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Food Webs

Author:  Robert A. McGuigan, Department of Mathematics, Westfield State
College.

Prerequisites: The prerequisites for this chapter are basic concepts of graph
theory. See Sections 9.1 and 9.2 of Discrete Mathematics and Its Applications.

Introduction

A food web is a directed graph modeling the predator-prey relationship in an
ecological community. We will use this directed graph to study the question of
the minimum number of parameters needed to describe ecological competition.
For this purpose we will consider how graphs can be represented as intersection
graphs of families of sets.

We will also investigate the axiomatic description of measures of status in
food webs.

Competition

In an ecological system, the various species of plants and animals occupy niches
defined by the availability of resources. The resources might be defined in terms
of factors such as temperature, moisture, degree of acidity, amounts of nutrients,
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226 Applications of Discrete Mathematics

and so on.

These factors are subject to constraints such as temperature lying in a
certain range, pH lying within certain limits, etc. The combination of all these
constraints for a species then defines a region in n-dimensional Euclidean space,
where n is the number of factors. We can call this region the ecological niche
of the species in question.

For example, suppose we restrict ourselves to three factors, such as tem-
perature, nutrients, and pH. Assume that the temperature must be between t;
and to degrees, the amount of nutrients between n; and ns and the pH be-
tween a; and ao. Then the ecological niche these define occupies the region of
3-dimensional Euclidean space shown in Figure 1.

pH

nurisnts

a

By

by ks kemperature

Figure 1. An ecological niche.

Euclidean space which has as dimensions the various factors of tempera-
ture, pH, etc., is called an ecological phase space. Generally, no two distinct
species will have the same ecological niche in phase space; however, two species
compete if their ecological niches have non-empty intersection. A basic prin-
ciple of ecology, known as the principle of competitive exclusion, dictates
that species whose niches are too similar, or overlap too much, cannot coexist.
If the factors defining the niche are independent, then the niche in phase space
would be a box such as that in Figure 1. If the factors are not independent,
i.e. the level of one depends on levels of others, then the niche would be some
other type of set, e.g. convex, but not a box.

For example, consider the two factors temperature (¢) and per cent humid-
ity (h). We might have constraints such as: ¢t must be between 0 and 100, and h
must be between 0 and 100t — t2. In this case temperature and humidity are
not independent; the possible values of h depend on the values of . The region
in two-dimensional space defined by these constraints is not a rectangle.

Our discussion of ecological communities and related concepts such as
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species, food webs, and competition will be somewhat oversimplified in order
to make a brief presentation possible. Interested readers should consult refer-
ence [1] for an in-depth treatment of these topics. Our mathematical treatment
follows that of reference [6].

Food Webs

It may be difficult to know all the factors which determine an ecological niche,
and some factors may be relatively unimportant. Hence it is useful to start with
the concept of competition and try to find the minimum number of dimensions
necessary for a phase space in which competition can be represented by niche
overlap.

One approach to this question is to consider the notion of the food web of
an ecological community.

Definition 1 A food web of an ecological community is a directed graph
with a vertex for each species in the community and a directed edge from the
vertex representing species A to the vertex representing species B if and only
if A preys on B. O

Figure 2 shows a simple food web for a community of seven species: robin,
fox, grasshopper, raccoon, salamander, milksnake, and toad.

Robin

Raccoon

Salamander

Fo

Grasshopper ¥ Milksnake

Figure 2. A simple food web.

We can define competition using the food web. Two species compete if and
only if they have a common prey. Thus, in the example of Figure 2, raccoon and
fox compete (since robin is a common prey), milksnake and raccoon compete,
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while salamander and robin do not compete. We use this competition relation
to define a graph called the competition graph.

Definition 2 The competition graph of a food web is a simple graph with a
vertex for each species. Two vertices are joined by an (undirected) edge if and
only if the species they represent have a common prey. O

Example 1 Find the competition graph for the food web of Figure 2.
Solution:  The competition graph for this food web is shown in Figure 3. [0

o Fobin
Raccoon

Salamander

Grasshopper
.

b
Milkshake B

Toad

Figure 3. A competition graph.

To represent the competition relation in phase space we want to assign to
each vertex of the competition graph a subset of Euclidean space of some di-
mension in such a way that two vertices are joined by an edge in the competition
graph if and only if the sets assigned to these vertices have non-empty inter-
section. Figure 4 shows a representation of the competition graph of Figure 3,
using an interval for each vertex. We have thus represented the competition
graph using only one dimension.

Fobin Grasshopper Raccoon
" Salamander
T Miksnake
Fox
Toad
Figure 4. Interval representation of a competition graph.

We can now state a general mathematical problem, but first we need to
develop some terminology.
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Definition 3 A graph is an intersection graph for a family of sets if each
vertex is assigned a set in such a way that two vertices are joined by an edge if
and only if the corresponding sets have non-empty intersection. O

Definition 4 A graph is called an interval graph if it is the intersection
graph for a family of closed intervals. O

Our goal is the representation of competition graphs of families of sets
in Euclidean n-space. Clearly the simplest case would be that of competition
graphs that are interval graphs. This would mean that only one ecological
factor is necessary to describe niche overlap.

Example 2 Find the interval graph for the family of closed intervals A =
[1,3], B=12,6],C =1[5,8], D =[4,5]

Solution: ~ We use the definition of intersection graph to obtain the graph of
Figure 5. [l

D

Figure 5. An intersection graph.

Example 3 Prove that the 4-cycle graph Cy of Figure 6 is not an interval
graph.

Solution:  The proof depends on the order properties of the real numbers. Let
the interval corresponding to vertex n be [n;, n.]. Since the intervals for vertices
1 and 2 overlap, we must have either 1; < 2; <1, <2.0r2;<1; <2, <1,
Assume for specificity that 1; < 2; <1, < 2,.. The argument for the other case
is analogous.

Since the interval for vertex 3 must meet that for vertex 2 and must not
meet that for vertex 1, we must have 1; < 2; < 1, < 3; < 2,.. Now the interval
for vertex 4 must meet those for both vertices 1 and 3, so we have to have
1; <4; <1, and 3; < 4, < 3, since interval 1 lies entirely to the left of interval
3. However, since 2; < 1, < 3; < 2,., the intervals for vertices 2 and 4 overlap,
which is forbidden. O
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1 2

4 3

Figure 6. A graph that is not an interval graph.

The 4-cycle can, however, be represented as the intersection graph of a
family of boxes in Euclidean 2-space, as shown in Figure 7.

There are several methods known for determining whether a simple graph
is an interval graph. A detailed discussion of this topic may be found in Roberts’
book [6]. We simply state the characterization due to Gilmore and Hoffman
[3] without proof. Before the characterization can be stated, we need some
definitions.

Figure 7. A box representation.

Definition 5 A graph H is a generated subgraph of a graph G if the vertices
of H are a subset of the vertices of G and vertices in H are adjacent in H if
and only if they are adjacent in G. O

Definition 6 The complement of a graph G is the graph G where the vertices
of G are the vertices of GG, and two vertices in G are adjacent if and only if they
are not adjacent in G. O

Definition 7 An orientation of a graph G is an assignment of a direction to
each edge in G (which makes G into a directed graph).

An orientation is transitive if whenever (u,v) and (v, w) are directed edges,
then (u,w) is a directed edge. O
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The characterization due to Gilmore and Hoffman is given by the following
theorem.

Theorem 1 A graph G is an interval graph if and only if it satisfies the
following two conditions:

(i) The four-cycle Cy is not a generated subgraph of G,
(ii) The complement of G is transitively orientable. [ |

Our goal in our study of ecological competition is the representation of
niches in Euclidean space and competition by niche overlap. It seems desirable
in an ideal representation that the factors determining the dimension of the eco-
logical phase space would be independent and the niches would be represented
as “boxes”, or Cartesian products of intervals. This leads us to the next part
of this discussion, namely, when can we represent a graph as the intersection
graph of a family of boxes in n-space.

Boxicity

Definition 8 The boxicity of a graph G is the smallest n such that G is the
intersection graph of a family of boxes in Euclidean n-space. O

Note that an interval graph is simply a graph with boxicity equal to 1.
It is not entirely clear that every simple graph has a boxicity. The following
theorem resolves this difficulty.

Theorem 2 Every graph G with n vertices is the intersection graph of a
family of boxes in Euclidean n-space.

Proof: Let v1,vs,...,v, be the vertices of G. A box in Euclidean n-dimen-
sional space is the set of all n-tuples of real numbers (x1, o, ..., x,) such that
each x; is in some closed interval I;. Now, for each k = 1...,n and each vertex
v;, define closed intervals Iy, (v;) as follows.

0,1 fi=k
In(v;) = ¢ [1,2] ifi# k and {v;,vx} is an edge in G
[2,3] ifi# Kk and {v;, v} is not an edge in G.
For each vertex v; define a box B(v;) in Euclidean n-space by

B(v;) = {(z1,22,...,2n) |zj € Ij(v;) for j =1,...,n}.
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Thus, the box B(v;) corresponding to v; is the Cartesian product of the intervals
Ii(v;) for j=1,...,n.

Now we show that v; and v; are adjacent in G if and only if B(v;)NB(v;) #
(). Thus the graph G is the intersection graph of the family of boxes B(v;). First,
suppose that there is an edge joining v; and v,,. If k is different from both [ and
m, then according to the definition, Iy (v;) N Ix(vy,) is [1,2]N[1, 2], [1,2] N [2, 3],
or [2,3] N [2,3]. In any case we have Ix(v;) N I (vm) # 0. If k=1 or k=m then
I (v) N Ix(vy) = [1,2] N [0,1] # . So, if there is an edge joining ve and vy,
then for all k, It(v;) N Ix(vy,) # 0. Hence B(v;) N B(vy,) # 0.

Now suppose that B(v;) N B(vy,) # 0. Then for each k from 1 to n, Iy (v;) N
Ii(vm) # 0. Set k& = [ then I;(v;) = [0,1] and I;(v,,) must be [1,2] for the
intersection to be nonempty. By definition of I;(vy,), vy and v, are adjacent.
Thus G is the intersection graph of the family of boxes B(v;). [ |

This theorem shows that boxicity is well-defined. Unfortunately, there is
no efficient algorithm known for determining the boxicity of a general graph.
There is no characterization known for graphs of any specific boxicity other
than 1.

In fact, there are not many general classes of graphs for which the boxicity
is known. It is not hard to see that the boxicity of the n-cycle C,, is 2 forn =4
or larger, and this is left as Exercise 6. Another general class of graphs for which
the boxicity is known is the complete p-partite graphs. These are the graphs
Knino,...ny defined as follows: there are n; + - - - 4+ n, vertices partitioned into
p classes, where the ith class has n; vertices. Within a class no vertices are
adjacent, and every vertex in any class is adjacent to all vertices in the other
classes. Roberts [6] showed that the boxicity of Knp,,...n, is equal to the number
of n; that are larger than 1.

One result which helps somewhat in calculating the boxicity of a graph is
due to Gabai [2]. This theorem depends on the concept of independence of a
set of edges.

Definition 9 A set of edges in a graph is independent if they have no vertices
in common. O

Gabai’s theorem [2] is the following, stated without proof.

Theorem 3 Let G be a simple graph. If the maximum size of an independent
set of edges of G is k, then G has boxicity less than or equal to k. Also, if G
has a generated subgraph consisting of k£ independent edges then the boxicity
of GG is greater than or equal to k. ]
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Gabai’s theorem is useful in determining the boxicity of relatively small
graphs and for certain families. In any case it limits the amount of trial and
error needed.

In our study of competition we search for the representation of the com-
petition graph of a food web as the intersection graph of a family of sets in
Euclidean n-space for some n. As a consequence of the theorem proved above,
this representation is always possible. Furthermore, we can use the boxicity
of the competition graph as an indicator of the minimum number of factors
essential for describing competition in the community. Cohen [1] has studied
more than 30 single-habitat food webs published in the ecological literature and
has found that the competition graphs of all of them are interval graphs. That
is, in all cases one dimension suffices to represent competition by niche overlap.
It is not known whether this is a general law of ecology, but it does raise many
interesting questions. In some single-habitat communities a single dimension
for the niche space can be identified. It may be some obviously linear factor
such as temperature, body length or depth in water. However, it may well be
that more than one single dimension will work. And, of course, we can’t expect
the single-niche dimension to be the same from community to community.

Hypothetical food webs have been constructed such that their competition
graphs are not interval graphs, but these combinations of species have never
been observed in nature at the same time and place.

The representation of graphs as intersection graphs of boxes has important
applications in ecology, as we have seen. Applications to such diverse fields
as archaeology and automobile traffic control have also been investigated (see
reference [6]). We conclude with an additional application of food webs.

Trophic Status

In the study of social systems it is often useful to measure the status of an
individual in an organization. Harary [4] first introduced the idea of measuring
the status of a species in a food web. In ecology this status is usually called the
trophic level and is helpful in assessing the complexity and diversity of a web.
The idea is that a web with many species at each trophic level has a high degree
of complexity. In ecology it is generally thought that more complex ecosystems
are more stable. In this section we study the question of how trophic status
can be defined in a food web.

If the food web is simply a directed path (a food chain) then it is easy to
define trophic status; just follow the order of the species in the chain. Some
other structures also allow for an easy definition of trophic status. For example,
we might think of species with no outgoing edges as being at the bottom of the
web. Suppose that for every vertex, all directed paths to vertices at the bottom
have the same length. Examples of such webs are given in Figure 8.
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Figure 8. Graphs of two food webs.

In this kind of web, the trophic status of a vertex can be defined as the
length of a directed path from the vertex to the bottom.

In general it is difficult to define trophic status in complicated food webs.
Because more than one approach may be possible, we will use the term trophic
status in this context rather than the term trophic level which is well-known in
the context of food chains. Our goal is to investigate how trophic status could
be measured rather than to develop a unique possibility.

To start, we need some basic assumptions about food webs. In particular,
we assume that our food web is acyclic, i.e. that the directed graph has no
cycles. Thus, there are no species si,...,s, such that fori =1,...,n—1, s;
preys on s;41 and s, preys on si. In particular there are no two species such
that each preys on the other. Thus, the prey relationship is asymmetric.

We will take an axiomatic approach to defining measures of trophic status.
That is, we will state conditions which any reasonable measure should satisfy in
the form of axioms. A measure will then be acceptable if and only if it satisfies
the axioms. The axioms will define an ideal model for the concept of measure
of trophic status. Our approach will follow that of Harary [4] and Kemeny
and Snell [5], who work with status in an organization, and the treatment in
Roberts [6], which is more detailed.

Definition 10 In a food web a species v is a direct prey of a species u if
there is a directed edge from u to v. A species v is an indirect prey of u if there
is a directed path from u to v. O

It could well happen that there are two species u and v neither of which is
an indirect prey of the other.

Definition 11 If v is a direct or indirect prey of u, then the level of v relative
to u is the length of the shortest directed path from u to v. O



Chapter 13 Food Webs 235

We can now state some reasonable axioms for measures of trophic status.
Let tw(u) be the measure of status in the food web W. The axioms are:

Axiom 1: If a species u has no prey then ty (u) = 0.

Axiom 2: If, without otherwise changing the food web, we add a
new vertex which is a direct prey of u to get a new web W', then
tw (u) > tw(u)

Axiom 3: Suppose the web W is changed by adding edges and/or
vertices in such a way that the level of some direct or indirect prey of
u is increased, and no direct or indirect prey of u has its level relative
to u decreased. If W’ is the new web, then ¢y (u) > tw(u).

These axioms make sense intuitively when we consider that we are saying that a
species with no prey is at the bottom level (Axiom 1), that if the number of prey
of a species increases its status increases (Axiom 2), and that the status of a
species increases if its level relative to some indirect prey is increased (Axiom 3).

There is a measure of status which satisfies the axioms. Harary [4] sug-
gested the following definition.

Definition 12 If a species u has ny species at level k relative to u for each
k, then

hw(u) = Zk’nk. O
k

Theorem 4 The measure hy (u) satisfies Axioms 1-3.

Proof: If u has no prey, then hy (u) = 0 because all the ng = 0.

If we add a direct prey for u, then n; increases by 1, so the sum defining
hw (u) also increases.

Likewise, if some direct or indirect prey of u at level k relative to wu is
moved to level k + n below v and no other direct or indirect prey of u has its
level decreased, the sum for h increases by at least kn, verifying Axiom 3. M

Kemeny and Snell [5] also show that if ¢y is any other measure of trophic
status satisfying Axioms 1-3 and having all its values nonnegative, then for all
species u, tyw (u) > hy (u). Thus, h is in a sense a minimal measure of trophic
status.

While h satisfies our axioms it fails to have other desirable properties. For
example, it seems reasonable that if ¢y is a measure of trophic status and v is
a direct or indirect prey of u, then

tw (’U,) > tw (’U)
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The measure h does not have this property. Figure 9 shows an example of
an acyclic food web W with two vertices u and v for which v is a direct prey
of w but hy (v) > hw(u).

u

Y Z

Figure 9. An acyclic food web.

In this example, hy (u) = 6 and hy (v) = 8.

The problem we have found can be avoided if we modify our definition of
level of one species relative to another: If v is a direct or indirect prey of w,
then the level of v relative to u is the length of the longest directed path from wu
to v.

It is not hard to show that if h is defined by the same formula as before, but
using the new definition of level, then h satisfies Axioms 1-3 as well as having
the property that any species has higher status than any of its direct or indirect
prey (see reference [5]). The problem we encountered here demonstrates one of
the difficulties with the axiomatic approach. Our problem lay in the definition
of level and this would not show up in any consideration of the reasonableness of
the axioms. Ideally, all of the terms used in specifying the axioms should either
be left undefined or else be checked for “reasonableness”, just as the axioms
themselves are. In this light we would also have to examine the new definition
of level.

Without referring to the notion of relative level in a food web, perhaps the
only requirement we can state for a measure of trophic status is that if there is
a directed path from u to v, then ty (u) > tyw (v).

There are other ways to investigate complexity of food webs and relative
importance of species in food webs. General methods of measuring complexity
in graphs can be applied to competition graphs and food webs. For example,
such ideas as the number of edges divided by the number of vertices, and the
average out-degree and average in-degree might be useful. The importance, or
criticality, of a species in a food web could be studied by investigating what
happens to the web when the species is deleted from the web. For example, if
the web is disconnected when a species is removed that would indicated a high
level of importance. More information on these questions can be found in [6].
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Exercises

1. Find the ecological niche in Euclidean space of the appropriate dimensions
in each case.
a) Temperature between 10°F and 90°F; nitrate concentration in soil
between 1% and 5%.
b) Carbon monoxide in atmosphere between 0% and 1%; relative humid-

ity between 20% and 100%; nitrogen gas content in atmosphere between
15% and 20%.

2. Find the competition graph for the given food webs in each case:
a) b)
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. Find a representation for each graph as the intersection graph of a family

of rectangles in the plane.
a) b)

. Find a representation for each graph as the intersection graph of a family

of intervals on the line.

a) b)

. Show that if a graph G is an interval graph then it satisfies the conditions of

the theorem of Gilmore and Hoffman characterizing interval graphs. Hint:
For an interval representation let I(v) be the interval assigned to the ver-
tex v. If u and v are adjacent in G, make the orientation (u,v) if and only
if I(u) lies entirely to the left of I(v).

. Show that if C, is the cycle of length n, then the boxicity of C,, is 1 for

n =3 and 2 for n > 4.

. According to Roberts’ result quoted in the text, the boxicity of the com-

plete bipartite graph K(3,3) is 2. Find a representation of K(3,3) as the
intersection graph of a family of boxes in the plane.

. Let Q3 be the graph formed by the edges and corners of a cube in Euclidean

three space. Is Q3 an interval graph? Why? Determine the boxicity of Q3.

. A food web for some species in the Strait of Georgia, B.C. ([1], page 165) is

given by the following table. The numbers atop columns indicate predator
(consuming) species and those at the left of rows indicate prey (consumed)
species. An entry 1 indicates that the predator in that column consumes
the prey for that row, an entry 0 that it does not. The key identifies the
various species.
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Key

Juvenile pink salmon

P. minutus

Calanus and Euphausiid furcilia
FEuphausiid eggs

Euphausiids

Chaetoceros socialis and debilis
mu-flagellates
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a) Construct a directed graph for this food web.
b) Construct the competition graph for this food web.
¢) Find a set of intervals on the real line such that the graph of part b)

is the intersection graph of this family of intervals.

10. Repeat Exercise 9 for the following food web for a community of pine feeders
[1], p.148.
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Pine

Caterpillars, moths
Aphids, secretion
Digger wasps
Ichneumons

Bugs

Ants

Syrphids
Ladybugs

Spiders
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11. Give an example of a food web which has two species, neither of which is a
direct or indirect prey of the other.

12. In the section on trophic status two different definitions of relative level
were given and two corresponding versions of the measure of trophic status
hw were also given. Calculate the trophic status of each vertex in each of
the following food webs using both versions of h.
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13.

14.

15.
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a) b)

If the only requirement we make for a measure of trophic status ¢y is that
if there is a directed path from u to v then tw (u) > tw(v), show that every
acyclic food web has such a measure of trophic status.

(Roberts [6]) If relative level is measured using the length of the shortest
directed path (our first definition), a plausible measure of trophic status is

tw(u) = > hw (),

where the sum is taken over all vertices v for which there is a directed
path from w to v. Show that this possible measure has the property that
if there is a directed path from w to v, then ty (u) > tw(v). Which of the
Axioms 1-3 does this measure satisfy?

In our discussion of trophic status we assumed that the food web was
acyclic. How restrictive is this assumption? Can you think of two species
each of which could have the other as prey?

Computer Projects

1.
2.

Write a program to calculate trophic status in acyclic food webs.

Write a program to calculate the adjacency matrix for the intersection graph
of a family of intervals given as pairs (a, b) of their endpoints.



