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Chapter 12

Modal Logic

Modal logic is the logic of necessity and possibility. The name “modal logic”
stems from the fact that necessity and possibility have traditionally been
regarded as modes of truth (or ways of being true). For example, some proposi-
tions, such as “All triangles have three sides,” are traditionally regarded as neces-
sarily true. Others, such as “Socrates was married to Xanthippe,” are traditionally
regarded as true but not necessarily true. We will explore these modes of truth in
section 12.1.

Modal logic has many interesting applications, especially in regard to
philosophical issues. For example, here is a modal version of Saint Anselm’s
famous ontological argument for the existence of God:

If God exists, then God is a Supremely Perfect Being. If God is a Supremely Perfect
Being, then it is impossible that God not exist. It is logically possible that God
exists. So, God exists.

Is this argument valid? We will examine it closely in section 12.5. Modal logic
has been developed in order to determine the validity of arguments such as this,
whose forms make essential use of modal concepts.

Aristotle was the first philosopher to discuss the logical relationships
between necessity and possibility. For example, in his De Interpretatione, Aris-
totle identified the following equivalences:1

“It is impossible that p” is logically equivalent to “It is necessary that not p.” (For
example, “It is impossible that circular squares exist” is logically equivalent to “It is
necessary that circular squares do not exist.”)

“It is not possible that not p” is logically equivalent to “It is necessary that p.” (For
example, “It is not possible that not every square is a rectangle” is equivalent to
“Necessarily, every square is a rectangle.”)



However, modal logic did not become highly developed until the 20th century.
An American logician, C. I. Lewis (1883–1964), was dissatisfied with the so-
called paradoxes of material implication. In symbols, they look like this:

p → (q → p)
�p → (p → q)

Both of these formulas are tautologies of statement logic. The first formula says
(in effect) that a conditional is true if its consequent is true. The second formula
says (in effect) that a conditional is true if its antecedent is false. These tautolo-
gies indicate that the material conditional is not very close to the ordinary
English “if-then.” Lewis wanted to capture the idea of a necessary connection
between antecedent and consequent that frequently occurs in philosophical dis-
course—for example, “Necessarily, if I think, then I exist.” In working his ideas
out, Lewis made dramatic advances in modal logic. In this chapter, we will see
how to develop a system of modal logic by adding to the system of statement
logic developed in chapters 7 and 8.

12.1 Modal Concepts

Let us begin our exploration of the basic concepts of modal logic with an exam-
ination of the concept of a necessary truth. A necessary truth is one that cannot
be false under any possible circumstances. Here are some standard examples:

1. Either trees exist or it is not the case that trees exist.

2. One plus one equals two.

3. All cats are cats.

4. All husbands are married.

5. If Sue is older than Tom, then Tom is not older than Sue.

6. Nothing is red all over and blue all over at the same time.

7. No prime minister is a prime number.2

These examples fall into certain significant categories. Item (1) is a tautology of
statement logic. Recall that a tautology is a statement that is true in every row of
its truth table.3

Item (2) is a mathematical truth. Since it does not seem possible for math-
ematical truths to be false, many philosophers regard all mathematical truths as
necessary ones.

Items (3) and (4) are examples of what philosophers call analytic state-
ments. Definitions of the term “analytic” vary, but it will be adequate for present
purposes to say that an analytic statement is one that is either (a) true by virtue
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of its logical form or (b) transformable into a statement that is true by virtue of
its logical form by replacing synonyms with synonyms.4 Item (3) has the form
“All A are A,” and since it is not possible for statements of this form to be false,
(3) is a necessary truth. As for (4), since the word “husbands” means “married
men,” we can transform (4) into “All married men are married.” Thus, upon
analyzing (4), we can see that it has the form “All AB are A.” And because
statements having this form cannot be false, (4) is necessary.

Items (5) through (7) are not so easily categorized. They do not seem to be
analytic. A statement that is not analytic is said to be synthetic. But while (5),
(6), and (7) are apparently synthetic, many philosophers believe that it is impos-
sible for such statements to be false. In this view, (5), (6), and (7) are synthetic
yet necessary. It must be admitted, however, that many philosophers are skepti-
cal about the thesis that there are synthetic necessary truths. However, because
this issue is very complicated, we cannot explore it here.

We noted previously that a necessary truth is one that cannot be false in
any possible circumstances. What exactly is meant by a “possible circumstance”?
We have been making use of this concept throughout this book, for we noted
early on that if we can describe a situation or circumstance in which the conclu-
sion of an argument is false while its premises are true, then we have demon-
strated that the argument is invalid. For instance:

8. Someone is rich. So, Bill Gates (of Microsoft) is rich.

This argument is invalid, though both its premise and its conclusion are true.
We can demonstrate the invalidity by describing a possible circumstance in
which the premise is true while the conclusion is false. For example, here is a
possible circumstance: “Bill Gates donates his entire fortune, every last penny, to
charitable causes, freely choosing to live in poverty, but at least one other person
who is currently rich remains so.” In such a circumstance, the premise of (8) is
true, but the conclusion is false.

A possible circumstance is a way things could (or might) have been. In ordi-
nary life, we often make use of a distinction between how things are and how they
could (or might) have been. For example, consider what happens when one makes
a decision with far-reaching consequences. One may look back on the decision
and realize that one’s present circumstances could have been different because
one’s decision could have been different. Philosophers have attempted to ana-
lyze talk about “the way things could have been” in terms of the technical con-
cept of possible worlds. So, before going further, we need to clarify the concept
of a possible world.

A possible world is a total way things could have been. To get at this con-
cept, let us begin with the actual world. As philosophers use this expression, the
“actual world” is not merely the planet Earth, but the complete situation we find
ourselves in—the entire universe (including all the stars and galaxies, subatomic
particles, and their movements), every person, every object, and all events (past,
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present, and future). Moreover, as philosophers use the phrase, the “actual world”
is one of many possible worlds. We can clarify the idea of possible worlds by con-
sidering some ways in which the actual world could have been different from
what it is.

Let’s start with a trivial case. Yesterday, January 29, 1998, I wore a blue tie
all day. I might have chosen a different tie, say, a red one, but I didn’t. So, the
actual world includes the following circumstance or state of affairs: my wearing a
blue tie all day on January 29, 1998. And we can say that there is a possible world
that is exactly like the actual world except that on January 29, 1998, I wear a red
tie instead of a blue one. Of course, that possible world is not the actual world,
but it is a (total) way things could have been, a comprehensive situation.

Once you grasp the idea of a possible world, you can see that there are lots
of them, for the actual world might have gone differently in all sorts of ways. For
instance, it seems possible that some or even all of the persons who do exist
might not have. Suppose my parents had never met, but instead had died of a
childhood disease. Then, presumably, I would not exist. So, there is a possible
world in which I do not exist. Consider another example: In the actual world,
Bill Clinton was president of the United States in January 1998, but we can
describe a possible world in which this is not so—for example, one in which
Clinton resigned from office in December 1997. Likewise, we can conceive of a
possible world in which airplanes were never invented or in which the Allies
lost World War II. Perhaps we can even conceive of a possible world in which a
large asteroid struck the earth in 1850, destroying the entire human race.

There are, in fact, infinitely many possible worlds. To see this, consider the
case of Harvey, the sentimental mathematician. There is a possible world in
which Harvey’s favorite number is the number 1. In that world, Harvey is very
fond of the number 1, thinks of it often, and frequently extols it to others. But,
there is also a possible world in which Harvey’s favorite number is the number 2,
a possible world in which Harvey’s favorite number is the number 3, and so on.
Clearly, there are infinitely many possible worlds.

Because possible worlds are total ways things could have been, only one
possible world can be actual. Think of it this way. A complete description of a
possible world would be a list of statements that express all of what is true (and
only what is true) in that world.5 Now, take any two possible worlds (call them
W1 and W2). Since these are different possible worlds, and a possible world is a
comprehensive situation, there must be something true in one of these worlds
that is not true in the other. For instance, suppose W1 and W2 are exactly alike,
except that in W1 you are presently wearing a purple hat while in W2 you are
not presently wearing a purple hat. Thus, if W1 and W2 are both actual, you are
presently wearing a purple hat and yet not wearing a purple hat, which is a con-
tradiction. Obviously, then, at most one of these worlds is actual.

Now that we have the concept of a possible world, we have an alternative
way of defining “necessary truth.” A necessary truth is one that is true in every

454 Modal Logic



possible world. And as we will see, this way of characterizing necessary truths has
a number of advantages. But before proceeding further, we need to clarify the
concept of a necessary truth by distinguishing it from some other concepts with
which it is often confused.

First, a “necessary truth,” as we have defined the term, is often said to be
logically necessary as opposed to physically necessary. We can get at the concept
of a physically necessary truth as follows. Many possible worlds have the same
laws of nature (e.g., the law of gravity) as the actual world. Certain truths are
true in all of these worlds. For example:

9. Each physical object is attracted to every other with a force varying as the
product of the masses of the objects and inversely as the square of the distance
between them. (Newton’s law of gravitation)

10. Nothing travels faster than the speed of light.

Statements (9) and (10) are physically necessary truths. But because the laws of
nature could have been different than they in fact are, physically necessary
truths are not necessary in our sense. Remember, a logically necessary truth is
one that is true in every possible world. And there are logically possible worlds in
which physical objects behave in accordance with a slightly different law of
gravity than they do in the actual world. There are also logically possible worlds
in which something travels just a bit faster than the speed of light. Our interest
is in logically necessary truths, which are true in every possible world, not in
physically necessary truths, which are false in some possible worlds.

Second, a necessary truth is not the same thing as an unalterable truth. To
illustrate:

11. John Wilkes Booth killed Abraham Lincoln.

Statement (11) seems to be unalterably true at this time. It cannot become false
at this late date assuming that the past cannot be changed. But (11) is not a nec-
essary truth, for there is surely a logically possible world in which Booth refrains
from killing Lincoln. Booth did not act under logical necessity.

Third, the concept of a necessary truth is not identical to the concept of a
self-evident statement. A statement is self-evident if one can know that it is true
simply by grasping the concepts involved. Now, typical examples of self-evident
statements do seem to be necessary. For instance:

12. No circles are squares.

But some necessary truths seem to be too complicated to be known in this way.
Consider, for example, Goldbach’s conjecture:

13. Every even number greater than 2 is equal to the sum of two prime numbers.
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Since Goldbach’s conjecture is a mathematical proposition, either it or its nega-
tion is presumably necessary. But neither Goldbach’s conjecture nor its negation
is obviously true. Moreover, neither Goldbach’s conjecture nor its negation has
been proved by mathematicians. So, neither Goldbach’s conjecture nor its nega-
tion appears to be self-evident. Thus, we cannot equate necessary truths with
self-evident truths.

Fourth, a necessary truth is not the same thing as an “un-give-up-able”
statement, that is, a statement that cannot be given up. The American philoso-
pher and logician Willard van Orman Quine (1908– ) has decried the distinc-
tion between the necessary and the contingent. According to Quine, the truth is
simply that there are some statements we would be very reluctant to give up
(i.e., to stop believing) and others we would more readily give up. In other
words, there are merely degrees of “un-give-up-ability,” and there are no neces-
sary truths at all. But consider the following argument:

Clearly we cannot equate relative “ungiveupability” with necessity. . . . For a belief
may be ungiveupable for reasons that have nothing to do with its truth, and are
unrelated to the necessity of its truth. A belief may be a guiding belief for a person’s
life to such an extent that the person may be psychologically incapable of giving it
up. Or I may find the belief that I exist ungiveupable, but its “ungiveupability” has
nothing to do with the necessity of its truth.6

Thus, to say that a statement is un-give-up-able is to make a psychological claim,
namely, that the person who believes it is psychologically incapable of ceasing to
believe it. And this psychological concept is very different from the concept of a
necessary truth, that is, the concept of a proposition that is true in every possible
world.*

In thinking about necessary truths, we are led back to the distinction
between statements and propositions, which we discussed briefly in section 4.1.
We have said that a necessary truth cannot be false under any possible circum-
stances. But you may be thinking that linguistic meaning is changeable, and
hence that there are possible worlds in which people speak the truth when they
say, for example, “Some circles are squares.” After all, there are possible worlds in
which the word “circles” is synonymous with “rectangle” (as that word is cur-
rently used by English speakers). But this line of thinking is deeply flawed,
because it confuses sentences with the propositions (truths or falsehoods) those
sentences express. In ordinary usage, the English sentence “No circles are
squares” expresses a necessary truth. But if the words composing the sentence
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were to change meaning, we would need to use a different sentence to express
that same truth. So, to avoid confusion, we will make free use of the word
“proposition” for the remainder of this chapter. A proposition is simply a truth
or a falsehood. A given proposition may or may not be expressed in a sentence.
And whereas a sentence (and hence a statement) belongs to a particular lan-
guage, such as English or German, a proposition does not.

It may be helpful to depict possible worlds as circles for the sake of illustra-
tion. Let us label the actual world A and label two other possible worlds B and
C. And, just for the sake of illustration, let us pretend that these three worlds are
all of the possible worlds. (Of course, as we have already seen, there are in fact
many more possible worlds.) The symbol P(T), when placed in a circle, means
that P is true in that world. For example:

This diagram says that P is true in A (the actual world). Similarly, the symbol
P(F), when placed in a circle, means that P is false in that world. Where the sym-
bol P(?) appears, the question mark may be replaced with either a “T” or an “F”
(as needed). Now, we can make a kind of picture of a necessary truth P as follows:

The diagram tells us that P is true in every possible world.
With the concept of a necessary truth in hand, we can readily characterize

the other important modal concepts. For instance, a proposition is impossible if
and only if it is necessarily false. Here is an example:

14. Some squares are triangles.

An impossible proposition is false in every possible world. We can depict an
impossible proposition P as follows.

A

P (F) P (F) P (F)

B C

A

P (T) P (T) P (T)

B C

A

P (T)

B C
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The diagram says that P is false in every possible world.
A proposition is possible, or possibly true, if and only if it is not necessarily

false. By this definition, whatever is true is possibly true. Necessary truths also
count as possibly true, since they are not necessarily false. In addition, many
falsehoods are possibly true, such as this one:

15. Johannesburg, South Africa, is the most highly populated city in the world.

Possibly true propositions are true in at least one possible world. We can depict a
generic possibly true proposition P as follows:

The diagram indicates that P is true in at least one possible world. Here, we
made P true in world B, but of course, P is possibly true as long as P is true in at
least one possible world, and that world need not be world B. So, our diagram is
perhaps slightly misleading. The question marks may be replaced with either a
“T” or an “F,” depending on the proposition under consideration. For instance, if
P is true in the actual world, then we replace the question mark with a “T” in
world A.

A further clarification about possibly true propositions is needed. In saying
that a proposition is possibly true, we are not saying that for all we know it is true.
Philosophers say that a proposition is epistemically possible if it is not known to
be false given the information currently available. (Epistemology is the branch
of philosophy that concerns the theory of knowledge.) Consider again proposi-
tion (15). It is not epistemically possible, for we know it is false. Nevertheless,
(15) is logically possible, for the following proposition is not a necessary false-
hood: During the 20th century, Johannesburg grew steadily until it had a larger
population than any other city in the world.

A proposition is possibly false if and only if it is not necessarily true. Possi-
bly false propositions are false in at least one possible world. All false propositions
(including necessarily false ones) are possibly false. But many true propositions
are possibly false as well. For instance:

16. Pierre and Marie Curie discovered radium.

Although the Curies did discover radium, they might not have. For example,
because their research was difficult and took a long time, they might easily have
given up. We can depict a generic possibly false proposition P as follows:

A

P (?) P (T) P (?)

B C
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The diagram indicates that P is false in at least one world. Again, the question
marks can be replaced by a “T” or an “F,” depending on the proposition under
consideration.

A proposition is contingent if and only if it is both possibly true and possi-
bly false. For example, the following proposition is contingent:

17. I exist.

Since proposition (17) is actually true, it is possibly true. But it is also possibly
false, for if a certain egg–sperm pair had never united, I presumably would not
exist. And many things could have prevented that egg–sperm pair from uniting.
If a proposition is contingent, then it is true in at least one possible world and
false in at least one possible world. We can depict a generic contingent proposi-
tion P as follows:

Note that a contingent proposition may or may not be true in the actual world.
A proposition is a contingent truth if and only if it is true but possibly false.

In other words, a contingent truth is true in the actual world but false in at least
one possible world. For instance:

18. Socrates died as a result of drinking hemlock.

Socrates did die as a result of drinking hemlock, but he might not have. For
example, he might have escaped from prison, or he might simply have refused to
drink the hemlock (in which case the Athenians would probably have executed
him in some other way). We can depict a generic contingent truth P as follows:

A

P (T) P (F) P (?)

B C

A

P (?) P (T) P (F)

B C

A

P (?) P (F) P (?)

B C
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Note that a contingent truth is true in world A, the actual world.
Finally, a proposition is a contingent falsehood if and only if it is false but

possibly true. For example:

19. Socrates died of smallpox.

A contingent falsehood is false in the actual world but true in at least one pos-
sible world. We can picture a generic contingent falsehood P as follows:

Note that a contingent falsehood is false in world A, the actual world.
Complete the following exercises to check your understanding of the basic

modal concepts.

Exercise 12.1
Part A: True or False? Which of the following statements are true? Which are false?

* 1. A contingent truth is defined as a proposition that is true in some possible worlds but
false in others.

2. A proposition is possibly true if and only if it is true in at least one possible world.

3. The planet Saturn is an example of a possible world.

* 4. The actual world is not a possible world.

5. A necessary truth is one that cannot be false under any possible circumstances.

6. Every necessary truth is possibly true.

* 7. Every possibly true proposition is either a necessary truth or a contingent truth.

8. A proposition is possibly true if and only if it is true in the actual world.

9. A contingent proposition is true in at least one possible world and false in at least one
possible world.

* 10. A necessary truth is one that is true in every possible world.

11. If a proposition is possibly true, then it is not known to be false given the informa-
tion currently available.

12. A proposition is contingently false if it is false in the actual world but true in at least
one possible world.

* 13. Every contingent proposition is false.

14. If P is a contingent truth, then there is a possible world in which its negation is true.

15. An impossible proposition is one that is necessarily false.

A

P (F) P (T) P (?)

B C
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* 16. A necessarily false proposition is one that is false in every possible world.

17. If a proposition is true in some possible worlds but false in others, then it must be a
contingent truth.

18. If an argument is valid, then its conclusion is true in every possible world in which
its premises are true.

* 19. If an argument is invalid, then there is at least one possible world in which its
premises are true while its conclusion is false.

20. An analytic statement is one that is true by virtue of its form.

Part B: Identifying Modalities Which of the following propositions are necessary?
Contingent? Impossible? If a statement is contingent, also indicate its actual truth value if
you can.

* 1. Chairs exist.

2. All uncles are male.

3. Five plus five equals fifty-five.

* 4. One plus one equals two and the Eiffel Tower is in France.

5. �A → (A → B)

6. Benjamin Franklin was the third president of the United States.

* 7. The French artist Rodin once made a bronze sculpture that was a spherical cube.

8. Either grass is green or it is not the case that grass is green.

9. A → (A → B)

* 10. Abraham Lincoln was never president of the United States.

11. �(P ↔P)

12. John F. Kennedy was assassinated by Lee Harvey Oswald, but Kennedy did not die.

* 13. Either two plus two equals four or two plus two equals five.

14. Two plus two equals twenty-two and there are some trees.

15. Either two equals three or two equals four.

* 16. No human has ever set foot on Neptune.

17. Two plus three equals five and seven plus five equals twelve.

18. Some people enjoy rock music.

* 19. There is at least one aunt who has neither a niece nor a nephew.

20. Alaska was the 49th state to join the United States.

12.2 The Modal Symbols

As noted previously, we can develop a system of modal logic by adding to the
system of statement logic developed in chapters 7 and 8. We will use the symbol
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“�” (called the “box” or “necessity operator”) to stand for “necessarily.” Thus,
“�p” means “necessarily, p.” To illustrate:

20. Necessarily, all sisters are siblings. (S: All sisters are siblings)
In symbols: �S

The box can be combined with the tilde. We can say that p is not a necessary
truth in this way: ��p. For instance:

21. It is not necessarily true that dogs exist. (D: Dogs exist)
In symbols: ��D

Notice that care must be taken with the placement of the tilde, for we symbolize
“p is a necessary falsehood” as ��p. For example:

22. It is necessarily false that two plus two equals five. (T: Two plus two equals five)
In symbols: ��T

We will use the symbol “�” (called the “diamond” or “possibility opera-
tor”) to stand for “possibly.” To illustrate:

23. Possibly, Sue is lying. (S: Sue is lying)
In symbols: �S

We can say that p is logically impossible using the diamond and a tilde: ��p. For
instance:

24. It is logically impossible that zero equals one. (Z: Zero equals one)

In symbols: ��Z
Again, care must be taken regarding the placement of the tilde. Consider the
following:

25. It is logically possible that Oswald did not kill Kennedy. (K: Oswald killed
Kennedy)
In symbols: ��K

Using our symbols we can write “p is contingent” as �p • ��p. In other
words, to say that a proposition is contingent is to say that it is logically possible
that it is true and logically possible that it is false. For example:

26. ”Augusta is the capital of Maine” is a contingent statement. (A: Augusta is the
capital of Maine)
In symbols: �A • ��A

We can symbolize “p is a contingent truth” as p • ��p or as p • ��p. For
instance:

27. It is a contingent truth that Columbus is the capital of Ohio. (C: Columbus is the
capital of Ohio)
In symbols: C • ��C
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We could also symbolize (27) as C • ��C.
We can symbolize “p is a contingent falsehood” as �p • �p. To illustrate:

28. It is contingently false that Dayton is the capital of Ohio. (D: Dayton is the
capital of Ohio)
In symbols: �D • �D

We use parentheses to indicate the scope of the modal operators, just as we
use parentheses to indicate the scope of the tilde (or the quantifiers in predicate
logic). To see the need for this, compare the following statements:

29. Necessarily, both nine is an odd number and there are nine planets in our solar
system. (N: Nine is a odd number; P: There are nine planets in our solar system)
In symbols: � (N • P)

30. Necessarily, nine is an odd number, and furthermore there are nine planets in
our solar system.
In symbols: �N • P

Statements (29) and (30) are not logically equivalent. (29) says that the con-
junction N • P is necessarily true. But a conjunction is necessary if and only if
both its conjuncts are necessary. (If even one conjunct is not necessary, then
there are worlds in which it is false, and in those worlds the conjunction itself is
also false.) Moreover, it is not a necessary truth that there are nine planets in our
solar system—there might have been more planets or fewer. So, (29) is false.
(30), on the other hand, says that N (“Nine is an odd number”) is necessary, but
that P (“There are nine planets in our solar system”) is true. Thus, (30) is a more
cautious statement, and indeed a true one.

The main point here is that parentheses are needed to indicate the scope
of the modal operators, and a shift in the placement of parentheses can change
the meaning substantially. For example, just as �(A ∨ B) differs in meaning
from �A ∨ B or from �A ∨ �B, so �(A ∨ B) differs in meaning from �A ∨ B
or from �A ∨ �B. The general rule is that logical operators, such as the box
and diamond, apply to the smallest immediately-following component that the
punctuation permits. Thus, in the formula �(P → Q) • R, the diamond applies
only to P → Q; its scope does not extend to R.

It is important to understand that the modal operators are not truth-
functional operators; that is, the meaning of the modal operators cannot be spec-
ified via truth tables. If the box and the diamond were truth-functional, then
we could simply develop truth tables for them and set about evaluating argu-
ments. Let’s see what happens when we try to develop truth tables for the box
and diamond.

p � p 

T
F

?
F
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If p is false, then of course �p is false. A proposition cannot be both false and
necessarily true. But if we assume that p is true, we do not have enough informa-
tion to determine that p is necessary. If p is merely a contingent truth, then �p
is false; but if p is a necessary truth, then �p is true. So, the box is not truth-
functional.

Now, let’s consider the diamond. Is it truth-functional?

If p is true, then of course p is possibly true. But suppose p is false. What is the
truth value of �p? It may be either true or false, depending on the proposition in
question. If p is impossible, then �p is false; if p is contingently false, then �p is
true. So, the diamond is not truth-functional.

Truth tables give us the meaning of the tilde, dot, vee, arrow, and double-
arrow. But as we have just seen, truth tables cannot give us the meaning for the
box and the diamond. Following the work of Saul Kripke, who developed a the-
ory of meaning (or semantics) for modal logic in the late 1950s, we will assign
meaning to the box and diamond in terms of possible worlds. �p is true in a
given possible world if and only if p is true in every possible world. And �p is true
in a given possible world if and only if p is true in at least one possible world.

The following exercises will give you practice using the new symbols intro-
duced in this section.

Exercise 12.2

Part A: Symbolizing Express the following statements in symbols, using G to abbrevi-
ate “God exists.”

* 1. It is logically possible that God exists.

2. Necessarily, God does not exist.

3. God exists, but “God exists” is not a necessary truth.

* 4. It is impossible that God does not exist.

5. It is logically possible that God exists, but in fact God does not exist.

6. “God exists” is a contingent truth.

* 7. “God exists” is a contingent proposition.

8. “God exists” is contingently false.

9. “God exists” is necessarily false.

* 10. “God exists” is either necessary or impossible.

p �p 

T
F

T
?
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11. There is at least one possible world in which God exists.

12. God exists in every possible world.

* 13. There is no possible world in which God exists.

14. God exists in at least one possible world, but not in every possible world.

15. Either God exists in every possible world or God does not exist in the actual world.

Part B: More Symbolizing Express the following statements in symbols, using the
schemes of abbreviation provided.

* 1. It is a contingent truth that Lincoln was the 16th president of the United States.
(L: Lincoln was the 16th president of the U.S.)

2. “I exist” is a contingent proposition. (X: I exist)

3. It is necessarily false that Susan is a wife who is not married. (W: Susan is a wife;
M: Susan is married)

* 4. George Washington was the first president of the United States, but it is logically
possible that Benjamin Franklin was the first president of the United States.
(G: George Washington was the first president of the United States; B: Benjamin
Franklin was the first president of the United States)

5. It is impossible that if demons are invisible, then my wristwatch is inhabited by
blue demons. (I: Demons are invisible; B: My wristwatch is inhabited by blue
demons.)

6. It is a necessary truth that either it is raining or it is not raining. (R: It is raining)

* 7. Santa Claus does not exist, but it is logically possible that he does. (S: Santa Claus
exists)

8. Either Goldbach’s conjecture is necessarily true or its negation is necessarily true.
(G: Goldbach’s conjecture, that is, every even number greater than 2 is equal to
the sum of two prime numbers)

9. Necessarily, if Jane is married, then Jane has a spouse. (M: Jane is married; S: Jane
has a spouse)

* 10. It is a contingent truth that Rudolph is both red-nosed and a reindeer. (R: Rudolph
is red-nosed; D: Rudolph is a reindeer)

11. Necessarily, both six and eight are divisible by two. (S: Six is divisible by two;
E: Eight is divisible by two)

12. Possibly, Seattle is the capital of Washington, but as a matter of fact, Seattle is not
the capital of Washington. (S: Seattle is the capital of Washington)

* 13. It is logically possible that if Kyle surfs on a tidal wave, then he surfs from Califor-
nia to Hawaii. (T: Kyle surfs on a tidal wave; C: Kyle surfs from California to
Hawaii)

14. It is possible that Joan wins, but it is impossible that both Joan and Marsha win.
(J: Joan wins; M: Marsha wins)
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15. If it is necessary that five is odd, then it is necessary that six is even. (F: Five is odd;
S: Six is even)

* 16. There is a possible world in which humans have ESP, but in the actual world,
humans do not have ESP. (H: Humans have ESP)

17. One plus one equals two in every possible world, and one plus one equals eleven in
no possible world. (O: One plus one equals two; E: One plus one equals eleven)

18. There is at least one possible world in which you win an Olympic gold medal and
at least one possible world in which you do not win an Olympic gold medal.
(Y: You win an Olympic gold medal)

* 19. There is a possible world in which every trapezoid is blue, but there is no possible
world in which some trapezoid is a triangle. (B: Every trapezoid is blue; T: Some
trapezoid is a triangle)

20. Although poverty exists in the actual world, it does not exist in every possible
world. (P: Poverty exists)

12.3 Constructing Proofs

In this section, we introduce our first set of inference rules for modal logic.7

Because we are building on the system of statement logic developed in chapter 8,
all the rules of statement logic from chapter 8 may be used in proofs throughout
this chapter. For reasons mentioned previously, however, we now assume that
these rules apply to propositions (truths and falsehoods), as well as to statements
(sentences having truth value).

If a proposition is necessarily true, then it is true. In other words, if a
proposition is true in every possible world, then it is true in the actual world.
This obvious principle gives us our first rule of modal logic, necesse ad esse
(NE). Using the lowercase, italicized p to stand for any proposition, the rule may
be stated as follows:

�p
∴ p

Literally translated, necesse ad esse means “from being necessary to being.” Here
is an English example:

31. Necessarily, no immaterial soul weighs 40 pounds. So, no immaterial soul
weighs 40 pounds. (S: No immaterial soul weighs 40 pounds)

In symbols, the proof looks like this:

1. �S ∴ S
2. S 1, NE
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Note that NE is an implicational rule, not an equivalence rule. Accordingly, it
may not be applied to part of a line in a proof; rather, it must be applied to an
entire line. For example, the following inference is not permitted:

1. ��P
2. �P 1, incorrect use of NE

This is like arguing, “It is not necessarily true that I exist. Therefore, I do not
exist.” Since the premise is true but the conclusion is false, this argument is
invalid. (The premise says that I do not exist in every possible world or, in other
words, that there is at least one possible world in which I do not exist. But the
conclusion says that I do not exist in the actual world.)

If a proposition is actually true, then it is possibly true. In other words, if a
proposition is true in the actual world, then it is true in at least one possible
world. (Remember, the actual world is a possible world.) This obvious principle
gives us our second rule of modal logic, esse ad posse (EP):

p
∴ �p

Literally translated, esse ad posse means “from being to being possible.” Here is an
English example:

32. Some bachelors are party animals. So, it is logically possible that some
bachelors are party animals. (B: Some bachelors are party animals)

The proof runs as follows:

1. B ∴ �B
2. �B 1, EP

Note that EP is an implicational rule. As such, it must be applied to whole lines
in a proof, and not to parts of lines. For example, the following inference is not
permitted:

1. C → M
2. �C → M 1, incorrect use of EP

This is like arguing, “If Demi Moore is a wife, then she is married. So, if it is pos-
sible that Demi Moore is a wife, then she is married.” Again, the invalidity is
obvious. The premise is true in every possible world. But the conclusion is false in
those worlds in which Demi Moore is not married (although she could be a wife).

Our next inference rule is based on the principle that every theorem
of (nonmodal) statement logic is necessarily true. A theorem is a statement that can
be proved without any premises. Furthermore, every theorem of (nonmodal)
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statement logic is a tautology, and every such tautology is a theorem. (A tautol-
ogy is a statement that is true in every row of its truth table.) Since it is impossi-
ble to assign truth values in such a way as to make tautologies or theorems false,
they are true in every possible world. Our third inference rule, theorem necessi-
tation (TN), may be formulated as follows:

p (derived without using any premises)
∴ �p

Here is a proof that involves TN:

Note that we arrive at line (4) without using any premises. Here is another
example of the use of TN:

Here, we first prove the theorem, P ∨ �P, without using any premises. Then we
apply TN. Finally, we use line (5) together with the premise to obtain line (6),
by MP.

Our fourth rule, modal operator negation (MN), is an equivalence rule. To
understand this rule, consider the following pair of propositions:

33. Possibly, my shirt is green. (G: My shirt is green)
In symbols: �G

34. It is not necessarily true that my shirt is not green.
In symbols: ���G

Proposition (33) says that there is a possible world in which my shirt is green.
That being so, the proposition “My shirt is not green” is not true in every possible
world. In other words, if (33) is true, then (34) must be true. Similarly, if (34) is
true, then (33) must be true, for if “My shirt is not green” is not true in every pos-
sible world, then “My shirt is green” is true in at least one possible world. Reflec-
tions of this sort should render the following equivalence rule intuitive:

1. � (P ∨ �P) → �Q ∴ �Q
2. �(P ∨ �P) Assume
3. �P • ��P 2, DeM
4. P ∨ �P 2–3, RAA
5. � (P ∨ �P) 4, TN
6. �Q 5, 1, MP

∴ � [A → (�B ∨ A)]
1. A Assume
2. A ∨ �B 1, Add
3. �B ∨ A 2, Com
4. A → (�B ∨ A) 1–3, CP
5. � [A → (�B ∨ A)] 4, TN
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�p : : ���p

The four-dot symbol tells us that �p implies ���p and also that ���p
implies �p. This is the first form of modal operator negation (MN). MN comes
in four forms. To understand the second form, consider the following pair of
propositions:

35. Necessarily, red is a color. (R: Red is a color)
In symbols: �R

36. It is not possible that red is not a color.
In symbols: ���R

Proposition (35) tells us that “Red is a color” is true in every possible world. (36)
tells us that there is no possible world in which “Red is not a color” is true. It
should be clear that each of these propositions implies the other. Our second
form of MN is as follows:

�p : : ���p

We can grasp the third form of MN by reflecting on the following pair of
propositions:

37. It is not necessarily true that I exist. (X: I exist)
In symbols: ��X

38. It is logically possible that I do not exist.
In symbols: ��X

Proposition (37) tells us that “I exist” is not true in every possible world. And
(38) tells us that there is at least one possible world in which “I do not exist” is
true. Again, it should be obvious that each of these propositions implies the
other. Stated formally, the third form of MN looks like this:

��p : : ��p

It may be helpful to note that there is an analogy here between the behavior of
the box and diamond and the behavior of universal and existential quantifiers.
Recall that the QN rule lets us move from �(x)Fx to (∃x)�Fx, and vice versa.
Similarly, MN lets us move from ��A to ��A, and vice versa.

The fourth form of MN can readily be understood by reflecting on the fol-
lowing pair of propositions.

39. Necessarily, it is not the case that circular squares exist (C: Circular squares
exist)
In symbols: ��C
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40. It is not possible that circular squares exist.
In symbols: ��C

Proposition (39) tells us that “Circular squares do not exist” is true in every pos-
sible world. (40) tells us that “Circular squares exist” is not true in any possible
world. Obviously, these propositions imply each other. And our last form of MN
looks like this:

��p : : ��p

Again, the box and diamond behave in a way analogous to universal and exis-
tential quantifiers. QN lets us move from (x)�Fx to �(∃x)Fx, and vice versa.
Similarly, MN lets us move from ��A to ��A, and vice versa.

To sum up, the four forms of modal operator negation (MN) are as follows:

�p : : ���p
�p : : ���p
��p : : ��p
��p : : ��p

When we employ any of these four rules in a proof, our annotation is simply MN.
Since each form of MN is an equivalence rule, MN may be applied to parts of
lines in a proof as well as to entire lines. Let’s examine a proof that involves MN:

1. �(�E ∨ �F)
2. ��E → ���G
3. ��F → ���H ∴ G • �H
4. ��E • ��F 1, DeM
5. ��E 4, Simp
6. ��E → ���G 2, MN
7. ���G 5, 6, MP
8. �G 7, MN
9. G 8, NE

10. ��F 4, Simp
11. ��F 10, MN
12. ���H 3, 11, MP
13. �H 12, MN
14. G • �H 9, 13, Conj

Note that MN is applied to part of a line (the antecedent of a conditional) in
line (6).

Some of the rules of thumb we have used previously apply in modal logic.
For example, it often helps to look at the conclusion first and then work back-
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ward. Also, if it is possible to apply one of the rules of statement logic, it usually
helps to do so. But the following rule of thumb is specific to modal logic:

Rule of Thumb 1: When the tilde is combined with the box or diamond, it often
helps to apply MN. Then use statement logic or other rules of modal logic.

Complete the following exercises to ensure your grasp of our first set of
inference rules for modal logic.

Exercise 12.3

Part A: Annotating Annotate the following proofs.

* 1. 1. �P ∴ �P
2. P
3. �P

2. 1. ��B • T ∴ ��B
2. ��B
3. ��B

3. 1. �(A • B) ∴ �B
2. A • B
3. B
4. �B
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�p p
∴ p ∴ �p

Theorem Necessitation (TN)

p (derived without using any premises)
∴ �p

Modal Operator Negation (MN)

�p : : ���p
�p : : ���p
��p : : ��p
��p : : ��p
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* 4. 1. ���G ∴ G
2. �G
3. G

5. 1. ��(B ↔ �B) → A ∴ �A
2. B ↔ �B
3. (B → �B) • (�B → B)
4. B → �B
5. �B → B
6. �B ∨ �B
7. �B
8. ��B ∨ B
9. B ∨ B

10. B
11. B • �B
12. �(B ↔�B)
13. ��(B ↔ �B)
14. A
15. �A

6. 1. �H ∨ ��S
2. ��H ∴ ��S
3. ��H
4. ��S
5. ��S

* 7. 1. ��W ∴ ��W
2. ��W

8. 1. �S ∨ �P
2. ��S ∴ ���P
3. ��S
4. �P
5. ���P

9. 1. ��E ∴ �E
2. ��E
3. �E

* 10. ∴ � [(A • B) → B]
1. A • B
2. B
3. (A • B) → B
4. � [(A • B) → B]

Part B: Correct or Incorrect? Which of the following inferences are permitted by one
of our rules, and which are not? If an inference is permitted, indicate the rule that permits
it. If it is not permitted, simply write “incorrect.” (The question is whether one can move



from the first statement to the second, in each instance, by a single application of one of
our rules.)

* 1. 1. �N → �E
2. N → �E

2. 1.�L
2. L

3. 1. ���K → J
2. �K → J

* 4. 1. A → B
2. �(A → B)

5. 1. C
2. �C

6. 1. �(�D → E)
2. �D → E

* 7. 1. F → G
2. F → �G

8. 1. P → �Q
2. P → Q

Part C: Proofs Construct proofs to show that the following arguments are valid.

* 1. �C • D, (�C • D) → S ∴�S

2. �(P → P) → �Q ∴ Q

3. �J ∨ ��K, ��L → ���K, ��J ∴ L

* 4. ��M • �N, ��M → ��Q, ��N → ��P, 
(��Q ∨ ��P) → ��R ∴ �R

5. �(�R → ��S), �S → T, �R → U ∴ �(T • U)

6. (�T • �P) ∨ (�T •��W), �S → ��T, �W ∴ ��S • �P

* 7. �Z ∨ (A • �B), �Z → �R, ��B ∴ ��R

8. ��(K ∨ K), ��L → ���K, �P → ��L ∴ ��P

9. �(A → B), ��(�B → �A) ∨ �E, �E → D ∴ �D

* 10. (�M ∨ �F) • (�M ∨ ��G), �M → ��H, (�F • ��G) → �� J
∴ �H → ��J

11. �K • (L ∨ M), (�K • L) → ��N, (�K • M) → ��N, 
�O → �N ∴ ��O

12. �(P • P), ���P → Q, �R → ��Q ∴ �R

* 13. �(A ∨ B), ���(B ∨ A) → ��C, ���C ∨ R ∴ �(R ∨ S)

9. 1. � (H • L)
2. � (H • �L)

* 10. 1. ���R ↔ S
2. �R ↔ S

11. 1. T ∨ �U
2. T ∨ U

12. 1. W ∨ X
2. W ∨ �X

* 13. 1. (��Y ↔ ���Z) → ��V
2. (��Y ↔�Z) → ��V

14. 1. �A ∨ �B
2. A ∨ B

15. 1. (�C • ���D) → �E
2. (�C • �D) → �E
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14. �(�F → ��G), ��G ∨ �H, ��F ∨ � J ∴ �H • � J

15. �C → �� [�A → (A → B)] ∴ �C

* 16. �Z • (�Y ∨ ��W), ��Z ∨ ��Y, ��W → ��U,
���U ∨ ��T ∴ ��T

17. ��(S → B), ��C → �(�B → �S), D → ��C ∴ ��D

18. ��B → (��C ∨ ��O), H → ��B, (��C ∨ ��O) → ��D, 
�H ∴ D → �E

* 19. P ∨ G, P → �Z, G → ���Z, ��S → ��Z ∴ �S

20. (� J ∨ �K) • (� J ∨ ��L), � J → ��M, (�K • ��L) → ��M, 
��N ∨ �M ∴ ��N

Part D: English Arguments Symbolize the following arguments and then prove them
valid.

* 1. Necessarily, it is false that free acts are coerced. Accordingly, it is impossible that
free acts are coerced. (F: Free acts are coerced)

2. It is not logically possible that God does not exist. Therefore, God exists. 
(G: God exists)

3. Necessarily, invisible paintings do not exist. But either it is possible that invisible
paintings exist, or it is necessary that all paintings are colored. Hence, all paint-
ings are colored. (P: Invisible paintings exist; C: All paintings are colored)

* 4. It’s logically impossible that all paintings are forgeries. Consequently, not all
paintings are forgeries. (F: All paintings are forgeries)

5. It is contingently false that vampires exist. So, it is possible that vampires exist. 
(V: Vampires exist)

6. Either it’s impossible that humans have souls or it’s necessary that moral agents
have free will. But humans do have souls. It follows that moral agents have free
will. (S: Humans have souls; M: Moral agents have free will)

* 7. It is not possible that time travel occurs but it is necessary that time goes on. If it
is possible that time is real and it is impossible that time travel occurs, then it is
possible that time does not go on. So, time is not real. (O: Time travel occurs; 
G: Time goes on; R: Time is real)

8. It is contingently true that electrons exist. So, it is not necessarily true that elec-
trons exist. (E: Electrons exist)

9. Either the soul is immortal or it is not necessarily true that if the good is real, then
the soul is immortal only if the good is real. We may conclude that the soul is
immortal. (S: The soul is immortal; G: the good is real)

10. If life is meaningless, then possibly happiness is both real and not real. It follows
that life is not meaningless. (L: Life is meaningless; H: Happiness is real)
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12.4 Modal Distribution and Strict Implication

We must now take a close look at inferences involving modal operators, the dot,
the vee, and the arrow. We will first consider the behavior of the box and dia-
mond as they relate to the dot and vee.

The modal operator distribution equivalence (MODE) rule comes in two
forms. The first form governs the box and the dot. Using the lowercase, italicized
letters p and q to stand for any proposition, the first form of MODE may be for-
mulated as follows:

� (p • q) : : (�p • �q )

This makes explicit the principle that a conjunction is a necessary truth if and
only if each of its conjuncts are necessary truths. For example, we can inter-
change the following statements because they are logically equivalent:

41. Necessarily, both two is even and three is odd.

42. Necessarily, two is even, and necessarily, three is odd.

Since MODE is an equivalence rule, it can be applied to parts of a line.
The second form of MODE governs the diamond and the vee:

�(p ∨ q) : : (�p ∨ �q)

This rule tells us that the diamond distributes over the vee. It makes explicit the
logical equivalence between such statements as these:

43. It is logically possible that either Smith wins the election or Jones wins the
election (or both).

44. Either it is logically possible that Smith wins the election or it is logically
possible that Jones wins the election (or both).

The second form of MODE is also an equivalence rule.
Here is a short proof that involves the MODE rule:

1. � (D • E)
2. ���E → �(K ∨ L) ∴ �K ∨ �L
3. �D • �E 1, MODE
4. �E 3, Simp
5. ���E 4, MN
6. �(K ∨ L) 2, 5, MP
7. �K ∨ �L 6, MODE
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The modal operator distribution implicational (MODI) rule is, as the
name suggests, an implicational rule. As such, MODI may be applied only to
entire lines in a proof, and not to parts of lines. The first form of MODI concerns
the box and the vee:

�p ∨ �q
∴ � (p ∨ q)

This inference rule is based on the principle that a disjunction is a necessary
truth if at least one of its disjuncts is a necessary truth. Here is an English example:

45. Either “Two plus two equals four” is necessary or “I am wearing a red shirt”
is necessary. So, it is a necessary truth that either two plus two equals four or
I am wearing a red shirt.

Warning: The first form of MODI does not let us move from �(p ∨ q) to
�p ∨ �q. The simplest way to see why is to consider the case in which q stands
for �p, for instance, �(A ∨ �A), hence �A ∨ ��A. It is easy to provide a
counterexample to this argument form:

46. Necessarily, either Socrates died in 399 B.C.E. or Socrates did not die in 399
B.C.E. Therefore, either “Socrates died in 399 B.C.E.” is a necessary truth or
“Socrates did not die in 399 B.C.E.” is a necessary truth.

Here, the premise is true. All propositions of the form “Either A or not A” are
necessary truths. But the conclusion is false. Socrates might have died earlier or
later than 399 B.C.E. So, “Socrates died in 399 b.c.e.” is not a necessary truth.
And since Socrates did in fact die in 399 b.c.e., it is clear that “Socrates did not
die in 399 b.c.e.” is not a necessary truth.

The second form of MODI governs the diamond and the dot:

�(p • q)
∴ �p •�q

This rule is based on the principle that if a conjunction is possible, then each of
its conjuncts is possible. Here is an English example:

47. It is logically possible that both Tom and Fred are lying. So, it is logically
possible that Tom is lying and it is logically possible that Fred is lying.

Warning: The second form of MODI does not permit us to move from 
�p •�q to �(p • q). To see why, consider the following argument:

48. It is logically possible that Smith wins the race and logically possible that Jones
wins the race. So, it is logically possible that Smith and Jones both win the race.
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A tie is logically possible, but it is not logically possible that Smith and Jones
both win the same race. Thus, arguments of this form can have a true premise
and a false conclusion, and so the form is invalid.

Here is a proof involving the MODI rules:

1. �(S • R)
2. �R → (��W ∨ �Z) ∴ � (�W ∨ Z)
3. �S • �R 1, MODI
4. �R 3, Simp
5. ��W ∨ �Z 2, 4, MP
6. ��W ∨ �Z 5, MN
7. � (�W ∨ Z) 6, MODI

Note that MN is applied in line (6) to set up an application of MODI.
Because confusion between the MODE and MODI rules readily leads to

fallacies, it is important to grasp them clearly. So, let us pause here and summa-
rize. Each form of MODE is an equivalence rule. The first form governs the box
and the dot, and the second form governs the diamond and the vee:

� (p • q) : : (�p • �q ) MODE
�(p ∨ q) : : (�p ∨ �q)

The first form tells us that the box can be moved from a conjunction to its con-
juncts, and vice versa. The second form tells us that the diamond can be moved
from a disjunction to its disjuncts, and vice versa.

Both forms of MODI, on the other hand, are implicational in nature. They
govern the box and the vee, and the diamond and the dot.

�p ∨ �q �(p • q) MODI
∴ � (p ∨ q) ∴ �p • �q

The form on the left tells us how the box and vee interrelate: The box can be
moved from the disjuncts to the whole disjunction, but not vice versa. The form
on the right tells us how the diamond and dot interrelate: The diamond can be
moved from a conjunction to its conjuncts, but not vice versa.

Now that we have the MODE and MODI rules, we can add the following
rules of thumb for modal logic:

Rule of Thumb 2: When the box is combined with the dot or the diamond is com-
bined with the vee, it often helps to apply MODE.

Rule of Thumb 3: When the box is combined with the vee or the diamond is com-
bined with the dot, it often helps to apply MODI.
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As mentioned previously, C. I. Lewis wanted to construct a system of logic
with a stronger conditional than the arrow. In particular, he sought a system in
which “Necessarily, if P, then Q” was represented. We can construct this sort of
conditional out of the arrow and the box, like this:

� (P → Q)

It will also be convenient to have a special symbol for this stronger type of con-
ditional, which we will call “strict implication” or “entailment.” We will use the
symbol “⇒” to indicate that P strictly implies Q. (Let us call this symbol “the
modal arrow.”) The expression (P ⇒ Q) may be read variously as “P strictly
implies Q” or “P necessarily implies Q” or simply “P entails Q.”*

Our first rule governing the modal arrow is called the law of strict impli-
cation (SI):

� (p → q) : : (p ⇒ q)

This rule is based on the definition of the modal arrow: “If p, then q” is necessary
if and only if p entails q. The utility of this equivalence rule will become apparent
when we construct proofs involving necessarily true conditionals.

Now that we have two ways of symbolizing “if-then” statements (namely,
the arrow and the modal arrow), the question naturally arises as to how we know
when to translate the English “if-then” with an arrow and when to use the
modal arrow. Of course, technical locutions such as “strictly implies,” “necessar-
ily implies,” and “entails” call for the modal arrow. For example:

49. ”Jill is an aunt” entails “Jill is a woman.” (A: Jill is a aunt; W: Jill is woman)
In symbols: A ⇒ W

And if we need to specify the arrow, we can use the locution “materially
implies.” To illustrate:

50. ”Bob studies” materially implies “Bob passes.” (S: Bob studies; P: Bob passes)
In symbols: S → P

Expressions of the form “Necessarily, if p, then q” can be translated in two ways.
For example:

51. Necessarily, if Chris is a nephew, then Chris is male. (N: Chris is a nephew:
M: Chris is male)
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In symbols: N ⇒ M. Alternatively: � (N → M).

Of course, in many actual cases, the explicit phrases mentioned here are not
used, and so we are forced to rely on the context. In such cases, two general rules
apply. First, give the author the benefit of the doubt. Thus, if using the arrow
would render the argument invalid but using the modal arrow would render it
valid, use the modal arrow. Always try to put the argument in its best possible
light when translating into symbols. (This is an application of Principle 4 from
chapter 3: Be fair and charitable in interpreting an argument.) Second, since
using the modal arrow complicates the argument, do not use it if it is not needed
to ensure validity. In general, if a relatively simple symbolization of an argument
indicates that it has a valid form, then the original argument is valid even if
it contains complexities of form not represented in the symbolization. For example,
as we have seen previously, truth tables can be used to show many arguments
valid even when the arguments contain statements, such as certain types of
conditionals, whose meaning cannot be fully expressed via truth functional
connectives.

Our next rule, modal operator transfer (OT), applies to strict implication
but not to material implication. OT comes in two forms:

p ⇒ q p ⇒ q
∴ �p ⇒ �q ∴ �p ⇒ �q

Note that both forms of OT are implicational rules, and so they must not be
applied to parts of a line in a proof—only to entire lines. Here is an English
example of each form of OT (assume that “if-then” expresses entailment in
each case):

52. If eight is even, then eight is divisible by two (without remainder). So, if it
is necessary that eight is even, then it is necessary that eight is divisible by 
two.

53. If Smith wins the race, then Jones does not win it. So, if it is possible that Smith
wins the race, then it is possible that Jones does not win it.

The OT rule enables us to answer the following question: Suppose A entails B,
and suppose A is a necessary truth. Does it follow that B is a necessary truth? The
following proof reveals that the answer is yes.

1. A ⇒ B
2. �A ∴ �B
3. �A ⇒ �B 1, OT
4. � (�A → �B) 3, SI
5. �A → �B 4, NE
6. �B 2, 5, MP
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A similar proof reveals that we can move from “A entails B and A is possible” to
“B is possible”:

1. A ⇒ B
2. �A ∴ �B
3. �A ⇒ �B 1, OT
4. � (�A → �B) 3, SI
5. �A → �B 4, NE
6. �B 2, 5, MP

Warning: Neither form of OT is valid for material implication. Consider
the following argument form:

p → q ∴ �p → �q

This argument form will have a true premise and a false conclusion whenever
p is a necessary truth and q is a contingent truth. In these circumstances, p → q
is true, because both the antecedent and the consequent are true. However,
�p → �q will be false because we have stipulated that p is a necessary truth,
but since q is a contingent truth, it is not a necessary truth. In thinking about
the following English example, bear in mind that we are assuming (for the sake
of illustration) that “if-then” is here to be interpreted as material implication:

54. If all husbands were (are, and will be) married, then Socrates was married.
So, if “All husbands were (are, and will be) married” is a necessary truth, then
“Socrates was married” is a necessary truth.

The premise is equivalent to “Either not all husbands were (are, and will be)
married or Socrates was married,” which is true, since Socrates was married to
Xanthippe. But the conclusion is false, since “Socrates was married” is not a nec-
essary truth. (Note: If the premise of argument (54) is taken to express strict
implication, then it is false. Although “All husbands are married” is true in
every possible world, there are possible worlds in which Socrates remains a bach-
elor. So, it is not necessarily true that if all husbands are married, then Socrates is
married.)

Similarly, the following argument form involving the material conditional
is invalid:

p → q ∴ �p → �q

Suppose q is necessarily false and �p is a contingent truth. Then the premise
will be true, since it is equivalent to �p ∨ q. But the conclusion will be false,
since it is equivalent to ��p ∨ �q. After all, ��p is false, since �p is by
hypothesis a contingent truth (which implies �p); and �q is false, since q is by
hypothesis necessarily false, and hence impossible.
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A number of inference rules for modal logic are highly analogous to infer-
ence rules in statement logic. For example, the following proof illustrates that an
inference rule similar to modus ponens holds for strict implication:

1. A ⇒ B

2. A ∴ B

3. � (A → B) 1, SI

4. A → B 3, NE

5. B 2, 4, MP

Accordingly, let us add the following inference rule to our system, and call it
modal modus ponens (MMP):

p ⇒ q
p

∴ q

MMP will shorten many of our proofs.
A similar proof illustrates that an inference rule analogous to modus tollens

holds for strict implication:

1. A ⇒ B

2. �B ∴ �A

3. � (A → B) 1, SI

4. A → B 3, NE

5. �A 2, 4, MT

So, let us also add modal modus tollens (MMT) to our system of rules:

p ⇒ q

�q

∴ �p

Note that MMP and MMT are implicational rules. The following proof exem-
plifies the use of these rules:

1. H ⇒ F

2. ��F

3. �H ⇒ G ∴ G

4. ��F 2, MN

5. �F 4, NE

6. �H 1, 5, MMT

7. G 3, 6, MMP
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At this time, let us also add modal hypothetical syllogism (MHS) to our
system of rules:

p ⇒ q

q ⇒ r

∴ p ⇒ r

Note that MHS is an implicational rule.
Finally, let us add a rule of strict logical equivalence (LE), which governs

mutual entailment (or strict biconditionals):

p ⇔ q : : � (p ↔ q)

Note that this is an equivalence rule, not an implicational rule. Here is a short
proof involving typical applications of LE and MHS:

1. A ⇔ B

2. B ⇒ �C ∴ A ⇒ �C

3. � (A ↔ B) 1, LE

4. � [(A → B) • (B → A)] 3, ME

5. � (A → B) • � (B → A) 4, MODE

6. � (A → B) 5, Simp

7. A ⇒ B 6, SI

8. A ⇒ �C 7, 2, MHS

There is an important amphiboly (i.e., a double meaning due to a structural
flaw) in some English conditionals. Our new symbols enable us to identify this
amphiboly with precision. For example, consider this sentence:

55. If I think, then necessarily I exist. (T: I think; E: I exist)

It is not entirely clear which of the following symbolic statements translates (55):

56. � (T → E)

57. T → �E

Statement (56) says, “It is a necessary truth that if I think, then I exist.” In other
words, the whole conditional is a necessary truth. Medieval logicians called this
necessity of the consequence, but using contemporary terminology, we might more
naturally call it necessity of the conditional. Statement (57), on the other
hand, says, “If I think, then ‘I exist’ is a necessary truth.” Medieval logicians
called this (for obvious reasons) necessity of the consequent. There is an impor-
tant logical difference between (56) and (57), for (56) is obviously true, but (57)
is false. (57) is false because its antecedent is true but its consequent is false. I do
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in fact think (at least occasionally!), but since, as previously observed, I might
not have existed at all, “I exist” is not a necessary truth.

Normally, it is best to translate an English conditional such as (55) as
expressing necessity of the conditional. Thus, (56) is probably a better transla-
tion than (57). But sometimes it is hard to be sure what the original author
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Modal Operator Distribution Equivalence Rule (MODE)

� (p • q) : : (�p • �q )
�(p ∨ q) : : (�p ∨ �q)

Modal Operator Distribution Implicational Rule (MODI)

�p ∨ �q �(p • q)
∴ � (p ∨ q) ∴  �p • �q

Strict Implication (SI)

� (p → q) : : (p ⇒ q)

Operator Transfer (OT)

p ⇒ q p ⇒ q
∴  �p ⇒ �q ∴  �p ⇒ �q

Modal Modus Ponens (MMP)

p ⇒ q
p

∴ q

Modal Modus Tollens (MMT)

p ⇒ q
�q

∴ �p

Modal Hypothetical Syllogism (MHS)

p ⇒ q
q ⇒ r

∴ p ⇒ r

Logical Equivalence (LE)

(p ⇔ q) : : � (p ↔ q)

Summary of the Second Set of Inference Rules



intended. In On Free Choice of the Will, Saint Augustine considers an argument
that could be paraphrased as follows:8

58. If God foreknows that I’ll sin tomorrow, then necessarily I’ll sin tomorrow. God
foreknows that I’ll sin tomorrow. So, necessarily I’ll sin tomorrow. (G: God
foreknows that I’ll sin tomorrow; S: I’ll sin tomorrow)

Superficially, this looks like a case of modus ponens. But is it really? That depends
on how we translate the first premise:

59. G → �S, G ∴ �S

60. � (G → S), G ∴ �S

Argument (59) is an example of modus ponens, so it is valid. However, its first
premise is false, or at least highly debatable, for it is natural to think that “I’ll sin
tomorrow” is a contingent proposition. (There is nothing logically impossible
about resisting temptation for a day, however difficult it may be in fact.) And
presumably, if God exists, then God knows lots of contingent propositions.

Argument (60), on the other hand, is invalid. Consider the following
counterexample:

61. It is a necessary truth that if Socrates was a husband, then Socrates was
married. Socrates was a husband. So, it is a necessary truth that Socrates was
married.

The conclusion of this argument is false, for although Socrates was in fact mar-
ried to Xanthippe, he might have chosen to remain a bachelor. But the premises
of the argument are true. So, the argument is invalid. Thus, to analyze argument
(58) fully and fairly, we have to consider two possible interpretations of the con-
ditional premise. When we do, a subtle fallacy of amphiboly becomes apparent.
In one way of reading the first premise, the argument is valid but the first premise
is false (or at least very dubious). In the other way, the premises are true but the
argument is invalid. Our symbolic tools give us a very clear way of identifying
the problem.

The following exercises will test your understanding of the rules intro-
duced in this section.

Exercise 12.4

Part A: Symbolizing Symbolize the following sentences using the schemes of
abbreviation provided.

* 1. “Joe is a man and Joe is not married” strictly implies “Joe is a bachelor.” (J: Joe is a
man; M: Joe is married; B: Joe is a bachelor)

2. Necessarily, if Linda is a niece, then she is female. (L: Linda is a niece; F: Linda is
female)
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3. “Chris is Bob’s daughter” entails “Chris is not male.” (D: Chris is Bob’s daughter;
M: Chris is male)

* 4. “Doug does not try” materially implies “Doug fails.” (T: Doug tries; F: Doug fails)

5. “Erica is married” does not entail “Erica is happy.” (M: Erica is married; H: Erica
is happy)

6. “The Eiffel Tower is in Ohio” materially implies, but does not necessarily imply,
“The Eiffel Tower is in France.” (O: The Eiffel Tower is in Ohio; F: The Eiffel
Tower is in France)

* 7. It is a necessary truth that if abortion is murder, then it is wrong. (M: Abortion is
murder; W: Abortion is wrong)

8. “Killing innocent humans is always wrong” entails “Euthanasia is wrong.”
(K: Killing innocent humans is always wrong; E: Euthanasia is wrong)

9. It is necessarily false that some circles are triangles; however, some circles are
purple. (T: Some circles are triangles; P: Some circles are purple)

10. Necessarily, if it is necessary that all humans are mortal and necessary that Socrates
is human, then it is necessary that Socrates is mortal. (H: All humans are mortal;
S: Socrates is human; M: Socrates is mortal)

Part B: Symbolizing and Evaluating Symbolize the following arguments.
Which have valid forms? Which have invalid forms? Note: Two of the arguments
have an amphibolous conditional premise, and hence these arguments can be inter-
preted as having two different forms. In these cases, identify both forms and indicate
which of them is valid and which isn’t.

* 1. Possibly Smith is guilty and possibly Jones is guilty. So, it is possible that both
Smith and Jones are guilty. (S: Smith is guilty; J: Jones is guilty)

2. The proposition “Betty is an aunt” entails the proposition “Betty is female.”
Accordingly, the proposition “It is logically possible that Betty is an aunt” strictly
implies the proposition “It is logically possible that Betty is female.” (A: Betty is an
aunt; F: Betty is female)

3. Necessarily, either Santa exists or he doesn’t. Hence, either it is necessary that
Santa exists or it is necessary that he doesn’t exist. (S: Santa exists)

* 4. Either not all husbands are handsome or all wives are beautiful. Therefore, either it
is not necessary that all husbands are handsome or it is necessary that all wives are
beautiful. (H: All husbands are handsome; W: All wives are beautiful) [Hint:
Apply MI.]

5. Either it is necessary that all bachelors own Fords or it is necessary that all bache-
lors own Porsches. Thus, it is necessary that either all bachelors own Fords or all
bachelors own Porsches. (F: All bachelors own Fords; P: All bachelors own
Porsches)

6. If I see that Al is stealing a TV, then necessarily Al is stealing a TV. I see that Al is
stealing a TV. Therefore, it is necessarily true that Al is stealing a TV. (S: I see that
Al is stealing a TV; A: Al is stealing a TV)
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* 7. It is logically possible that Fred and Sue are both arrogant. Hence, it is logically
possible that Fred is arrogant and logically possible that Sue is arrogant. (F: Fred is
arrogant; S: Sue is arrogant)

8. It is necessarily true that either Pat is a man or Pat is a woman. It follows that
either it is necessary that Pat is a man or it is necessary that Pat is a woman.
(M: Pat is a man; W: Pat is a woman)

9. “The Eiffel Tower is in Ohio” materially implies “The Eiffel Tower is in France.”
Thus, “It is possible that the Eiffel Tower is in Ohio” materially implies “It is pos-
sible that the Eiffel Tower is in France.” (O: The Eiffel Tower is in Ohio; F: The
Eiffel Tower is in France)

* 10. If Socrates is sitting, then it must be the case that Socrates is sitting. Socrates is sit-
ting. Therefore, it is necessarily true that Socrates is sitting. (S: Socrates is sitting)

11. Necessarily, either nothing is caused or every event has a cause. Therefore, either it
is necessarily true that nothing is caused or it is necessarily true that every event
has a cause. (N: Nothing is caused; E: Every event is caused)

12. Monism (i.e., the view that there is only one thing) is possibly true, and so is rein-
carnation (i.e., the view that when a person dies, his or her soul enters another
body). Consequently, it is logically possible both that monism is true and that rein-
carnation is true. (M: Monism is true; R: Reincarnation is true)

13. Necessarily, if radical skeptics are right, then there is no external world. Radical
skeptics are right. So, it is a necessary truth that there is no external world.
(R: Radical skeptics are right; E: There is no external world)

14. Either it is necessary that God exists or it is necessary that the physical universe
exists. Accordingly, it is necessarily true that either God exists or the physical
universe exists. (G: God exists; P: The physical universe exists)

15. Possibly, both Hinduism and Zoroastrianism are true. Therefore, possibly Hindu-
ism is true and possibly Zoroastrianism is true. (H: Hinduism is true; Z: Zoro-
astrianism is true)

Part C: Annotating Annotate the following proofs.

* 1. 1. �(A • �B) ∴ ��B
2. �A • ��B
3. ��B
4. ��B

2. 1. �C ∨ �D ∴ C ∨ D
2. �(C ∨ D)
3. C ∨ D

3. 1. �E ∨ �F
2. �(E ∨ F) → G ∴�G
3. �(E ∨ F)
4. G
5. �G

* 4. 1. �(H • J)
2. �K ⇒ ��J ∴ ��K
3. �H • �J
4. �J
5. ���J
6. ��K
7. ��K

5. 1. L ⇒ M
2. ��M ∴ ��L
3. ��M
4. �L ⇒ �M
5. ��L
6. ��L
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6. 1. �A ⇒ B ∴ ��A ∨ B
2. �(�A → B)
3. �(��A ∨ B)
4. ��A ∨ B
5. ��A ∨ B

* 7. 1. N ⇔ O
2. �(N → P) ∴ O ⇒ P
3. N ⇒ P
4. �(N ↔ O)
5. � [(N → O) • (O → N)]
6. �(N → O) • �(O → N)
7. �(O → N)
8. O ⇒ N
9. O ⇒ P

8. 1. Q ⇒ R
2. �Q ∴ �R
3. �Q ⇒ �R
4. �R

Part D: Correct or Incorrect? Which of the following inferences are permitted by one
of our rules, and which are not? If an inference is permitted, indicate the rule that permits
it. If it is not permitted, simply write “incorrect.” (The question is whether one can move
from the first statement to the second, in each instance, by a single application of one of
our rules.)

* 1. 1. �A → �B
2. ��A → ��B

2. 1. �C ⇒ �D
2. �(�C → �D)

3. 1. �(�E • F)
2. ��E • �F

* 4. 1. �(G ∨ H)
2. �G ∨ �H

5. 1. �J • �K
2. �(J • K)

6. 1. �L ⇒ �M
2. ��L ⇒ ��M

* 7. 1. �(�N ∨ P)
2. ��N ∨ �P

8. 1. Q ⇒ R
2. �Q ⇒ R

Part E: Proofs Construct proofs to show that the following symbolic arguments are valid.

* 1. A ⇒ B ∴ �B ⇒ �A

9. 1. �S ∨ ��T
2. � (S ∨ �T)

* 10. 1. �U ∨ �W
2. �(U ∨ W)

11. 1. �Y ⇒ �Z
2. ��Y ⇒ ��Z

12. 1. �(A ⇒ B)
2. �� (A → B)

* 13. 1. � (�C • D)
2. ��C • �D

14. 1. E ⇔ F
2. (E ⇒ F) • (F ⇒ E)

15. 1. �� (G → H)
2. �(G ⇒ H)

9. 1. S ⇒ (T • U)
2. �S  ∴ �U
3. �S ⇒ � (T • U)
4. � (T • U)
5. �T • �U
6. �U

* 10. 1. �(W ∨ X)
2. �W ⇒ �Z
3. �X ⇒ �V ∴ �(Z ∨ V)
4. �W ∨ �X
5. � (�W → �Z)
6. � (�X → �V)
7. �W → �Z
8. �X → �V
9. �Z ∨ �V

10. �(Z ∨ V)
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2. C ⇔ D, D ∴ C

3. �F ∴ �(F ∨ G)

* 4. �(E → H), ���E ∴ �H

5. S ⇒ T ∴ ��(S • �T)

6. O ⇔ N, �O ∴ �N

* 7. �(L ∨ M), ��L, M ⇒ �N ∴ ��N

8. �(�D • �E), �A ⇒ �D ∴ �A

9. P ⇔ Q, Q ⇒ �S ∴ P ⇒ �S

* 10. A ⇒ E, ��E ∴ ��A

11. �(R ∨ D), ��R ∴ �D

12. � [B • (E ∨ �G)], (�K ∨ �H) → ��B, �G ∴ �E • �H

* 13. � [�R ∨ (S • T)], �R ∴ �S • �T

14. �[S ∨ (P • R)], �Q → ��S, �Q → ��(P • R) ∴ �Q

15. � [H → (J → K)], �J ∴ �(H → K)

* 16. �[(L ∨ M) • (L ∨ Q)], �P ⇒ ��Q, ��L ∴ �P

17. ��(P • R), ��P ⇒ �Q, ��R ⇒ �Q ∴ Q

18. ��(S ∨ T), (U ⇒ W) → �S ∴ ��W

* 19. � [(E • F) → G], �E ∴ �G ⇒ �F

20. �(A • B) ∨ �(�A • �B), (A ⇔ B) → ��C ∴ ��C

Part F: English Arguments Symbolize the following arguments, using the schemes of
abbreviation provided. Then construct proofs to show that the arguments are valid.

* 1. Necessarily, if a first cause exists, then God exists. But it is not possible that a first
cause does not exist. And hence, it is necessary that God exists. (F: A first cause
exists; G: God exists)

2. “Contradictions are false” entails “Circular squares do not exist.” And it is neces-
sarily true that contradictions are false. Moreover, “Circular squares do not exist”
entails “Some statements about what exists can be known independently of sen-
sory experience.” Therefore, necessarily, some statements about what exists can be
known independently of sensory experience. (C: Contradictions are false; S: Circu-
lar squares exist; E: Some statements about what exists can be known indepen-
dently of sensory experience)

3. Either two objects can have all properties in common or two physical objects can-
not be in the same place at once. But necessarily, it is not the case that two objects
can have all properties in common. Accordingly, two physical objects cannot be
in the same place at once. (O: Two objects can have all properties in common;
P: Two physical objects can be in the same place at once)
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4. Either it is possible that every object has a cause of its existence or it is possible
that at least one object exists uncaused. “It is possible that either every object has a
cause of its existence or at least one object exists uncaused” strictly implies “Neces-
sarily, it is not the case that some objects bring themselves into existence.” Thus, it
is impossible that some objects bring themselves into existence. (E: Every object
has a cause of its existence; U: At least one object exists uncaused; B: Some objects
bring themselves into existence)

5. Necessarily, if God is all-powerful and knowledge is power, then God is all-
knowing. It is necessarily true that God is all-powerful. Therefore, the proposition
“God is not all-knowing” entails the proposition “It is not the case that knowledge
is power.” (P: God is all-powerful; K: Knowledge is power; G: God is all-knowing)

12.5 Systems S4 and S5

C. I. Lewis described systems of modal logic in five stages. Each stage corre-
sponds to one of the following principles:

1. If p is a theorem of statement logic, then �p .
2. If �p , then p.
3. If �p and p ⇒ q, then �q .
4. If �p , then ��p .
5. If ��p , then �p .

The rules we have introduced so far reflect Principles 1, 2, and 3. Some philoso-
phers accept only the first three principles. The modal system based on Principles
1–3 (and not including 4 and 5) is called system T. Accordingly, the system of
modal logic developed in sections 12.3 and 12.4 is a variant of system T. The sys-
tem of modal logic based on Principles 1–4 is called S4. And the system of modal
logic based on all five principles is called S5. In this section, we will explore
modal systems S4 and S5.

These various systems of modal logic are progressively stronger. For exam-
ple, there are arguments that can be proved valid in system S4 that cannot be
proved valid in system T. And there are arguments that can be proved valid in
system S5 that cannot be proved valid in system S4. On the other hand, if an
argument can be proved valid using the rules of system T, then it can be proved
valid using the rules of system S4. And if an argument can be proved valid using
the rules of system S4, then it can be proved valid using the rules of system S5.

System S4 gives us the following rules that govern repeated (or iterated)
modal operators:

�p : : ��p
�p : : ��p
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We will simply call these rules the S4 rules. (The annotation in a proof is “S4.”)
Note that these rules are equivalence rules, so they can be applied to parts of
lines in a proof.

The S4 rules may seem initially puzzling. What do the iterated operators
mean? For example, what does it mean to say that a proposition is necessarily nec-
essary? And what does it mean to say that a proposition is possibly possible? Let us
take a closer look at both rules.

First, consider �p : : � �p . Let’s break this down into two separate infer-
ences. The move from � �p to �p is actually redundant within our system. We
can already make this move by NE. So, let’s focus on the move from �p to
� �p . It helps to think about this in terms of possible worlds. Suppose �p is
true. Then p is true in every possible world. Could � �p be false? Well, if � �p
is false, then �p is false in at least one possible world. But if �p is false in some
possible world, then �p is true in some possible world. So, it is not the case that
p is true in every possible world, which contradicts our initial supposition that p
is necessary. Therefore, when we think about the first S4 rule in terms of possible
worlds, it seems clear that �p implies ��p .*

Second, consider �p : : ��p. Again, break the inference rule down into
two parts. The move from �p to ��p is redundant within our system, for we
can already make this move by EP. So, let’s focus on the move from ��p to �p.
Again, it helps to think in terms of possible worlds. Suppose ��p. Could �p be
false? If ��p, then there is at least one possible world (call it “W”) in which p
is possibly true. But if p is possibly true in W, then p is true in some possible
world. But if �p is false, then p is impossible, and hence p is false in every world.
So, if we assume ��p, we are forced, on pain of contradiction, to accept �p.
Thus, ��p implies �p.

Now, consider the following English argument.

62. The proposition “Possibly, morality is relative to culture” entails the proposition
“It is not necessarily necessary that torturing people for fun is wrong.” But it is a
necessary truth that torturing people for fun is wrong. Therefore, morality is not
relative to culture. (M: Morality is relative to culture; T: Torturing people for fun
is wrong)

Here is the symbolization and proof:
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*Here is one way of highlighting the philosophical issues that are at stake when the necessity operator is iter-
ated. Some theologians claim that God created logic. This apparently implies that the correct logical rules could
have been very different than they are—for example, that contradictions could have been true had God so
ordained it. To reduce the philosophical alarm this view often produces, its proponents sometimes suggest that
God made the law of noncontradiction a necessary truth in our world (the actual world), but God might have
done otherwise. In other words, ��(p ⋅ �p), but ����(p ⋅ �p), which violates the S4 rules. This scenario
is unacceptable if necessary truths are true in every possible world, for if p is necessary but God could have cre-
ated a world in which p is not necessary, then ���p . This means there is a possible world in which p is not
necessary. But this could be so only if there is at least one world in which p is false. But then p isn’t a necessary
truth after all, contrary to our supposition.



1. �M ⇒ �� �T

2. �T ∴ �M

3. �M ⇒ ��T 1, S4

4. ���T 2, DN

5. ��M 3, 4, MMT

6. ��M 5, MN

7. �M 6, NE

Our final set of rules belongs to Lewis’s fifth system of modal logic, S5. We
will simply call these rules the S5 rules (annotation: S5):

��p : : �p

�p : : ��p

Once again, we have two rules, each of which is an equivalence rule. And once
again, these rules are partly redundant within our system. For example, we can
move from �p to ��p by EP; and we can move from ��p to �p by NE. But
the move from ��p to �p is new and striking. If a proposition is possibly nec-
essary, does it follow that it is necessary? The move from �p to ��p is new as
well. If p is possible, does it follow that p is necessarily possible? A possible-worlds
approach helps to explain why many logicians think the S5 rules are valid.

Consider the move from ��p to �p . If ��p , then there is a possible
world in which �p . For example, there is a possible world in which “No circles
are squares” is necessary. But this means that there is a possible world (call it
“W”) in which “No circles are squares” is true in every possible world. But if in W
“No circles are squares” is true in every possible word, then “No circles are
squares” is necessary. In other words, if a proposition is necessary in one world, it
is necessary in all.

Consider the move from �p to ��p. This says that if a statement is logi-
cally possible, that is, true in at least one possible world, then it can’t be impos-
sible in some other world. Suppose �p but ���p (for the sake of the
argument). Now, ���p implies ���p, by MN. But how could p be true in
some possible world but impossible, that is, necessarily false, in some other pos-
sible world? If a statement is necessarily false in one possible world, then it is
false in every possible world. It is reflections such as these that lead many philos-
ophers to accept the S5 rules as valid.

Let us now use our new modal rules to consider a version of the famous
ontological argument for the existence of God. The argument was first formu-
lated by Saint Anselm (1033–1109), but we will consider a version that depends
heavily on modal terms:

63. If God exists, then God is a Supremely Perfect Being. If God is a Supremely
Perfect Being, then it is impossible that God not exist. It is logically possible
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that God exists. So, God exists. (G: God exists; S: God is a Supremely
Perfect Being)

1. G ⇒ S
2. S ⇒ ���G
3. �G ∴ G
4. �G ⇒ �S 1, OT
5. S ⇒ �G 2, MN
6. �S ⇒ ��G 5, OT
7. �G ⇒ ��G 4, 6, MHS
8. ��G 3, 7, MMP
9. �G 8, S5
10. G 9, NE

This argument is interesting because it reaches a philosophically dramatic con-
clusion on the basis of rather modest-looking premises. It seems reasonable to
suppose that it is logically possible that God exists. (After all, we could say the
same about unicorns or Santa Claus, couldn’t we?) And if God does exist, then
God must be a Supremely Perfect Being. After all, if there is no Supremely Per-
fect Being, then surely there is no entity that we would regard as God. So, if the
argument is unsound, then surely either the second premise is false or at least
one of the steps in the proof is invalid.

Philosophers who reject modal system S5 will point out that we made a
crucial use of an S5 rule in line (9) of our proof. Others might reject the second
premise. Why should we suppose that if God is a Supremely Perfect Being, then
“God exists” is necessary? The defense might be that any being that could fail to
exist would not be supremely perfect, because we could conceive of a more per-
fect being, namely, one that could not fail to exist.

On the other hand, if “A Supremely Perfect Being exists” is a necessary
truth, then “A Supremely Perfect Being does not exist” is impossible. And many
philosophers find this implausible. They claim that we must distinguish between
having a concept (e.g., having the concept of a unicorn or of a Supremely Perfect
Being) and knowing whether that concept applies to any real object. Further-
more, they claim we cannot tell merely by examining a concept whether it applies
to anything in reality.
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We cannot enter more deeply into these important metaphysical issues
here. But our comments on the ontological argument illustrate how modal logic
can be used to set philosophical issues up in a revealing fashion. The following
exercises indicate how our modal tools can be used to frame several traditional
philosophical problems with increased precision.

Exercise 12.5

Part A: Symbolizing Symbolize the following statements using the schemes of
abbreviation provided.

* 1. It is necessarily possible that Bozo is president. (B: Bozo is president)

2. “Possibly it is necessary that unicorns exist” strictly implies “necessarily unicorns
exist.” (U: Unicorns exist)

3. “Possibly, it is necessary that water is wet” materially implies, but does not strictly
imply, “It is necessarily necessary that water is clear.” (W: Water is wet; C: Water
is clear)

* 4. “The Great Pumpkin does not exist” is a contingent truth, and it is necessarily
possible that the Great Pumpkin does exist. (G: The Great Pumpkin exists)

5. It is possibly possible that astrologers are wise, but it is not necessarily necessary
that astrologers are wise. (A: Astrologers are wise)

6. Necessarily, either it is logically possible that miracles can occur or it is necessarily
impossible that miracles occur. (M: Miracles occur)

* 7. There is a possible world in which I am rich, but it is not possible that I am rich in
every possible world. (R: I am rich)

8. Necessarily, if there is a possible world in which it is necessary that torturing inno-
cent people is wrong, then there is no possible world in which torturing innocent
people is not wrong. (T: Torturing innocent people is wrong)

9. “Ants are animals in every possible world” entails “In every possible world ‘Ants
are animals’ is a necessary truth.” (A: Ants are animals)

10. It is possibly necessary that if there is no possible world in which it is possible that
green things are invisible, then it is necessarily necessary that green things are visi-
ble. (G: Green things are visible)

Part B: Annotating Annotate the following proofs.

* 1. 1. ��A ⇒ B
2. �A ∴ B
3. ��A
4. B

2. 1. (�C ∨ ��C) ⇒ D ∴ �(�C → D)
2. (�C ∨ �C) ⇒ D
3. �C ⇒ D
4. �(�C → D)

3. 1. ��E ⇒ ��F
2. ��F ∴ ��E
3. ��F
4. ��E ⇒ �F
5. ���E
6. ��E
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* 4. 1. �G
2. ��G ⇒ ��H ∴ H
3. ��G
4. ��H
5. �H
6. H

5. 1. ��Q ⇒ ���R
2. �R  ∴ �Q
3. ��Q ⇒ ���R
4. ��Q ⇒ ���R
5. ��Q ⇒ ��R
6. ���R
7. ���Q
8. �Q

6. 1. � ���S ∴ �S
2. ���S
3. ��S
4. �S

* 7. 1. �� J
2. ��K ⇒ �� J ∴ ��K
3. ��K ⇒ ��� J
4. ���� J
5. ���K
6. ��K

Part C: Proofs Construct proofs to show that the following arguments are valid.

* 1. �A, A ⇒ B ∴ ��B

2. ��R ∴ ��R

3. ���H, �C ⇒ �H ∴ �C

* 4. ��(A • B) ∴ �A • ��B

5. ��(P ∨ Q) ∴ �P ∨ �Q

6. ����F ∴ �F

* 7. �����Q ∴ �Q

8. ��T ⇒ ��P ∴ ��(�T • ��P)

9. ��(A • �B) ∴ ��A ⇒ ��B

* 10. ��F ⇒ ��G ∴ ��(�F ∨ �G)

11. �R, ��R ⇒ ��S ∴ ��S

12. ��C ∴ �D ⇒ ��C

13. ��(H • ��E) ∴ ��H • �E

14. �M ∨ �S ∴ �(M ∨�S)

15. N ⇒ �N, �N ∴ N

8. 1. L ⇒ M
2. M ⇒ �L
3. �L  ∴ L
4. L ⇒ �L
5. �L ⇒ ��L
6. ��L
7. �L
8. L

9. 1. ��N ⇒ ��P
2. ��P  ∴ ��N
3. ��N ⇒ �P
4. ���N
5. ��N

* 10. 1. ����T ∴ T
2. ���T
3. � �T
4. �T
5. T
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16. �J, ��J ⇒ ��K ∴ K

17. ���(�F ∨ ��G) ∴ �(��F ∨ ���G)

18. ��(�L ∨ �M) ∴ �(�L • �M)

19. �E ⇒ ���H, �H ∴ �E

20. ��S ⇒ �S, �S ∴ S

Part D: English Arguments Symbolize the following arguments using the schemes of
abbreviation provided. Then construct proofs to show that the arguments are valid.

* 1. Necessarily, if a supremely perfect island exists, then it is necessarily true that a
supremely perfect island exists. Possibly, a supremely perfect island exists. There-
fore, a supremely perfect island exists. (P: A supremely perfect island exists)

2. Necessarily, if God exists, God is nonphysical but omnipresent. Necessarily, if God
is nonphysical, then it is impossible for God to be located anywhere. Necessarily, if
God is omnipresent, God is located everywhere. Necessarily, if God is not located
anywhere, then God is not located everywhere. Therefore, it is necessarily true
that God does not exist. (G: God exists; N: God is nonphysical; O: God is
omnipresent; L: God is located somewhere; E: God is located everywhere)

3. The proposition “It is possible that my soul can inhabit another body” strictly
implies the proposition “It is not a necessary truth that I am my body.” It is not
necessary that my soul does not inhabit another body. The proposition “It is pos-
sible that I am not my body” entails the proposition “I am not my body.” It follows
that I am not my body. (B: I am identical with my body; S: My soul inhabits
another body)

* 4. Necessarily, both Zeus and Yahweh are omnipotent. Necessarily, if it is necessary
that Zeus is omnipotent, then Zeus can thwart Yahweh. Necessarily, if it is neces-
sary that Yahweh is omnipotent, then Yahweh can thwart Zeus. However, “Zeus
can thwart Yahweh” entails “It is not necessarily true that Yahweh thwarts Zeus.”
And necessarily, if it is possible that Yahweh does not thwart Zeus, then it is pos-
sible that Yahweh is not omnipotent. We must therefore conclude that Yahweh is
not omnipotent. (Z: Zeus is omnipotent; Y: Yahweh is omnipotent; T: Zeus thwarts
Yahweh; A: Yahweh thwarts Zeus)

5. Necessarily, it is possible that the word “bachelor” will change meaning over time.
Necessarily, if it is possible that the word “bachelor” will change meaning over
time, then it is not necessarily true that all bachelors are unmarried. Hence, it is
possible that not all bachelors are unmarried. (W: The word “bachelor” will change
meaning over time; A: All bachelors are unmarried)

6. The following conditional is logically possible: the proposition “There is a physical
universe” entails the proposition “God exists.” Therefore, “There is a physical uni-
verse” entails “God exists.” (P: There is a physical universe; G: God exists)

7. If it is possibly possible that a powerful demon exists, then it is necessarily possible
that I am deceived about the existence of an external world. Necessarily, it is pos-
sible that a powerful demon exists. If it is possible that I am deceived about the
existence of an external world, then it is necessarily possible that I know nothing.
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But the proposition “Possibly I know nothing” entails the proposition “I know
nothing.” Accordingly, I know nothing. (D: A powerful demon exists; E: I am
deceived about the existence of an external world; K: I know nothing)

8. If a supremely perfect being created something, then a supremely perfect being cre-
ated the best of all possible worlds. Possibly, it is necessary that a supremely perfect
being created something. If a supremely perfect being created the best of all pos-
sible worlds, then the actual world is the best of all possible worlds. Therefore, it is
not possible that the actual world is not the best of all possible worlds. (S: A
supremely perfect being created something; B: A supremely perfect being created
the best of all possible worlds; A: The actual world is the best of all possible
worlds)

9. Possibly, it is necessary that if pointless suffering occurs, then God is not both
omnipotent and perfectly good. Possibly, pointless suffering occurs. Therefore, nec-
essarily either possibly God is not omnipotent or possibly God is not perfectly good.
(S: Pointless suffering occurs; O: God is omnipotent; G: God is perfectly good)

10. Necessarily, using nuclear weapons involves indiscriminate killing if and only if it
is wrong to use nuclear weapons. The proposition “It is possible that indiscriminate
killing occurred at Hiroshima” strictly implies the proposition “It is possibly neces-
sary that using nuclear weapons involves indiscriminate killing.” Indiscriminate
killing occurred at Hiroshima assuming that it is possible that any war can be won
without killing a great many noncombatants. Possibly, any war is won without
killing a great many noncombatants. Therefore, it is wrong to use nuclear weapons.
(N: Using nuclear weapons involves indiscriminate killing; W: It is wrong to use
nuclear weapons; H: Indiscriminate killing occurred at Hiroshima; K: Any war is
won without killing a great many noncombatants)

Part E: Paradoxes of Strict Implication As noted previously, C. I. Lewis devel-
oped modal logic partly because he was troubled by the so-called paradoxes of mate-
rial implication. However, the concept of strict implication has results that seem just
as paradoxical to many. To understand these paradoxes, construct proofs to show
that the following arguments are valid:

1. �B ∴ A ⇒ B

2. ��A ∴ A ⇒ B

Argument (1) tells us that a necessary truth is strictly implied by any statement whatsoever.
It follows, for example, that:

3. “Trees exist” strictly implies “No circles are squares.”

This is puzzling as the antecedent of (3) seems irrelevant to its consequent. Does it
help to note that (3) is equivalent to (4), applying SI and MI?

4. Necessarily, either trees do not exist or no circles are squares.

Argument (2) tells us that an impossible proposition entails any proposition whatsoever. It
follows, for example, that:
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5. “There are circular squares” strictly implies “Santa exists.”

Again the antecedent does not seem relevant to the consequent. Does it help to note
that (5) is equivalent to (6), applying SI and MI?

6. Necessarily, either there are no circular squares or Santa exists.

Notes

1. The historical observations here regarding Aristotle and the one that follows regard-
ing C. I. Lewis are gleaned from Kenneth Konyndyk, Introductory Modal Logic (Notre
Dame, IN: University of Notre Dame Press, 1986), pp. 18–19, 26.

2. Example (7) is borrowed from Alvin Plantinga, The Nature of Necessity (Oxford:
Clarendon Press, 1974), p. 2.

3. For a review of the concept of a tautology, see section 7.5.
4. My definition is adapted from Laurence BonJour, In Defense of Pure Reason (New

York: Cambridge University Press, 1998), p. 32.
5. This is a note for the metaphysically alert reader. I realize that I am speaking some-

what loosely about statements here. We will take up the issue of statements and
propositions momentarily.

6. Konyndyk, Introductory Modal Logic, p. 15.
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1989), pp. 171–176.

8. Saint Augustine, On Free Choice of the Will, trans. Anna S. Benjamin and L. H.
Hackstaff (Indianapolis, IN: Bobbs-Merrill, 1964), pp. 90–93.
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CHAPTER TWELVE (Layman, The Power of Logic, “Modal Logic” Partial Answer Key) 
  
Exercise 12.1 
Part A. True or false?  
 1. F 
 4. F 
 7. F  
 10. T 
 13. F 
 16. T 
 19. T 
 
Part B. Identifying Modalities 
 1. Contingent and true 
 4. Contingent and true 
 7. Impossible  
 10. Contingent and false 
 13. Necessary 
 16. Contingent and true 
 19. Impossible  
 
Exercise 12.2 
Part A. Symbolizing  
 1. ◊G 
  
 4.  ~◊~G 
 
 7. ◊G • ◊~G 
 
 10. G v ~◊G  
 
 13. ~◊G 
 
Part B. More Symbolizing 
 1. L • ◊∼L 
 
 4. G • ◊B 
 
 7. ∼S • ◊S 
 
 10. (R • D) • ◊∼(R • D) 
  
 13. ◊(T → C) 
 
 16. ◊H • ∼H 
 
 19. ◊B • ∼◊T 
     
Exercise 12.3 
Part A. Annotating 
(1)  1. P     ∴ ◊P  
 2. P        1, NE    
 3. ◊P   2, EP   
 
(4)  1. ∼◊∼G   ∴  G         



 

 2. G      1, MN    
 3.  G        2, NE 
      
(7)  1.  ◊∼W      ∴∼ W 
   2.  ∼ W     1, MN  
       
(10)                              ∴ [(A • B) → B] 
 1. (A ● B)     Assume 
           2. B      1, Simp 
 3. (A ● B) → B       1-2, CP 
 4. [(A • B) → B]     3, TN 
  
Part B. Correct or incorrect?  
(1) 1. N →  E 
 2. N →  E         incorrect (NE is an implicational rule) 
 
(4) 1. A →  B 
 2. ◊(A →  B)             1, EP 
 
(7) 1. F → G 
 2. F →  ◊G              incorrect (EP is an implicational rule) 
 
(10) 1. ∼ ∼R ↔ S 
 2. ◊R ↔ S             1, MN 
 
(13) 1. (◊∼Y ↔ ∼ ∼Z) →  ∼◊V 
 2. (◊∼Y ↔ ◊Z)→  ∼◊V  1, MN 
 
Part C. Proofs 
(1)  1. C • D 
 2. (◊C •  D) →  S   ∴ ◊S 
 3. D               1, Simp 
 4. C                1, Simp 
 5. C               4, NE 
 6. ◊C                5, EP 
 7. ◊C • D                3, 6, Conj 
 8. S                 7, 2, MP 
 9. ◊S                 8, EP 
 
(4)   1. ∼(◊M • N) 
 2. ∼M →  ∼◊Q 
 3. ◊∼N →  ∼ P 
 4. ( ∼Q v ◊∼P) → ∼◊R       ∴ ∼R 
 5. ∼◊M v ∼ N                 1, DeM 
 6. ∼◊M →  ∼◊Q               2, MN 
 7. ∼ N →  ∼ P                3, MN 
 8. ∼◊Q v ∼ P               5, 6, 7, CD 
 9. ∼Q v ∼ P                8, MN 
 10. ∼Q v ◊∼P                 9, MN 
 11. ∼◊R                 10, 4, MP 
 12. ∼R                 11, MN 
 13. ∼R                 12, NE 
 
(7)   1. ◊Z v (A • B) 



 

 2. ◊Z → ∼R 
 3. ◊∼B                              ∴ ∼ R 
 4.(◊Z v A) • (◊Z v B)      1, Dist 
 5. ◊Z v B       4, Simp 
 6. ∼ B        3, MN 
 7. ◊Z        5, 6, DS 
 8. ∼R        2, 7, MP 
 9. ◊∼R        8, EP 
 10. ∼ R       9, MN 
 
(10) 1. ( M v F) • ( M v ∼ G) 
 2. M →  ∼◊H 
 3. ( F • ∼ G) →  ∼ J    ∴ ◊H →  ◊∼J 

 4. M v ( F • ∼ G)          1, Dist     
 5. ∼◊H v ∼ J            4, 2, 3, CD 
 6. ◊H →  ∼ J           5, MI 
 7. ◊H →  ◊∼J           6, MN 
 
(13)   1. (A v B) 
 2. ∼◊∼(B v A) → ∼◊C 
 3. ∼ ∼C v R ∴ ◊(R v S) 
 4. ∼◊∼(A v B)                1, MN 
 5. ∼◊∼(B v A)                4, Com 
 6. ∼◊C                 2, 5, MP 
 7. ◊C v R                3, MN 
 8. R                 6, 7, DS 
 9. R v S   8, Add 
 10. ◊(R v S)                9, EP  
 
(16)   1. ◊Z • ( Y v ∼◊W) 
 2. ∼Z v ◊∼Y 
 3. ∼W →  ∼◊U 
 4. ∼ ∼U v ∼T   ∴ ◊∼T 
 5. (◊Z • Y) v (◊Z • ∼◊W)    1, Dist 
 6. ∼◊Z v ◊∼Y  2, MN 
 7. ∼◊Z v ∼ Y  6, MN 
 8. ∼(◊Z • Y)  7, DeM 
 9. ◊Z • ∼◊W  8, 5, DS 
 10. ∼◊W  9, Simp 
 11. ∼W  10, MN 
 12. ∼◊U   11, 3, MP 
 13. ◊U v ∼T  4, MN 
 14. ∼T 12, 13, DS 
 15. ∼T  14, NE 
 16. ◊∼T  15, EP 
 
(19) 1. P v G 
 2. P →  Z 
 3. G →  ∼◊∼Z 
 4. ◊∼S →  ◊∼Z      ∴ S 
 5. Z v ∼◊∼Z   1, 2, 3, CD 
 6. ∼◊∼Z v ∼◊∼Z        5, MN 
 7. ∼◊∼Z          6, Re 



 

 8. ∼◊∼S          4, 7, MT 
 9. S         8, MN 

Part D. English Arguments 
(1)    1. ∼F     ∴ ∼◊F 
  2. ∼◊F     1, MN 
 
(4) 1. ∼◊F       ∴ ∼F 
 2. ∼F      1, MN 
 3. ∼F      2, NE 
 
(7) 1. ∼◊O • G 
 2. (◊R • ∼◊O) →  ◊∼G      ∴ ∼R 
 3.(∼◊O • ◊R) →  ◊∼G   2, Com 
 4.∼◊O→ (◊R →  ◊∼G)  3, Ex 
 5. ∼◊O        1, Simp 
 6. ◊R →  ◊∼G       4, 5, MP 
 7. G        1, Simp 
 8. ∼◊∼G        7, MN 
 9. ∼◊R        6, 8, MT 
 10. ∼R        9, MN 
 11. ∼R        10, NE  
 
Exercise 12.4 
Part A. Symbolizing 
 1. (J • ∼M) ⇒ B 
 
 4. ∼T →  F 
 
 7. (M →  W) 
 
Part B. Symbolizing and Evaluating 
 1. ◊S • ◊J  ∴ ◊(S • J)  invalid form 
 
 4. ∼H v W  ∴ ∼ H v W  invalid form.  
  Note: applying MI we get: H → W ∴ H → W, but OT does not apply to the material 

conditional.  
 
 7. ◊(F • S)  ∴ ◊F • ◊S  valid form 
 
 10. The conditional premise is amphibolous:    

S →  S,  S  ∴ S   valid form (modus ponens) 
(S →  S),  S  ∴ S   invalid form 

 
Part C. Annotating 
(1)  1. (A • ∼B)    ∴ ∼◊B   
 2. A • ∼B      1, MODE    
 3.  ∼B       2, Simp     
 4. ∼◊B       3, MN    
 
(4) 1. ◊(H • J)   
 2. ◊K ⇒ ∼◊J       ∴ ∼K   
 3. ◊H • ◊J        1, MODI     
 4. ◊J      3, Simp    



 

 5. ∼∼◊J       4, DN    
 6. ∼◊K        2, 5, MMT  
 7. ∼K        6, MN 
 
(7) 1. N ⇔ O 
 2. (N →  P)                        ∴ O ⇒ P 
 3. N ⇒ P             2, SI 
 4. (N ↔ O)           1, LE   
 5. [(N →  O) • (O →  N)  4, ME 
 6. (N →  O) • (O →  N)  5, MODE 
 7. (O →  N)            6, Simp 
 8. O ⇒ N            7, SI 
 9. O ⇒ P           8, 3, MHS 
   
(10)  1. ◊(W v X) 
 2. ◊W ⇒ ◊Z 
 3. ◊X ⇒ ◊V             ∴ ◊(Z v V) 
 4. ◊W v ◊X       1, MODE  
 5. (◊W →  ◊Z)        2, SI 
 6. (◊X →  ◊V)        3, SI 
 7. ◊W →  ◊Z        5, NE 
 8. ◊X →  ◊V  6, NE 
 9. ◊Z v ◊V  4, 7, 8, CD 
 10. ◊(Z v V)  9, MODE 
  
Part D. Correct or incorrect? 
(1) 1. ∼A →  ∼B 
 2. ◊∼A →  ◊∼B      incorrect 
 
(4) 1. (G v H) 
 2. G v H      incorrect 
 
(7) 1. ◊(∼N v P) 
 2. ◊∼N v ◊P      MODE 
 
(10) 1. ◊U v ◊W 
 2. ◊(U v W)      MODE 
 
(13) 1. (∼C • D) 
 2. ∼C • D      MODE 
 
Part E. Proofs.  
(1) 1.  A ⇒ B   ∴ ∼B ⇒ ∼A 
 2. (A →  B) 1, SI 
 3. (∼B →  ∼A) 2, cont 
 4. ∼B ⇒ ∼A 3, SI 
 
(4) 1. (E →  H) 
 2. ∼ ∼E        ∴ ◊H 
 3. ◊E      2, MN 
 4. E ⇒ H     1, SI 
 5. ◊E ⇒ ◊H     4, OT 
 6. ◊H      3, 5, MMP 
  



 

(7) 1. ◊(L v M) 
 2. ∼L 
 3. M ⇒ ∼N       ∴ ∼ N 
 4. ∼◊L     2, MN 
 5. ◊L v ◊M    1, MODE 
 6. ◊M     4, 5, DS 
 7. ◊M ⇒ ◊∼N    3, OT 
 8. ◊∼N     6, 7, MMP 
 9. ∼ N  8, MN 
 
(10) 1. A ⇒ E 
 2. ∼E  ∴ ∼A 
 3. ◊A ⇒ ◊E 1, OT 
 4. ∼◊E  2, MN 
 5. ∼◊A              3, 4, MMT 
 6. ∼A             5, MN 
  
(13) 1. [∼R v (S • T)] 
 2. ◊R    ∴ ◊S • ◊T 
 3. [R →  (S • T)] 1, MI 
 4. R ⇒ (S • T) 3, SI 
 5. ◊R ⇒ ◊(S • T) 4, OT 
 6. ◊(S • T) 2, 5, MMP 
 7. ◊S • ◊T 6, MODI 
 
(16)   1. ◊[(L v M) • (L v Q)] 
 2. ◊P ⇒ ∼◊Q 
 3. ∼L   ∴ ∼P 
 4. ◊[L v (M • Q)] 1, Dist 
 5. ∼◊L  3, MN 
 6.  ◊L v ◊(M • Q) 4, MODE 
 7. ◊(M • Q) 5, 6, DS 
 8. ◊M • ◊Q 7, MODI 
 9. ◊Q  8, Simp 
 10. ∼∼◊Q 9, DN 
 11. ∼◊P  10, 2, MMT 
 12. ∼P 11, MN 
 13. ∼P  12, NE 
  
(19)  1. [(E • F) →  G] 
 2. E   ∴ ∼G ⇒ ∼F 
 3. [E →  (F → G)] 1, Ex 
 4. E ⇒ (F →  G) 3, SI 
 5. E ⇒ (F →  G) 4, OT 
 6. (F →  G) 2, 5, MMP 
 7. (∼G →  ∼F) 6, cont 
 8. ∼G ⇒ ∼F 7, SI 
 
Part F. English Arguments 
(1) 1. (F →  G) 
 2. ∼◊∼F ∴ G 
 3. F ⇒ G 1, SI 
 4. F  2, MN 



 

 5. F ⇒ G 3, OT 
 6. G  4, 5, MMP 
 
Exercise 12.5 
Part A. Symbolize.  
 1. ◊B 
 
 4. (∼G • ◊G) • ◊G 
 
 7. ◊R • ∼◊ R 
 
Part B. Annotate.  
(1) 1. A ⇒ B     
 2. A                 ∴ B    
 3. A                2, S4    
 4. B                1, 3, MMP 
 
(4) 1. ◊G      
 2. ◊G ⇒ ◊ H  ∴ H   
 3. ◊G              1, S5   
 4. ◊ H               2, 3, MMP 
 5. H               4, S5    
 6. H               5, NE   
    
(7) 1. ◊ J 
 2. ◊◊K ⇒ ∼ J      ∴ ∼◊K 
 3. ◊◊K ⇒ ∼◊ J   2, S5  
 4. ∼∼◊ J   1, DN 
 5. ∼◊◊K     3, 4, MMT 
 6. ∼◊K    5, S4 
       
(10) 1. ◊ ◊ T  ∴ T 
 2. ◊ T     1, S5 
 3. T      2, S5 
 4. T      3, S4 (or NE) 
 5. T   4, NE 
 
Part C. Proofs 
(1) 1. A 
 2. A ⇒ B            ∴ B 
 3. A ⇒ B      2, OT 
 4. A⇒ B      3, S4 
 5. B                 1, 4, MMP 
  
(4) 1. (A • B)        ∴ A • B 
 2. ( A • B)  1, MODE 
 3. A• B       2, MODE 
 4. A • B    3, S4 
 
(7) 1. ◊ ◊ ∼Q  ∴ ∼Q 
 2. ◊ ∼Q         1, S5  
 3. ◊ ∼Q         2, NE 
 4. ∼Q          3, S5 
 5. ∼Q          4, NE 



 

  
(10) 1. F ⇒ ◊ G        ∴ ◊◊(∼F v G) 
 2. ( F → ◊ G)    1, SI 
 3. F → ◊ G         2, NE 
 4. F →  ◊ G        3, S4  
 5. ∼ F v ◊ G                 4, MI 
 6. ◊∼F v ◊ G        5, MN 
 7. ◊(∼F v G)        6, MODE 
 8. ◊◊(∼F v G)        7, S4  
 
Part D. English Arguments 
(1) 1. (P →  P) 
 2. ◊P                     ∴ P 
 3. P ⇒ P 1, SI 
 4. ◊P ⇒ ◊ P 3, OT 
 5. ◊ P  2, 4, MMP 
 6. P  5, S5 
 7. P  6, NE 
  
(4) 1. (Z • Y) 
 2. ( Z →  ◊T) 
 3. ( Y →  ◊A) 
 4. ◊T ⇒ ∼ A 
 5. (◊∼A →  ◊∼Y) ∴ ∼Y 
 6. Z • Y      1, MODE 
 7. Z →  ◊T      2, NE 
 8. Z       6, Simp 
 9. ◊T       7, 8, MP 
 10. ∼ A      9, 4, MMP 
 11. ◊∼A       10, MN 
 12. ◊∼A ⇒ ◊∼Y       5, SI 
 13. ◊∼Y     11, 12, MMP 
 14. Y      6, Simp 
 15. ∼◊∼Y     14, MN 
 16. ◊∼Y v ∼Y     13, Add 
 17. ∼Y    15, 16, DS 
  
Part E. Paradoxes of Strict Implication. This is for class discussion.  
   
 




