-variable map.

Each square in the bottom layer corresponds to the minterm numbered
16 more than the square above it. Product terms appear as rectangular
solids of 1, 2, 4, 8, 16, . . . 1’s or X’s. Squares directly above and below
each other are adjacent. 
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m2 � m5 � A�B�C�DE� � AB�C�DE� � B�C�DE�

m11 � m27 � A�BC�DE � ABC�DE � BC�DE

m5 � m7 � m21 � m23 � B�CE

These terms are circled on the map below.

In a similar manner, six-variable maps are drawn as four layers of
16-square maps, where the first two variables determine the layer and
the other variables specify the square within the layer. The layout, with
minterm numbers shown, is given in Map 3.6. Note that the layers are or-
dered in the same way as the rows and the columns, that is 00, 01, 11, 10.

In this section, we will concentrate on five-variable maps, al-
though we will also do an example of six-variable maps at the end. The

1

1

1

1

1

00 01 11 10

00

01

11

10

B C
D E

A � 0

A � 1

1

1

1

11
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EXAMPLE 3.23

00 01 11 10

00

01

11

10

C D
E F

51 13 9

40 12

A B � 00

8

73 15 11

62 14 10

A B � 01

2117 29 25

2016 28 24

2319 31 27

2218 30 26

A B � 11

5349 61 57

5248 60 56

5551 63 59

5450 62 58

A B � 10

3733 45 41

3632 44 40

3935 47 43

3834 46 42

Map 3.6 A six-variable map.
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As always, we first look for the essential prime implicants. A good
starting point is to find 1’s on one layer for which there is a 0 in the cor-
responding square on an adjoining layer. Prime implicants that cover that
1 are contained completely on that layer (and thus, we really only have a
four-variable map problem). In this example, m4 meets this criteria (since
there is a 0 in square 20 below it). Thus, the only prime implicants cov-
ering m4 must be on the first layer. Indeed, A�B�C is an essential prime
implicant. (Note that the A� comes from the fact that this group is con-
tained completely on the A � 0 layer of the map and the B�C from the
fact that this group is in the second column.) Actually, all four 1’s in this
term have no counterpart on the other layer and m6 would also make this
prime implicant essential. (The other two 1’s in that term are part of an-
other prime implicant, as well.) We also note that m9, m16, m18, and m28

have 0’s in the corresponding square on the other layer and make a prime
implicant essential. Although m14 has a 0 beneath it (m30), it does not
make a prime implicant on the A� layer essential. Thus Map 3.8 shows
each of these circled, highlighting the essential prime implicants that are
contained on one layer.

So far, we have

F � A�B�C � A�BE � AB�C�E� � ABCD�E� � � � �

The two 1’s remaining uncovered do have counterparts on the other layer.
However, the only prime implicant that covers them is BDE, as shown on
Map 3.9 in green. It, too, is an essential prime implicant. (Note that prime
implicants that include 1’s from both layers do not have the variable A in

158 Chapter 3 The Karnaugh Map

00 01 11 10

00

01

11

10

B C
D E

1 1

0

A

1

1

1 1 1

1

1

00 01 11 10

00

01

11

10

B C
D E

1 1

1 1

1

Map 3.7 A five-variable problem.

techniques are the same as for four-variable maps; the only thing new is
the need to visualize the rectangular solids. Rather than drawing the
maps to look like three dimensions, we will draw them side by side. The
function, F, is mapped in Map 3.7. 

F(A, B, C, D, E) � �m(4, 5, 6, 7, 9, 11, 13, 15, 16, 18, 27, 28, 31)
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3.5 Five- and Six-Variable Maps 159

00 01 11 10

00

01

11

10

B C
D E

1 1

0

A

1*

1*

1 1 1

1*

1

00 01 11 10

00

01

11

10

B C
D E

1* 1*

1* 1*

1*

Map 3.9 A prime implicant covering 1’s on both layers.

The complete solution is thus

F � A�B�C � A�BE � AB�C�E� � ABCD�E� � BDE

Groups of eight 1’s are not uncommon in five-variable problems, as
illustrated in Example 3.24.

G(A, B, C, D, E ) � �m(1, 3, 8, 9, 11, 12, 14, 17, 19, 20, 22, 24, 25, 27)

The first map shows a plot of that function. On the second map, to the
right, we have circled the two essential prime implicants that we found by
considering 1’s on one layer with 0’s in the corresponding square on the
other layer. The group of eight 1’s, C�E (also an essential prime implicant),
is shown in green on the third map (where the essential prime implicants
found on the second map are shown as don’t cares). Groups of eight
have three literals missing (leaving only two). At this point, only two 1’s are
left uncovered; that requires the essential prime implicant, BC�D�, shown
on the fourth map in light green.

EXAMPLE 3.24

00 01 11 10

00

01

11

10

B C
D E

1 1

0
A

1*

1*

1 1 1

1*

1

00 01 11 10

00

01

11

10

B C
D E

1* 1*

1 1

1*

Map 3.8 Essential prime implicants on one layer.

them. Such prime implicants must, of course, have the same number of
1’s on each layer; otherwise, they would not be rectangular.)
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B C
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1
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1*1

Three other essential prime implicants include 1’s from both layers of the
map; they are CD�E, BCE and B�C�DE�, as shown on the left map below.
These were found by looking for isolated 1’s, such as m21, m15, and m18.

The solution is thus

G � A�BCE� � AB�CE� � C�E � BC�D�

Note that there is only one other prime implicant in this function, A�BD�E�; it
covers no 1’s not already covered.

The next problem is shown on the maps below. Once again, we start by
looking for 1’s that are on one layer, with a corresponding 0 on the other
layer. Although there are several such 1’s on the A � 0 layer, only m10

makes a prime implicant essential. Similarly, on the A � 1 layer, m30 is cov-
ered by an essential prime implicant. These terms, A�C�E� and ABCD, are
shown on the second map. The 1’s covered are shown as don’t cares on
the next map.

EXAMPLE 3.25
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Finally, the remaining two 1’s (m4 and m12) can be covered in two ways, as
shown on the right map above, A�CD� and A�D�E�. Thus, the two solutions
are 

F � A�C�E� � ABCD � CD�E � BCE � B�C�DE� � A�CD�

F � A�C�E� � ABCD � CD�E � BCE � B�C�DE� � A�D�E�

H(A, B, C, D, E ) � �m(1, 8, 9, 12, 13, 14, 16, 18, 19, 22, 23, 24, 30)
� �d(2, 3, 5, 6, 7, 17, 25, 26) 

A map of H is shown below on the left with the only essential prime impli-
cant, B�D, (a group of eight, including four 1’s and four don’t cares) circled.

3.5 Five- and Six-Variable Maps 161

Next, we choose CDE�, since otherwise separate terms would be needed to
cover m14 and m30. We also chose A�BD� since it covers four new 1’s. Fur-
thermore, if that were not used, a group of two (A�BCE�) would be needed
to cover m12. That leaves us with three 1’s (m1, m16, and m24) to be covered.
On the maps below, we have replaced all covered 1’s by don’t cares (X’s) to
highlight the remaining 1’s. No term that covers m1 also covers either of the
other terms. However, m16 and m24 can be covered with one term in either
of two ways (AC�E� or AC�D�) as shown on the first map below, and m1 can

EXAMPLE 3.26
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be covered by four different groups of four, as shown on the second map
(A�D�E, A�B�E, B�C�E, or C�D�E ), yielding the eight solutions shown.

H � B�D � CDE� � A�BD� � � � � � �
Finally, we will look at one example of a six-variable function.

G(A, B, C, D, E, F ) � �m(1, 3, 6, 8, 9, 13, 14, 17, 19, 24, 25, 29, 32,

33, 34, 35, 38, 40, 46, 49, 51, 53, 55, 56, 61, 63)

The map is drawn horizontally, with the first two variables determining the
16-square layer (numbered, of course 00, 01, 11, 10).

A�D�E
A�B�E
B�C�E
C�D�E

AC�E�

AC�D�

162 Chapter 3 The Karnaugh Map

EXAMPLE 3.27
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The first map shows three of the essential prime implicants. The only one
that is confined to one layer is on the third layer, ABDF. The 1’s in the upper
right corner of each layer form another group of four (without the first two vari-
ables), CD�E�F�. The green squares form a group of eight, C�D�F. The next
map shows 1’s covered by the first three prime implicants as don’t cares.

The other two essential prime implicants are A�CE�F and B�DEF�. (Remem-
ber that the top and bottom layers are adjacent.) Finally, m32 and m34 (on the
fourth layer) remain uncovered; they are covered by the term, AB�C�D�.
(Each of them could have been covered by a group of two; but that would
take two terms.) Thus, the minimum expression is 

G � ABDF � CD�E�F� � C�D�F � A�CE�F � B�DEF� � AB�C�D�

[SP 8, 9; EX 9, 10]
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3.6 MULTIPLE OUTPUT PROBLEMS
Many real problems involve designing a system with more than one out-
put. If, for example, we had a problem with three inputs, A, B, and C and
two outputs, F and G, we could treat this as two separate problems (as
shown on the left in Figure 3.4). We would then map each of the func-
tions, and find minimum solutions. However, if we treated this as a
single system with three inputs and two outputs (as shown on the right),
we may be able to economize by sharing gates.

3.6 Multiple Output Problems 163

A

B F

C

A

B G

Two Separate Systems

C

A

B

C G

F

One System

Figure 3.4 Implementation of two functions.

In this section, we will illustrate the process of obtaining two-level solu-
tions using AND and OR gates (sum of products solutions), assuming all
variables are available both uncomplemented and complemented. We
could convert each of these solutions into NAND gate circuits (using the
same number of gates and gate inputs). We could also find product of
sums solutions (by minimizing the complement of each of the functions
and then using DeMorgan’s theorem).

We will illustrate this by first considering three very simple
examples.

F(A, B, C) � �m(0, 2, 6, 7) G(A, B, C) � �m(1, 3, 6, 7)

If we map each of these and solve them separately, 

we obtain

F � A�C� � AB G � A�C � AB

Looking at the maps, we see that the same term (AB) is circled on both.
Thus, we can build the circuit on the left, rather than the two circuits on the
right.

00 01 11 10
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1

A B
C

1

F

11 1

00 01 11 10
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1

A B
C

11 1

G

1

EXAMPLE 3.28
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Obviously, the version on the left requires only five gates, whereas the one
on the right uses six.

This example is the simplest. Each of the minimum sum of product
expressions contains the same term. It would take no special techniques
to recognize this and achieve the savings.

Even when the two solutions do not have a common prime impli-
cant, we can share as illustrated in the following example:

F(A, B, C) � �m(0, 1, 6) G(A, B, C) � �m(2, 3, 6)

In the top maps, we considered each function separately and obtained

F � A�B� � ABC� G � A�B � BC�

00 01 11 10

0

1

A B
C

1

F

1 1

00 01 11 10
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11

00 01 11 10
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EXAMPLE 3.29
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This solution requires six gates (four ANDs and two ORs) with 13 inputs.
However, as can be seen from the second pair of maps, we can share the
term ABC� and obtain

F � A�B� � ABC� G � A�B � ABC�

(To emphasize the sharing, we have shown the shared term in green, and
will do that in other examples that follow.) As can be seen from the circuit
below, this only requires five gates with 11 inputs.

This example illustrates that a shared term in a minimum solution
need not be a prime implicant. (In Example 3.29, ABC� is a prime impli-
cant of F but not of G; in Example 3.30, we will use a term that is not a
prime implicant of either function.)

F(A, B, C) � �m(2, 3, 7) G(A, B, C) � �m(4, 5, 7)

In the first pair of maps, we solved this as two problems. Using essential
prime implicants of each function, we obtained

f � a�b � bc g � ab� � ac
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However, as can be seen in the second set of maps, we can share the term
abc, even though it is not a prime implicant of either function, and once
again get a solution that requires only five gates:

f � a�b � abc g � ab� � abc

The method for solving this type of problem is to begin by looking
at the 1’s of each function that are 0’s of the other function. They must be
covered by prime implicants of that function. Only the shared terms need
not be prime implicants. In this last example, we chose a�b for f since m2

makes that an essential prime implicant of F and we chose ab� for g since
m4 makes that an essential prime implicant of g. That left just one 1 un-
covered in each function—the same 1—which we covered with abc. We
will now look at some more complex examples.

F(A, B, C, D) � �m(4, 5, 6, 8, 12, 13)

G(A, B, C, D) � �m(0, 2, 5, 6, 7, 13, 14, 15)

The maps of these functions are shown below. In them, we have shown in
green the 1’s that are included in one function and not the other.

We then circled each of those prime implicants that was made essential by
a green 1. The only green 1 that was not circled in F is m4 because that can
be covered by two prime implicants. Even though one of the terms would
have fewer literals, we must wait. Next, we will use A�BD� for F. Since m6

was covered by an essential prime implicant of G, we are no longer looking
for a term to share. Thus, m6 will be covered in F by the prime implicant,
A�BD�. As shown on the maps below, that leaves m4 and m12 to be covered
in both functions, allowing us to share the term BC�D, as shown on the
following maps circled in green.
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leaving 

F � AC�D� � A�BD� � BC�D

G � A�B�D� � BC � BC�D

for a total of seven gates with 20 gate inputs. Notice that if we had mini-
mized the functions individually, we would have used two separate terms for
the third term in each expression, resulting in

F � AC�D� � A�BD� � BC�

G � A�B�D� � BC � BD

for a total of eight gates with 21 gate inputs. Clearly, the shared circuit costs
less.

The shared version of the circuit is shown below.

B
C�

GB

A�
B�
D�

C

D

A�
B
D�

A
C�
D�

F

00 01 11 10

00

01

11

10

A B
C D

1 1*1

1

1

F

1

00 01 11 10

00

01

11

10

A B
C D

1*

11 1*

1

G

1

11

3.6 Multiple Output Problems 167

mar65164_ch03A.qxd  12/2/03  12:39 PM  Page 167



F(A, B, C, D) � �m(0, 2, 3, 4, 6, 7, 10, 11)

G(A, B, C, D) � �m(0, 4, 8, 9, 10, 11, 12, 13)

Once again the maps are shown with the unshared 1’s in green and the
prime implicants made essential by one of those 1’s circled.

Each of the functions can be solved individually with two more groups of
four, producing

F � A�C � A�D� � B�C G � AC� � C�D� � AB�

That would require eight gates with 18 gate inputs. However, sharing the
groups of two as shown on the next set of maps reduces the number of
gates to six and the number of gate inputs to 16. If these functions were
implemented with NAND gates, the individual solutions would require a total
of three packages, whereas the shared solution would require only two.
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EXAMPLE 3.32
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leaving the equations and the resulting AND/OR circuit.

F � A�C � A�C�D� � AB�C G � AC� � A�C�D� � AB�C

F(W, X, Y, Z ) � �m(2, 3, 7, 9, 10, 11, 13)

G(W, X, Y, Z ) � �m(1, 5, 7, 9, 13, 14, 15)

On the maps below, the 1’s that are not shared are shown in green and the
essential prime implicants that cover these 1’s are circled.

F � X�Y � � � �

G � Y�Z � WXY � � � �

Now, there are three 1’s left in F. Since m9 and m13 have been covered in G
by an essential prime implicant, no sharing is possible for these terms in F.
Thus, WY�Z, a prime implicant of F, is used in the minimum cover. Finally,
there is one uncovered 1 in each function, m7; it can be covered by a shared
term, producing the solution
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F � X�Y � WY�Z � W�XYZ

G � Y�Z � WXY � W�XYZ

This requires seven gates and 20 inputs, compared to the solution we ob-
tain by considering these as separate problems

F � X�Y � WY�Z � W�YZ

G � Y�Z � WXY � XZ

which requires eight gates with 21 inputs.

The same techniques can be applied to problems with three or more
outputs. 

First, we show the solution obtained if we considered them as three sepa-
rate problems.
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F � AB� � BD � B�C

G � C � A�BD

H � BC � AB�C� � (ABD or AC�D)

This solution requires 10 gates and 25 gate inputs. (Note that the term C in
function G does not require an AND gate.)

EXAMPLE 3.34
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The technique of first finding 1’s that are only minterms of one of the
functions does not get us started for this example, since each of the 1’s is a
minterm of at least two of the functions. The starting point, instead, is to
choose C for function G. The product term with only one literal does not re-
quire an AND gate and uses only one input to the OR gate. Any other solu-
tion, say sharing B�C with F and BC with H, requires at least two inputs to
the OR gate. Once we have made that choice, however, we must then
choose B�C for F and BC for H, because of the 1’s shown in green on the
following maps. There is no longer any sharing possible for those 1’s and
they make those prime implicants essential in F and H. 
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The term AB�C� (circled in light green) was chosen next for H since it is an
essential prime implicant of H and it can be shared (that is, all of the 1’s in
that term are also 1’s of F, the only place where sharing is possible). AB�C�

is also used for F, since it covers two 1’s and we would otherwise require an
additional term, AB�, to cover m8. In a similar fashion, the term A�BD is used
for G (it is the only way to cover m5) and can then be shared with F. Finally,
we can finish covering F and H with ABD (a prime implicant of H, one of the
choices for covering H when we treated that as a separate problem). It
would be used also for F, rather than using another AND gate to create the
prime implicant BD. The solution then becomes

F � B�C � AB�C� � A�BD � ABD

G � C � A�BD

H � BC � AB�C� � ABD

which requires only eight gates and 22 gate inputs (a savings of two gates
and three-gate inputs).

F(A, B, C, D) � �m(0, 2, 6, 10, 11, 14, 15)

G(A, B, C, D) � �m(0, 3, 6, 7, 8, 9, 12, 13, 14, 15)

H(A, B, C, D) � �m(0, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15)

The map on the next page shows these functions; the only 1 that is not
shared and makes a prime implicant essential is m9 in G. That prime
implicant, AC�, is shown circled. 
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Next, we note that AC is an essential prime implicant of F (because of m11

and m15) and of H (because of m10). Furthermore, neither m10 nor m11 are
1’s of G. Thus, that term is used for both F and H. Next, we chose BC� for
H and BC for G; each covers four new 1’s, some of which can no longer be
shared (since the 1’s that correspond to other functions have already been
covered). 

172 Chapter 3 The Karnaugh Map

At this point, we can see that A�B�C�D� can be used to cover m0 in all three
functions; otherwise, we would need three different three-literal terms.
A�CD can be used for G and H, and, finally, CD� is used for F, producing the
following map and algebraic functions. 
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F � AC � A�B�C�D� � CD�

G � AC� � BC � A�B�C�D� � A�CD

H � AC � BC� � A�B�C�D� � A�CD

This solution requires 10 gates with 28 inputs, compared to 13 gates and
35 inputs if these were implemented separately.

Finally, we will consider an example of a system with don’t cares:

F(A, B, C, D) � �m(2, 3, 4, 6, 9, 11, 12) � �d(0, 1, 14, 15)

G(A, B, C, D) � �m(2, 6, 10, 11, 12) � �d(0, 1, 14, 15)

A map of the functions, with the only prime implicant made essential by a 1
that is not shared circled, B�D, is shown below.

Since m11 has now been covered in F, we must use the essential prime im-
plicant of G, AC, to cover m11 there. Also, as shown on the next maps,
ABD� is used for G, since that is an essential prime implicant of G and the
whole term can be shared. (We will share it in the best solution.)

Since we need the term ABD� for G, one approach is to use it for F also.
(That only costs a gate input to the OR gate.) If we do that, we could cover
the rest of F with A�D� and the rest of G with CD�, yielding the map and
equations that follow.
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F � B�D � ABD� � A�D�

G � AC � ABD� � CD�

That solution uses seven gates and 17 inputs. Another solution using the
same number of gates but one more input shares A�CD�. That completes G
and then the cover of F is completed with BD�. The maps and equations are
thus:

F � B�D � A�CD� � BD�

G � AC � ABD� � A�CD�

That, too, requires seven gates, but using a three-input AND gate instead of
a two-input one, bringing the total number of inputs to 18.

3.7 SOLVED PROBLEMS
1. For each of the following, find all minimum sum of products

expressions. (If there is more than one solution, the number of
solutions is given in parentheses.)

a. G(X, Y, Z) � �m(1, 2, 3, 4, 6, 7)

b. f(w, x, y, z) � �m(2, 5, 7, 8, 10, 12, 13, 15)
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