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Prerequisites: The prerequisites for this chapter are graphs and trees. See
Sections 9.1, 9.2, and 9.4 of Discrete Mathematics and Its Applications.

Introduction
For the first two years after the end of World War II, there were essentially no
atomic bombs available in the United States [10] and none anywhere else in the
world. But by the mid 1950s, both the United States and the Soviet Union had
not only fission bombs but fusion bombs ready for use. Since then, the number
of countries having one or both kinds of bomb has grown alarmingly, and the
arsenals have grown to frightening proportions.

At the moment, we may have no nuclear-equipped enemy, but that can
change quite suddenly. Friends can become enemies overnight (witness Iraq
and the United States in August, 1990). Worse, enemies can attain nuclear
capabilities much faster than expected. (The Soviet Union was thought inca-
pable of producing a nuclear bomb for several years at the time it exploded its
first one.) Therefore, we should continue all possible peaceful preparations for
protection against nuclear attack.
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Among the essential requirements for an effective response to a nuclear
attack are command, control and communications (C3, in military parlence).
Knowing this, the enemy is certain to attack them. He has several options: to
attack the commanders, to attack the control systems used by the commanders,
to attack the communications links between various commanders and between
commanders and their forces, or to attack a mixture of these. In the United
States, responsibility for the aspects of C3 is divided among several agencies;
the Defense Communications Agency (DCA) is responsible for the design and
maintenance of the Defense Communications Systems [1].

There are several aspects of a nuclear strike that the communications sys-
tem must take into account. The enemy is likely to allocate several weapons
to high altitude (above 100 km) explosions at the very beginning of an attack,
since one such explosion will black out radio communications (including trans-
missions between microwave towers) over several thousand square kilometers [1].
This will, of course, do little damage to properly protected equipment*, so that
communications could be restored within a few hours, but it would seriously
disrupt our early response. A surface detonation has a similar effect, but over
a much smaller area [1], [3]. Burying communication cables a little less than a
meter underground, will protect them from all but direct hits [1], but burying
cables is expensive. Most communication links will remain microwave relays
between towers and between satellites and ground stations.

Let us represent a communications network by a multigraph. We introduce
a vertex for each command center and each switching center. Two vertices are
joined by an edge whenever the corresponding centers are directly connected
by a communications link (by a cable, or by a string of microwave antennae, or
through a satellite, etc.). Because the term “multigraph” is a bit cumbersome,
we will refer to multigraphs in this chapter as “graphs” except in definitions and
theorems. When we need to discuss a graph without multiple edges, we will call
it a “simple graph”. We will reserve the word “network” for the communications
network and we will call the multigraph a “graph representation of the network”.

A good strategy is to build our network so that it satisfies the following
two criteria:

(i) It should survive a limited attack, including attacks aimed at other
nearby targets.
(ii) A careful study of our network by a knowledgeable enemy should
reveal that the network is bland, in that it has no parts especially
attractive to attack.

The thought behind “blandness” is that an attack is unlikely to be purposely
made against just part of a bland network, since no part of the network would

* However, there is an initial electromagnetic pulse of enormous size generated

by a nuclear explosion; this pulse would destroy unprotected electrical equipment as

effectively as a lightning bolt [1].
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appear more worth attacking than any other part.
We will address blandness shortly, but first we give a brief discussion of

survivability of networks in limited attacks.

Cut Vertices and Blocks
One obvious failure of the first criterion for survivable networks occurs if ev-
ery message traveling through the network must pass through one particular
switch: One bomb on the switch would totally disable the network. In the
graph representation, such a switch is a cut vertex, that is, a vertex such that
removing the vertex and all edges incident with it leaves a subgraph with more
connected components than in the original graph. We are interested in the
subgraphs joined together by the cut vertices.

Figure 1. Graph G1 with cut vertices a, b, and c.

Example 1 Consider the graph G1 of Figure 1. G1 is connected, but the
erasure of any one of vertices a, b or c produces a subgraph with two or more
(connected) components; thus a, b and c are cut vertices of G1. But look at the
triangle aef . Although this subgraph includes the cut vertex a of G1, a is not
a cut vertex of the triangle by itself. On the other hand, if we try to expand
triangle aef to a larger connected subgraph of G1, as for example subgraph H
in Figure 2, we find that a is a cut vertex of any such larger subgraph. Thus
the triangle aef is a maximal connected subgraph of G1 without cut vertices
of its own.

Figure 2. Subgraph H of G1.

The cut edge {a, b} is another such subgraph. Indeed, there are five such
maximal subgraphs of G1, as shown in Figure 3.
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Figure 3. The five blocks of G1.

This example suggests the following definition.

Definition 1 A block of a multigraph G is a maximal connected subgraph
B of G such that B has no cut vertices of its own (although it may contain cut
vertices of G). A multigraph is itself a block if it has only one block.

There are three types of blocks. One is an isolated vertex; we will not see
these again. A second type is the graph having just one edge and two vertices.
The third has more than one edge; in Theorem 1 we will show that any block
of the third kind contains a circuit, just as do the subgraphs H1, H4, and H5

shown in Figure 3. To distinguish the third sort of block from the first two,
we say that a block with more than one edge is 2-connected. We need a
preliminary lemma first.

Lemma 1 Let G be a connected multigraph, and let a be a vertex of G.
Then a is a cut vertex of G if and only if there are two vertices v and v′ distinct
from a in one component of G such that every path in G from v to v′ includes
vertex a.

Proof: The proof is left as Exercise 4.

In Theorem 1, we prove even more than claimed previously. Notice that
in subgraphs H1, H4, and H5 of Figure 3 every edge is in some circuit of the
subgraph. This is a general property of such blocks.

Theorem 1 Suppose G is a block with more than one edge. Then every
edge of G is in a circuit of G.

Proof: The main idea of the proof of this theorem is that if G is a block, if G
has more than one edge, and if an edge e of G is in no circuit of G, then G can
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be subdivided into two parts which are connected only by edge e. Then one of
the ends of e must be a cut vertex of G, a contradiction. We leave the details
of the proof to the reader.

Example 2 For each edge in the graph G1 of Figure 1, either state that it
is a cut edge or list a circuit containing it.

Solution:

Edge Circuit or Edge Circuit or
cut edge cut edge

{a, f} a, e, f, a {a, e} a, e, f, a
{e, f} a, e, f, a {a, b} cut edge
{b, d} cut edge {b, c} b, c, h, i, b
{b, h} b, c, h, b {b, i} b, c, h, i, b
{c, h} b, c, h, i, b {h, i} b, c, h, i, b

x c, g, c x′ c, g, c

Suppose we have represented a communications system by a multigraph
with at least two edges and have found that the graph is a block. By Theorem 1
every edge in the graph is in a circuit. If a single vertex of a circuit is deleted,
any two of the remaining vertices are still connected by a path in the rest of
the circuit. Thus the communications system can survive at least one destroyed
switch, from any cause whatsoever. This gives at least a partial solution to the
first criterion of a survivable network.

As seen here, the subject of survivability of networks to limited attack is
closely bound to the concept of removing vertices from a graph and thus break-
ing the graph into pieces. This subject is treated at greater length under the
heading “connectivity” in many books, as for example in [2]. We will examine
further the first criterion that must be satisfied by a survivable communications
network later in this chapter.

Density
When we say a network is “bland,” we intend to mean that the network offers
no especially attractive targets. One interpretation of this notion is that there
are no parts that are crowded together, so the network is not “dense.” Going
over to graphs, we want the density of a graph to be a measure that increases
as the number of edges of the graph is increased. Further, if we say the density
is 1, for example, we do not want the meaning of that phrase to depend on
the number of vertices in the graph. In addition, a scale for the density should
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be set so that every member of a recognizably uniform class of graphs has a
constant density. Trees consitute such a class; let us make the density of any
tree equal to 1. Further, we can make sure the density is not dependent on the
number of vertices by having our formula for density include that number as a
part of its denominator. These latter two ideas give us the following formula.

Definition 2 If G is a multigraph with vertex set V (G) and edge set E(G)
and with ω(G) components*, then the density g(G) of G is given by

g(G) =
|E(G)|

|V (G)| − ω(G)
.

Notice that if T is a tree, then ω(T ) = 1 and |E(T )| = |V (T )| − 1, so g(T ) = 1
in that case. Also, in a graph with a fixed number of components and a fixed
number of vertices, it is clear that g(G) will increase with increasing |E(G)|.
Thus we can expect this measure of density to be useful in our analysis of
communications networks.

Example 3 Compute g(G) for C3, Cn, K4, Kn, K2,3, K2,n, and Km,n.

Solution: Since a triangle C3 has three edges and three vertices, g(C3) =
3/(3− 1) = 3/2. In general, if Cn is a circuit with n > 1 vertices, then g(Cn) =
n/(n − 1).

Since K4 has 6 edges and 4 vertices, we have g(K4) = 6/(4 − 1) = 6/3 =
2/1 = 4/2. The general case here is that if Kn is a complete graph on n ≥ 2
vertices, then g(Kn) = n/2, and this is an upper bound on g(G) if G is a simple
connected graph.

Because the complete bipartite graph K2,3 has 2×3 = 6 edges and 2+3 = 5
vertices, we get g(K2,3) = 6/(5 − 1) = 6/4 = 3/2. In general, g(K2,n) =
2n/(n + 2 − 1) = 2n/(n + 1) = 2 − 2

n+1 , and even more generally g(Km,n) =
mn/(m + n − 1).

But our comment about g(G) increasing with |E(G)| is not quite satisfac-
tory. We did not intend to include a requirement that the number of compo-
nents should not change. This problem is solvable, however. We first need an
interesting arithmetic lemma.

Lemma 2 [6] Let p1/q1, p2/q2, . . . , pk/qk be fractions in which pi and qi

are positive integers for each i ∈ {1, 2, . . . , k}. Then

min
1≤i≤k

pi

qi
≤ p1 + p2 + · · · + pk

q1 + q2 + · · · + qk
≤ max

1≤i≤k

pi

qi
.

Proof: See Exercise 5.

* ω is the lower case Greek letter “omega”.
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For example, min(1
2 , 2

3 , 7
7 , 9

5 ) = 1
2 ≤ 1+2+7+9

2+3+7+5 = 19
17 ≤ 9

5 = max(1
2 , 2

3 , 7
7 , 9

5 ).
Since we are looking for the densest parts of the graph, we can restrict our

attention to connected graphs G, as shown in the next theorem.

Theorem 2 Suppose multigraph G has components H1, H2, . . . , Hk, and
suppose l is an index such that g(Hl) = max1≤i≤k g(Hi). Then g(Hl) ≥ g(G).

Proof: We use Lemma 2, obtaining

g(G) =
|E(G)|

|V (G)| − k

=
|E(H1)| + |E(H2)| + · · · + |E(Hk)|

(|V (H1)| − 1) + (|V (H2)| − 1) + · · · + (|V (Hk)| − 1)

≤ max
1≤i≤k

( |E(H1)|
|V (H1)| − 1

,
|E(H2)|

|V (H2)| − 1
, . . . ,

|E(Hk)|
|V (Hk)| − 1

)
= max

1≤i≤k
(g(Hi))

= g(Hl).

Example 4 Examine the function g for the graph G2 of Figure 4.

Figure 4. Graph G2 with four components.

Solution: In Figure 4, G2 = H1 ∪ H2 ∪ H3 ∪ H4. We see that g(G2) =
13/(13− 4) = 13/9. But g(H4) = 5/(4 − 1) = 5/3 > 13/9 = g(G2).

Example 5 Find the densest part of G3 of Figure 5.

Figure 5. Graph G3.
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Solution: The connected subgraphs of G3 (other than trees and G3 itself)
are shown in Figure 6 (up to isomorphism). Calculating g for each of the
subgraphs, we have g(T ) = 1 for any tree in G3, while g(G) = 7/5, g(H1) = 3/2,
g(H2) = 4/3, g(H3) = 5/4, g(H4) = 6/5, g(H5) = 5/4, g(H6) = 6/5, and
g(H7) = 6/5. Since the largest of these is 3/2, the triangle H1 is the densest
part of G3. Thus, the part of the network whose graph representation is G3

that is most likely to be heavily used is the triangle and that is the part that
should be attacked.

Figure 6. Connected subgraphs of G3.

The following definition formalizes the idea of this example*.

Definition 3 Given a multigraph G,

γ(G) = max
H⊆G

g(H) = max
H⊆G

|E(H)|
|V (H)| − ω(H)

,

where the maximum is taken over all subgraphs H of G for which the denomi-
nator in g(H) is not zero.

Clearly, a subgraph H of graph G which achieves the value of γ(G) is a
densest part of the graph and thus corresponds to a part of the communications
network through which messages are most likely to pass.

* γ is the lower case Greek letter “gamma.”
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Notice that if H is a connected graph, then the number g(H) is the number
of edges of H divided by the number |V (H)| − 1 of edges in a spanning tree
of H . Thus g(H) is an upper bound on the number of edge-disjoint spanning
trees that could appear in H . This bound is not always achieved. For example,
it could not be achieved in a triangle T , where g(T ) = 3/2. Because γ is more
important than g, the bound is recognized in the name we give γ. The Latin
term for a tree is arbor. Since, in addition, γ(G) is a fraction, we call γ(G) the
fractional arboricity of G. It turns out (see [4], [8]) that γ(G) is even more
strongly associated with numbers of spanning trees in G than this simple upper
bound would suggest, and so the name has a very strong justification.

By Theorem 2, it suffices to examine only connected subgraphs of G to
determine γ(G). For example, in Example 5 we listed all of the connected
subgraphs of G3, and there we found the densest connected subgraph was H1

with density 3/2. Then by Theorem 4 and the definition of γ, we have γ(G2) =
3/2.

But even limiting ourselves to all connected subgraphs of G is not enough.
It would be better to have to examine still fewer subgraphs H in the process
of computing γ(G). The following theorem gives a substantial reduction in the
number of subgraphs to examine. For example, using it for finding γ(G3), it
is necessary only to examine subgraphs H1, H5, H7, and graph G3 itself. The
proof of this theorem is beyond the scope of this chapter.

Theorem 3 Let multigraph G consist of blocks B1, B2, . . . Bk. Then

γ(G) = max
1≤i≤k

(γ(Bi)).

There is one more aid available in computing γ. If H is a connected
subgaph of graph G and if G contains an edge e which joins two vertices of H
but is not in H , then adding e to H produces a subgraph H ′ with no more
vertices than H has, but with another edge. Hence g(H ′) > g(H). Thus it is
not sensible for us to examine subgraphs like H when subgraphs like H ′ exist.
For example, the subgraph H4 in Figure 6 has all of the vertices of G3, but it
is missing the edge {b, c}. Thus it is not surprising that g(G3) = 7/5, which
is 1/5 more than g(H4).

To make this idea formal, we say that a subgraph H of graph G is induced
by its vertex set V (H) if every edge of G joining two vertices in V (H) is in H .
Thus H4 in Figure 6 is not an induced subgraph of G3, nor are H6 or H7, but
subgraphs H1, H2, H3, and H5 are induced subgraphs.

In computing γ(G) for a connected graph G, we now must find only the
2-connected induced subgraphs of G, if any, compute the function g for each of
them, and choose the largest among the number 1 (= g(T ) for any tree T of G)
and the values of g computed.
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Figure 7. Graph G4 with its induced 2-connected subgraphs.

Example 6 Find γ(G4), where G4 is shown in Figure 7.

Solution: Figure 7 also shows all of the induced 2-connected subgraphs of G4.
We find that g(G4) = 11/7, g(H1) = 2, g(H2) = 7/4, g(H3) = 2, g(H4) = 5/3,
g(H5) = 7/6, g(H6) = 6/5, and g(H7) = 3/2. The largest of these is 2, so
γ(G4) = 2 and this value is attained by both H1 and H3. Since H3 has H1 as
a subgraph, the most attackable part of the network is that corresponding to
the subgraph H3.

Even a slightly larger graph than G4 would have too many induced 2-
connected subgraphs for us to compute γ by hand. Worse, it turns out that
the number of such subgraphs grows exponentially with increasing numbers of
vertices of the graph. Thus even a computer would not be able to use this
method to find γ(G) for a graph representing a large communications system.
However, several algorithms are given in [5], [7], and [9] for computing γ, and
these have polynomial complexity. The descriptions of these algorithms are
long, and the algorithms are hard to apply by hand, so we do not present them
here.
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Strength
We now return to our concern for protecting communications networks from
limited attacks. In the first part of our study of this problem, we examined
attacks on vertices of the graph, which represent command centers and switches
in the network. But some command centers are buried, like the famous one in
Cheyenne Mountain, Colorado, and others are mobile, as for example the United
States’ National Emergency Airborne Command Post [1]. The locations of the
switching centers are far from other sorts of targets whenever possible, are
concealed and kept secret, and some are hardened (buried). Thus the most
vulnerable part of the communications system is that represented by the edges
of the graph. If we had unlimited funds, we could simply use buried cables
for all communications links except those going overseas and going to airborne
posts. But we do not have unlimited funds.

So now we study attacks on the communication links by studying the ef-
fects of erasing edges in the graph representation. Our concern here is that
the graph should not be too severely damaged by the erasure of edges. One
reasonable measure of such damage is the number of additional components
that are produced by the erasures. Specifically, given graph G, and given a
set F of edges of G, denote by G − F the graph obtained from G by erasing
the edges in F from G. Then the number of additional components produced
by the erasure of the edges in F is ω(G − F ) − ω(G).

Example 7 Remove F = {a, b, c, d} from G2.

Solution: Removing the edges of F = {a, b, c, d} from the graph G2 of Fig-
ure 4, we obtain the graph G2 − F of Figure 8, which has 6 components. Thus
ω(G2) − ω(F ) = 6 − 4 = 2.

Figure 8. Graph G2 − {a, b, c, d}.
But ω(G − F ) − ω(G) is not a good measure of the resistance of graph G

to edge erasure because it does not take into account the number of edges
erased. The fact that erasing all of the edges of G assures ω(G − F ) − ω(G) =
|V (G)| − ω(G) does not say that G is necessarily weak. In order to take the
size of F into account, we use a ratio, namely

|F |
ω(G − F ) − ω(G)

. (1)

Notice that formula (1) is reduced if |F | is reduced or if ω(G − F )− ω(G)
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is increased. So, on a fixed graph, to find its weakest structure, we would
search for the set F that minimized formula (1). This leads us to the following
definition*.

Definition 4 The strength of a multigraph G is given by

η(G) = min
F⊆E(G)

|F |
ω(G − F ) − ω(G)

,

where the minimum is taken over all subsets F of E(G) for which ω(G − F ) −
ω(G) > 0.

The computation of η by using the definition is usually painfully tedious.
We give one example here, but in the next section we present a method which
uses γ and is much easier to apply.

When calculating η by the definition, we restrict ourselves to sets F of
edges whose erasure increases the number of components of the graph. But in
addition, since we are seeking a minimum value for the ratio (1), it is not useful
to include an edge e in set F if e joins two vertices in the same component of
G−F . In other words, the components of G−F should be the subgraphs induced
by the vertex sets of the components. We incorporate these two observations
into the next example.

Example 8 Given the graph G5 of Figure 9, use the definition of η to find
η(G5).

Figure 9. Graph G5.

Solution: In Table 1 we list values of ratio (1) for various subsets F of edges
of G5. This list is organized by the number of components in G − F . Since
the components involved are induced by their sets of vertices, they are listed
by their vertex sets.

We notice that the minimum occurs three times, with edge sets F1 = {a, b},
F2 = {g, h}, and F3 = {a, b, g, h} = F1 ∪ F2. Thus η(G5) = 2. The maximum

* η is the lower case Greek letter “eta.”
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Number of Vertices of
components components Edge set Formula (1)

2 1 234 {a, b} 2/1 = 2
2 134 {b, c, d, e, f, h} 6/1 = 6
3 124 {a, c, d, e, f, g} 6/1 = 6
4 123 {g, h} 2/1 = 2
12 34 {a, c, d, e, f, h} 6/1 = 6
13 24 {b, c, d, e, f, g} 6/1 = 6

3 1 2 34 {a, b, c, d, e, f, h} 7/2
1 3 24 {a, b, c, d, e, f, g} 7/2
1 4 23 {a, b, g, h} 4/2 = 2
2 4 13 {b, c, d, e, f, g, h} 7/2
3 4 12 {a, c, d, e, f, g, h} 7/2

4 1 2 3 4 {a, b, c, d, e, f, g, h} 8/3

Table 1. Finding η(G5).

damage at minimum cost comes in three sets, but the larger one does the
damage of both of the smaller ones, so it would be sensible to carry out the
attack indicated by the set F3 of edges. If our job is to redesign the network to
make an attack less attractive, then this is the place in the network we need to
improve.

Computing the Strength of a Graph

We begin with an apparent digression from the topic of this section, but it will
be seen shortly that the subject of this digression is exactly what we need to
compute η with some ease.

Example 9 Calculate γ(G5) in Figure 9.

Solution: In Figure 10, we see the induced 2-connected subgraphs of this
graph. There, g(H1) = 4/1, g(H2) = 6/2 = 3, g(H3) = 6/2 = 3, and g(G5) =
8/3. Since the largest of these is 4, we see that γ(G5) = 4. Recall that η(G5) =
2, so γ(G5) > η(G5).
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Figure 10. The induced 2-connected subgraphs of G5.

It is not a coincidence that γ(G5) > η(G5). In fact, the next theorem
shows that there is always a similar relationship between γ(G) and η(G). The
proof of Theorem 4 exploits the fact that ω(G − E(G)) = |V (G)|.

Theorem 4 For any multigraph G having at least one edge,

γ(G) ≥ |E(G)|
|V (G)| − ω(G)

≥ η(G) ≥ 1. (2)

Proof: Since G has an edge, ω(G) < |V (G)|, or |V (G)| − ω(G) > 0. By their
definitions,

γ(G) ≥ |E(G)|
|V (G)| − ω(G)

(3)

and

η(G) ≤ |E(G)|
ω(G − E(G)) − ω(G)

=
|E(G)|

|V (G)| − ω(G)
. (4)

Combining (3) and (4) we have γ(G) ≥ |E(G)|
|V (G)|−ω(G) ≥ η(G).

For η(G) ≥ 1, see Exercise 8.

Actually, the connection between γ(G) and η(G) is even stronger than
Theorem 4 suggests. The easiest way to see this is through the theory of con-
tractions of subgraphs, and that theory will also give us a way to compute η(G)
by computing γ(M) for several graphs M related to G.

Definition 5 Let G be a multigraph, and let e be an edge of G. We contract e
by replacing e and its two ends by a single vertex ve, letting each edge that
met either end of e now be incident with ve. For our purposes, we will allow
multiple edges to be created by this process, but any loops generated will be
erased. The resulting multigraph is denoted by G/e.
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Example 10 Contract edge e of graph G6 of Figure 11.

Figure 11. Graph G6 and its contraction to G6/e.

Solution: When contracting edge e, the intermediate step is the pseudo-
graph D shown in Figure 11. After erasing the loop of D, we obtain the
graph G6/e also shown in Figure 11.

To speed the process of contraction, we next define the contraction of a
subgraph H of G.

Definition 6 Let G be a multigraph, and let H be a subgraph of G. We con-
tract H by contracting every edge of H . The multigraph obtained by contract-
ing subgraph H of multigraph G is denoted G/H and is called the contraction
of H in G.

The graph G/H is independent of the order in which the edges of H are
contracted, so our definition and notation does not need to mention that order.
In our examples, we label each vertex formed by contraction with a concatena-
tion of the labels of the vertices that became that vertex.

Example 11 Form G5/H1 using H1 shown in Figure 10, and find the value
of γ(G5/H1).

Solution: The graph G5 is shown in Figure 9 and the subgraph H1 of G5

shown in Figure 10. After contraction of H1, we obtain the graph G5/H1 shown
in Figure 12. Also in Figure 12 are the 2-connected induced subgraphs H4 and
H5 of G5/H1. Notice that g(H4) = g(H5) = g(G5/H1) = 2. Thus γ(G5/H1) =
g(G5/H1) = 2.

In the following definition, for brevity we let* Γ(G) stand for a connected
subgraph of G such that γ(G) = g(Γ(G)).

Definition 7 Given a multigraph G, we construct a sequence of multigraphs

* Γ is the upper case Greek letter “gamma.”
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Figure 12. Graph G5/H1 and its 2-connected subgraphs.

H1, H2, . . ., Hk by the following rules:
(i) H1 = G;
(ii) For i ≥ 1, if γ(Hi) �= g(Hi), we let Hi+1 = Hi/(Γ(Hi)); and
(iii) Hk is the first multigraph reached by this contraction process for

which γ(Hk) = g(Hk).
By Theorem 2, there is always a connected subgraph H of G for which

g(H) = γ(G). Thus Hk is defined for any multigraph G for which γ(G) is
defined. Because of its importance in calculating η, we call Hk an η–reduction
of G, and we use G0 to denote any η–reduction of G. When G = G0, we say
that G is η–reduced.

For example, we found in Example 12 that the η–reduced graph G0 for G5

is G5/H1. The following theorem justifies the operation described here. The
proof of this theorem is beyond the scope of this chapter.

Theorem 5 There is only one η–reduction G0 of a multigraph G. Fur-
ther, G0 satisfies η(G) = η(G0), and the edge set E(G0) is the largest edge
set F of G such that

η(G) =
|F |

ω(G − F ) − ω(G)
.

This theorem gives us a way of computing η(G) for any graph G — we
simply find the η–reduction G0 of G as described, and then compute g(G0).

Example 12 For the graph G5 of Figure 9, compute η(G5).

Solution: In Example 9 we learned that g(H1) = γ(G5) and in Example 11
we contracted that graph to obtain G5/H1 shown in Figure 12, determining
that γ(G5/H1) = 2. Since γ(G5/H1) = g(G5/H1), so that G0 = G5/H1, it
follows that η(G5) = 2 and the largest subset of edges achieving this value in
the definition of η is {a, b, g, h}. We learned this directly (the hard way) in
Example 8.

Example 13 Compute η(G4) in Figure 7.
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Solution: We learned in Example 6 that γ(G4) = 2 and that g(H3) of Figure 7
is 2. Contracting H3 yields the graph G4/H3 of Figure 13. The 2-connected
induced subgraphs of G4/H3 are G4/H3 and the graphs H8 and H9 shown
in Figure 13. Since g(G4/H3) = 7/5, g(H8) = 3/2, and g(H9) = 5/4, we
have γ(G4/H3) = g(H8) and Γ(G4/H3) = H8. Contracting H8 results in the
circuit C4 having vertices abcdh, e, f , and g also shown in Figure 13. Since C4

has only one 2-connected subgraph, we are done. We find that η(G4) = g(C4) =
4/3 and that the largest set of edges achieving this value in the definition of η
is {x1, x2, x3, x4} of Figure 7.

Figure 13. G4/H3, its 2-connected subgraphs, and (G4/H3)/H8 = C4.

Bland Networks
We have now seen three conditions in graphs that we would like to see considered
in designing a communications network represented by the graph G:

(i) The graph should be a block, so that the network will be protected
against a limited attack or collateral damage,
(ii) We should have γ(G) = g(G) so that the network will not have
any attractively dense parts, and
(iii) We should have η(G) = |E(G)|

|V (G)|−ω(G) to assure that the network
is adequately strong against direct attack on the communication links.

But g(G) = |E(G)|
|V (G)|−ω(G) , so our second and third conditions are satisfied if

γ(G) = η(G).

Definition 8 A multigraph G is uniformly dense if γ(G) = η(G). A com-
munications network is bland if its graph representation is uniformly dense.

Example 14 Show that graph G7 of Figure 14 is uniformly dense.
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Figure 14. Graph G7 and its induced 2-connected subgraphs.

Solution: The graph G7 is shown in Figure 14 together with its induced 2-
connected subgraphs H1, H2, and H3. Since g(G7) = 2, g(H1) = 4/3, g(H2) =
5/3, and g(H3) = 3/2, we see that γ(G7) = 2 = g(G7). But it follows that
the η-reduced graph G0 = G7. Hence η(G7) = γ(G0) = γ(G7) = 2 and G7 is
uniformly dense. Note also that G7 is a block, so it satisfies all three of our
graph conditions.

The following theorem characterizes uniformly dense graphs.

Theorem 6 Let G be a multigraph with v vertices and e edges. The follow-
ing are equivalent:

(a) γ(G)(v − ω(G)) = e;
(b) η(G)(v − ω(G)) = e;
(c) γ(G) = η(G);
(d) G is η-reduced;
(e) There is a function f : {1, 2, . . . , v − ω(G)} → R such that

(i) f(r)
r ≤ f(v−ω(G))

(v−ω(G)) for 1 ≤ r ≤ v − ω(G),

(ii) f(v − ω(G)) = e, and
(iii) |E(H)| ≤ f(|V (H)|−ω(H)) for each subgraph H of G that has

|V (H)| > ω(H).

Proof: We leave the details of this proof to the reader. It is not difficult to
prove that each of (a) and (d) is equivalent to (c), that (e) is equivalent to (a),
and that (c) → (b). However, the proof that (b) → (c) is beyond the scope of
this chapter; its proof can be found in [4].

For our final example, we need the following corollary, in which we apply
condition (e) with f(r)/r nondecreasing. A plane triangulation is a con-
nected simple graph drawn on the plane such that every face has exactly three
edges on its boundary. It is known that if G is a connected planar simple graph
with e edges and v vertices with v ≥ 3, then e ≤ 3v− 6. It is easy to show that
if G is a plane triangulation with e edges and v vertices, then e = 3v − 6 (see
Exercise 9).
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Corollary 1 The set of connected graphs G satisfying

γ(G) = η(G) =
|E(G)|

|V (G)| − 1

includes all plane triangulations.

Proof: Let f(r) = 3r−3 for r ∈ {1, 2, . . . , v−1}. Then f(v−1) = 3(v−1)−3 =
3v − 6 = e, so (ii) of part (e) of Theorem 6 is satisfied. Also, f(r)/r = 3− 3/r,
which increases in value as positive r increases in value. Since r ≤ v − 1, we
have

f(r)
r

≤ f(v − 1)
v − 1

,

which is (i) of part (e) of Theorem 6. We leave the proof of (iii) of part (e) of
Theorem 6 as Exercise 10.

Example 15 Is the graph G8 shown in Figure 15 a good choice for a graph
representation of a survivable network by the criteria described in this chapter?

Figure 15. Graph G8, the icosahedron.

Solution: We notice first that G8 is connected and has no cut vertices, so it is
a block. Further, it is a plane triangulation, so γ(G8) = η(G8). Thus it satisfies
all conditions that we have placed on the graph representation of a network. It
is a good choice.

We have arrived at one of the cutting edges of modern mathematical re-
search. The following questions are not exercises; rather they are the questions
being asked by some professional mathematicians in their research.

Given the graph G of an already existing communications network, and
given that γ(G) �= η(G), what would be the best edge to add to G to reduce
γ(G) − η(G)? What does “best” mean in the answer? Is it the cheapest edge
whose addition will reduce γ(G) − η(G), or does it reduce γ(G) − η(G) by the
largest amount? Would it be better to eliminate some edges already present and
replace them by other edges? Which ones should be eliminated? Many other
questions can be asked, and their answers could be critical to the survival of our
communications system if we are ever subject to an attack on our homeland.
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Exercises

1. Draw the blocks of each graph. Then, for each edge, either state that it is
a cut edge or list a circuit containing it.
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a) b)

2. Find the values of γ and η for each of these graphs.
a) b)

3. For each graph, find the value of γ. Then use contractions to find the
η-reduction G0 and the value of η.

a) b)

�4. Prove Lemma 1.

�5. Prove Lemma 2. Hint: Prove it first for k = 2 and then use induction.

6. Why are only eight subgraphs of G4 (including G4 itself) examined in deter-
mining γ(G4)? For example, why not also look at the following subgraph?
Give another 2-connected subgraph of G4 that was omitted for the same
reason.
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7. For any forest F with at least one edge, prove that γ(F ) = η(F ) = 1.

8. Prove that η(G) ≥ 1 for any multigraph having at least one edge.

9. Prove that, if G is a plane triangulation with e edges and v vertices, then
e = 3v − 6.

10. Prove that (iii) of part (e) of Theorem 6 is satisfied by the function f defined
in the proof of Corollary 1.

Computer Projects

1. Write a computer program to calculate γ(G) for a multigraph G.

2. Write a computer program which uses the program of Computer Project 1
to find the value of η(G) for a multigraph G.


