
18

Shortest Path Problems

Author: William C. Arlinghaus, Department of Mathematics and Computer
Science, Lawrence Technological University.

Prerequisites: The prerequisites for this chapter are weighted graphs and
Dijkstra’s algorithm. See Section 9.6 of Discrete Mathematics and Its Applica-
tions.

Introduction
One problem of continuing interest is that of finding the shortest path between
points in a network. One traditional problem is that of finding the best route
between two cities, given a complicated road network. A more modern one
is that of transmitting a message between two computers along a network of
hundreds of computers. The quantity to be minimized might be mileage, time,
shipping cost, or any other measurable quantity.

Dijkstra’s algorithm was designed to find the shortest path, in a weighted
graph, between two points a and z. This is done by initially labeling each vertex
other than a with ∞, labeling a with 0, and then modifying the labels as shortest
paths within the graph were constructed. These labels are temporary; they
become permanent when it becomes apparent that a label could never become
smaller. (See the proof of Theorem 1 of Section 9.6 of Discrete Mathematics
and Its Applications.)

322



Chapter 18 Shortest Path Problems 323

If this process is continued until every vertex in a connected, weighted
graph has a permanent label, then the lengths of the shortest paths from a to
each other vertex of the graph are determined. As we will see, it is also relatively
easy to construct the actual path of shortest length from a to any other point.
Of course, this process can be repeated with any other point besides a as the
initial point for Dijkstra’s algorithm. So eventually all possible shortest paths
between any two points of the graph can be determined. But, as a process to
find all shortest paths, it is not very natural.

In the exercises of Section 9.6 of Discrete Mathematics and Its Applica-
tions, Floyd’s algorithm was discussed. This algorithm computes the lengths of
all the shortest distances simultaneously, using a triply-nested loop to do the
calculations. Unfortunately, primarily since none of the calculations part of the
way through the iterations have a natural graph-theoretic interpretation, the
algorithm cannot be used to find the actual shortest paths, but rather only their
lengths. This chapter will discuss a triple iteration, Hedetniemi’s algorithm, in
which intermediate calculations have a natural interpretation and from which
the actual path can be constructed.

Further Reflections on Dijkstra’s Algorithm

Dijkstra’s algorithm traces shortest paths from an initial vertex a through a
network to a vertex z. Each vertex other than a is originally labeled with ∞,
while a is labeled 0. Then each vertex adjacent to a has its label changed to the
weight of the edge linking it to a. The smallest such label becomes permanent,
since the path from a to it is the shortest path from a to anywhere. The process
continues, using the smallest non-permanent label as a new permanent label at
each stage, until z gets a permanent label. In general, when Dijkstra’s algorithm
is used, a label attached to a vertex y is changed when the permanent label of a
vertex x, added to the weight of the edge {x, y}, is less than the previous label
of y. For instance, consider Figure 1. (Note that the vertices a, b, c here are
the vertices b, c, g of Figure 4 of Section 9.6 of Discrete Mathematics and Its
Applications.) In moving from a to b, the label on b was changed to 3, which is
the sum of the permanent label, 2, of c and the weight, 1, of the edge between c
and b.

Further, note that it is easy to keep track of the shortest path. Since an
edge from c to b was added, the shortest path from a to b consists of the shortest
path from a to c followed by the edge from c to b. Figure 1(c) keeps track of
all the shortest paths as they are computed.

However, an efficient algorithm for finding the shortest path from a to z
need only keep track of the vertex from which the shortest path entered a given
vertex. For example, suppose that with the vector of vertices (a, b, c, d, e, z)
we associate the vector of lengths (0, 3, 2, 8, 10, 13) and the vector of vertices



324 Applications of Discrete Mathematics

Figure 1. A weighted graph.

(−, c, a, b, d, e) from which the shortest path arrived at the vertex, as in Fig-
ure 1(d). Then the shortest path from a to z is of length 13, using the first
vector. The path itself can be traced in reverse from the second vector as fol-
lows: z was reached from e, e from d, d from b, b from c, and c from a. Thus
the shortest path is a, c, b, d, e, z.

Hedetniemi’s Algorithm
One goal of shortest path algorithms is to find the lengths of all possible shortest
paths in a weighted graph at the same time. For instance, given a road network
with all lengths of roads listed, we would like to make a list of shortest distances
between any two cities, not just the length from Detroit to Philadelphia or even
from Detroit to all cities. In this section we discuss an algorithm to compute
those lengths, developed recently by Arlinghaus, Arlinghaus, and Nystuen [1].
A program, never published previously, by which the computations were done
for that research, is included.

The algorithm constructed here is based on a new way to compute pow-
ers of matrices, which we will call the Hedetniemi matrix sum. This sum was
suggested to Nystuen at the University of Michigan by S. Hedetniemi, who was
then a graduate student in mathematics. Hedetniemi later completed his doc-



Chapter 18 Shortest Path Problems 325

torate under Frank Harary; and Nystuen, a professor of geography at Michigan
remembered the method for later application.

Proceeding to the algorithm itself, suppose we begin with a connected,
weighted graph with vertices v1, . . . , vn. With this graph we associate the n×n
“adjacency” matrix A = [aij ] defined as follows:

aij =

{ 0 if i = j
x if i �= j and there is an edge of weight x between i and j
∞ otherwise.

The symbol ∞ is used since ∞ can be printed in most computer programs; in
computations within programs, some very large numbers should be used.

For example, the graph of Figure 2 has the following adjacency matrix A.

Figure 2. A weighted graph with adjacency matrix A.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 30 ∞ 30 ∞ ∞ ∞ ∞ 40
30 0 25 40 ∞ ∞ ∞ ∞ ∞
∞ 25 0 50 ∞ ∞ ∞ ∞ ∞
30 40 50 0 30 20 ∞ ∞ ∞
∞ ∞ ∞ 30 0 ∞ 25 ∞ ∞
∞ ∞ ∞ 20 ∞ 0 20 ∞ 20
∞ ∞ ∞ ∞ 25 20 0 25 ∞
∞ ∞ ∞ ∞ ∞ ∞ 25 0 20
40 ∞ ∞ ∞ ∞ 20 ∞ 20 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We now introduce an operation on matrices called the Hedetniemi matrix
sum, denoted by 	
.

Definition 1 Let A be an m × n matrix and B an n × p matrix. Then the
Hedetniemi matrix sum is the m × p matrix C = A 	
 B, whose (i, j)th entry
is

cij = min{ai1 + b1j , ai2 + b2j , . . . , a1n + bnj}.



326 Applications of Discrete Mathematics

Example 1 Find the Hedetniemi matrix sum, A 	
 B, of the matrices

A =

⎛⎝ 0 1 2
2 0 3
5 6 0

⎞⎠ and B =

⎛⎝ 0 3 4
5 0 4
3 1 0

⎞⎠.

Solution: We find that

A 	
 B =

⎛⎝ 0 1 2
2 0 3
5 6 0

⎞⎠ +

⎛⎝ 0 3 4
5 0 4
3 1 0

⎞⎠ =

⎛⎝ 0 1 2
2 0 3
3 1 0

⎞⎠.

For example, the entry c23 is computed as follows:

c23 = min{2 + 4, 0 + 4, 3 + 0} = 3.

Example 2 Find A 	
 B if A =

⎛⎝ 0 1 ∞
1 0 4
∞ 4 0

⎞⎠ and B =

⎛⎝ 0 1 ∞
1 0 4
∞ 4 0

⎞⎠ .

Solution: We see that

A 	
 B =

⎛⎝ 0 1 ∞
1 0 4
∞ 4 0

⎞⎠ +

⎛⎝ 0 1 ∞
1 0 4
∞ 4 0

⎞⎠ =

⎛⎝ 0 1 5
1 0 4
5 4 0

⎞⎠ .

For example, c13 is computed using c13 = min{0 + ∞, 1 + 4,∞ + 0} = 5.

But what has this to do with shortest paths? Consider our example of
Figure 2. Let A2 = A 	
 A, A3 = A2 	
 A, . . .. Then,

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 30 55 30 60 50 ∞ 60 40
30 0 25 40 70 60 ∞ ∞ 70
55 25 0 50 80 70 ∞ ∞ ∞
30 40 50 0 30 20 40 ∞ 40
60 70 80 30 0 45 25 50 ∞
50 60 70 20 45 0 20 40 20
∞ ∞ ∞ 40 25 20 0 25 40
60 ∞ ∞ ∞ 50 40 25 0 20
40 70 ∞ 40 ∞ 20 40 20 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Look at a typical computation involved in finding A2 = [a(2)
ij ]:

a
(2)
13 = min{0 + ∞, 30 + 25,∞+ 0, 30 + 50,

∞ + ∞,∞ + ∞,∞ + ∞,∞ + ∞, 40 + ∞}
= 55.



Chapter 18 Shortest Path Problems 327

Notice that the value 55 is the sum of 30, the shortest (indeed, only) path
of length 1 from v1 to v2, and 25, the length of the edge between v2 and v3.
Thus a

(2)
13 represents the length of the shortest path of two or fewer edges from v1

to v3. So A2 represents the lengths of all shortest paths with two or fewer edges
between any two vertices.

Similarly, A3 represents the lengths of all shortest paths of three or fewer
edges, and so on. Since, in a connected, weighted graph with n vertices, there
can be at most n − 1 edges in the shortest path between two vertices, the
following theorem has been proved.

Theorem 1 In a connected, weighted graph with n vertices, the (i, j)th
entry of the Hedetniemi matrix An−1 is the length of the shortest path between
vi and vj .

In the graph of Figure 2, with nine vertices, we have

A8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 30 55 30 60 50 70 60 40
30 0 25 40 70 60 80 90 70
55 25 0 50 80 70 90 110 90
30 40 50 0 30 20 40 60 40
60 70 80 30 0 45 25 50 65
50 60 70 20 45 0 20 40 20
70 80 90 40 25 20 0 25 40
60 90 110 60 50 40 25 0 20
40 70 90 40 65 20 40 20 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the shortest path from v1 to v7 is of length 70.
Perhaps the most interesting fact about this example is that A4 = A8.

This happens because in the graph of Figure 2, no shortest path has more
than 4 edges. So, no improvements in length can occur after 4 iterations. This
situation is true in general, as the following theorem states.

Theorem 2 For a connected, weighted graph with n vertices, if the Hedet-
niemi matrix Ak �= Ak−1, but Ak = Ak+1, then Ak represents the set of
lengths of shortest paths, and no shortest path contains more than k edges.

Thus, this algorithm can sometimes be stopped short. Those familiar with
sorting algorithms might compare this idea to that of a bubble sort and Floyd’s
algorithm to a selection sort (see Sections 3.1 and 9.6 of Discrete Mathematics
and Its Applications).

Algorithm 1 gives the pseudocode for the Hedetniemi algorithm, which
computes powers of the original weighted adjacency matrix A, quitting when
two successive powers are identical. We leave it as Exercise 3 to determine the
efficiency of the algorithm.



328 Applications of Discrete Mathematics

ALGORITHM 1 Hedetniemi shortest path algo-
rithm.

procedure Hedetniemi(G: weighted simple graph)
{G has vertices v1, . . . , vn and weights w(vi, vj) with

w(vi, vi) = 0 and w(vi, vj) = ∞ if (vi, vj) is not an edge}
for i := 1 to n

for j := 1 to n
A(1, i, j) := w(vi, vj)

t := 1
repeat

flag := true
t := t + 1
for i := 1 to n

for j := 1 to n
A(t, i, j) := A(t − 1, i, j)
for k := 1 to n

A(t, i, j) := min{A(t, i, j), A(t − 1, i, j) + A(1, k, j)
if A(t, i, j) �= A(t − 1, i, j) then flag := false

until t = n − 1 or flag = true
{A(t, i, j) is the length of the shortest path between vi and vj}

All that remains is the calculation of the shortest paths themselves.

Shortest Path Calculations
To compute the actual shortest path from one point to another, it is necessary
to have not only the final matrix, but also its predecessor and A itself. For
example, in the graph of Figure 2, the predecessor of A4(= A5 = · · ·) is

A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 30 55 30 60 50 70 60 40
30 0 25 40 70 60 80 90 70
55 25 0 50 80 70 90 ∞ 90
30 40 50 0 30 20 40 60 40
60 70 80 30 0 45 25 50 65
50 60 70 20 45 0 20 40 20
70 80 90 40 25 20 0 25 40
60 90 ∞ 60 50 40 25 0 20
40 70 90 40 65 20 40 20 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.



Chapter 18 Shortest Path Problems 329

We now find the shortest path from v1 to v7 (a path of length 70). Now

a
(4)
17 = a

(3)
1k 	
 ak7

for some k. But the entries a
(3)
1k form the row vector

(0, 30, 55, 30, 60, 50, 70, 60, 40)

and the entries ak7 form the column vector

(∞,∞,∞,∞, 25, 20, 0, 25,∞).

Since (other than for k = 7) the only way in which 70 arises is as the sum
50 + 20 when k = 6, the shortest path ends with an edge of length 20 from v6

to v7, following a path with 3 or fewer edges from v1 to v6. (In fact, since 70
does arise as 70 + 0 when k = 7, there is a path with total number of edges at
most 3.)

Now we can look for the previous edge ending at v6. Note that a
(4)
16 = 50,

as expected (70 − 20 = 50). The entries ak6 form the column vector

(∞,∞,∞, 20,∞, 0, 20,∞, 20).

This time 50 arises, when k = 4, as 30 + 20, so the shortest path of length 50
from v1 to v6 ends with an edge of length 20 from v4 to v6. Finally, the
entries ak4 form the column vector

(30, 40, 50, 0, 30, 20,∞,∞,∞),

and 30 arises only as 30 + 0 or 0 + 30, so there is an edge of length 30 from v1

to v4. So, the shortest path from v1 to v7 is v1, v4, v6, v7 (the edges of lengths
30, 20, 20).

Thus, the Hedetniemi method provides a graphical interpretation at each
stage of the computation, and the matrices can be used to retrieve the paths
themselves. Computationally, four copies of the matrix must be saved: the
original “adjacency” matrix, the last matrix computed, and its two predecessors
(the immediate predecessor is identical to the last matrix unless n−1 iterations
are required).

Suggested Readings

1. S. Arlinghaus, W. Arlinghaus, and J. Nystuen, “The Hedetniemi Matrix
Sum: An Algorithm for Shortest Path and Shortest Distance”, Geographi-
cal Analysis, Vol. 22, No. 4, October, 1990, pp. 351–360.

2. E. Dijkstra, “Two problems in Connexion with Graphs”, Numerische Math-
ematik, Vol. 1, pp. 269–271.



330 Applications of Discrete Mathematics

Exercises

1. Use Dijkstra’s algorithm to compute the length of the shortest path bet-
ween v2 and v3 in the graph of Figure 2. What is the path?

2. Suppose Dijkstra’s algorithm is used on a graph with vertices v1, . . . , v7,
length vector (0, 6, 5, 8, 12, 13, 14), and vertex vector (−, 1, 1, 3, 4, 4, 6),
where vertex vi is represented by i in the vertex vector.

a) Find the shortest path from v1 to v7.
b) Find the shortest path from v1 to v5.

�c) Draw the graph, if possible.

3. a) Estimate the number of operations in Hedetniemi’s algorithm.
�b) Are there any factors that could change the result?

4. Find the final Hedetniemi matrix for the following weighted graph.

5. Find the final Hedetniemi matrix for the following weighted graph.

6. Use the Hedetniemi matrix to find the shortest path from v3 to v4 in the
graph of Exercise 4.

7. Use the Hedetniemi matrix to find the shortest path from v1 to v6 in the
graph of Exercise 4.

8. Use the Hedetniemi matrix to find the shortest path from v1 to v8 in the
graph of Exercise 5.

�9. All the matrices in the Hedetniemi calculations are symmetric; that is,
aij = aji no matter what i and j are.

a) How much time could be saved by taking this into account?
b) Write an algorithm to exploit this fact.

�10. Is there any situation where nonsymmetric matrices might arise?



Chapter 18 Shortest Path Problems 331

Computer Projects

1. a) Given a table of distances between some (but not necessarily all) pairs
of cities in a road network, write a computer program that implements the
Hedetniemi algorithm to find the shortest routes between all pairs of cities.

b) Suppose there are roads from Detroit to Toledo of length 30 miles,
from Toledo to Columbus of length 110 miles, from Columbus to Cincinnati
of length 80 miles, from Detroit to Kalamazoo of length 100 miles, from
Kalamazoo to Indianapolis of length 120 miles, from Indianapolis to Dayton
of length 100 miles, from Dayton to Columbus of length 70 miles, from
Dayton to Cincinnati of length 30 miles, from Indianapolis to Cincinnati of
length 115 miles, and from Toledo to Dayton of length 120 miles. Use the
program of part a) to find the shortest routes between all pairs of cities.

2. a) Given a table of distances between some (but not necessarily all) pairs
of cities in a road network, write a computer program that implements
Floyd’s algorithm to find a mileage chart giving distances between all pairs
of cities.

b) Use the program of part a) to find a mileage chart giving distances
between all pairs of cities in Computer Project 1b).


