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Finite Markov Chains

Author: Eric Rieders, Department of the Mathematical Sciences, DePaul
University.

Prerequisites: The prerequisites for this chapter are finite probability, ma-
trix algebra, mathematical induction, and sequences. See Sections 2.4, 2.7, 3.1,
and 6.1 of Discrete Mathematics and Its Applications.

Introduction
Probability theory is the mathematical basis of the study of phenomena that
involve an element of chance. There are many situations in which it is not
possible to predict exactly what is going to happen. A gambler at the roulette
table cannot say with certainty how much money he or she will win (if any!)
after one round of play. The exact number of users logged on to a time-share
computer at 2 p.m. tomorrow can only be guessed. The eye or hair color of a
child is a subject of speculation prior to its birth. Yet, in all three of these cases,
we feel that it is reasonable to give the probability of observing a particular
outcome.

These probabilities may be based on past experience, such as the number
of users “typically” logged on around 2 p.m. They might also derive from a
mathematical model of the phenomenon of interest. Combinatorial arguments
lead one to the computation of probabilities associated with betting at roulette,
and models of heredity may be used to predict the likelihood of a child inheriting
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certain genetic characteristics (such as eye color) from its parents.
The preceding examples may be extended to sequences of consecutive ob-

servations, where the sequence of outcomes cannot be predicted in advance.
The rising and falling fortunes of the gambler; the number of users requiring
cpu time at, say, one minute intervals; or the eye color of succeeding generations
of children are all examples of random processes. A random process is any
phenomenon which evolves in time and whose evolution is governed by some
random (i.e. chance) mechanism. Questions relating to the likelihood that the
gambler reaches a preset goal (before going broke), the response time of the
computer, or the chance that one of your grandchildren will have green eyes all
may be addressed by analyzing the underlying random process.

In this chapter, we will examine an important kind of random process
known as a Markov chain. All of the foregoing examples of random processes
may in fact be modeled as Markov chains. The basic property of a Markov chain
is that in making the best possible predictions about the future behavior of the
random process, given the information yielded by a sequence of observations up
to the present, only the most recently observed outcome need be considered.
Prior observations yield no additional information useful for the purposes of
prediction.

Markov chains were first studied systematically by the Russian mathemati-
cian Andrei Markov*. In the course of his investigations in probability theory,
Markov wished to extend the investigation of the properties of sequences of
independent experiments (i.e. those for which the outcome of one experiment
does not influence, nor is influenced by, any of the other experiments) to an
investigation of sequences of experiments for which the present outcome does
in fact affect future outcomes. That is, the outcomes of the experiments are
“chained” together by the influence each outcome exerts on the probability of
observing a particular outcome as the result of the next experiment.

The widespread applicability of the Markov chain model to such diverse
fields as population genetics, decision sciences, physics and other fields has gone
hand in hand with the large amount of mathematical research concerning the
properties of this kind of random process. Markov chain models are simple
enough to be analyzed, yet realistic enough to be of genuine use in understand-
ing real random processes. We will touch only on the more basic definitions
and properties of Markov chains. For further study, see the references at the
end of this chapter.

* Andrei Andreevich Markov, born in 1856 in Ryazan, Russia, showed an early

mathematical talent. He studied at St. Petersburg University, where he was heavily

influenced by the father of the Russian school of probability, P. Chebyshev. Markov

remained as a professor at St. Petersburg, where he distinguished himself in a number

of mathematical disciplines. Markov died in 1922, his health having suffered from a

winter spent teaching high school mathematics in the interior of Russia.
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The State Space
We now develop a precise definition of a Markov chain. Suppose that a sequence
of “experiments” is to be performed and that each experiment will result in the
observation of exactly one outcome from a finite set S of possible outcomes.
The set S is called the state space associated with the experiments, and the
elements of S are called states. Typically these experiments are carried out
to investigate how some phenomenon changes as time passes by classifying the
possible types of behavior into states.

We denote the sequence of observed outcomes by X1, X2, . . . (which pre-
sumably we do not know in advance). We denote by Xk the outcome of ex-
periment k. Note that Xk ∈ S. In our description of a random process, we
will usually include a state X0, which is the state in which we initially find the
phenomenon. We can think of the sequence X0, X1, X2, . . . as being the obser-
vations of some phenomenon (such as the gambler’s net winnings) as it evolves
from state to state as time goes by. For our purposes, the random process is
simply the sequence of observed states X0, X1, X2, . . ..

Example 1 Set up a Markov chain to model the following gambling situ-
ation. A gambler starts with $2. A coin is flipped; if it comes up heads, the
gambler wins $1, and if it comes up tails the gambler loses $1. The gambler
will play until having gone broke or having reached a goal of $4. After each
play, the observation to be made is how much money the gambler has.

Solution: The possible amounts are 0, 1, 2, 3 and 4 dollars. Thus, the state
space is S = {0, 1, 2, 3, 4}; the five elements of S describe the status of the
gambler’s fortune as the game progresses.

Initially (before the first “experiment” begins), the gambler has $2, and we
write X0 = 2 to describe this “initial state”. X1 is the amount of money the
gambler has after the first coin toss. Note that the only information required
to give predictions about the quantity X2 (the amount of money the gambler
has after the second toss) is in fact the value of X1. If the coin is fair, we easily
see that the probability of winning $1 on the second toss is 0.5, that is,

p(X2 = X1 + 1) = 0.5.

Similarly,
p(X2 = X1 − 1) = 0.5.

If the gambler wins the first round and then loses the next 3 rounds, we will
observe X0 = 2, X1 = 3, X2 = 2, X3 = 1, X4 = 0. For k ≥ 5, we will have
Xk = 0, since once the gambler is broke, nothing more happens. In general, Xk

is the amount that the gambler has after k coin tosses, where the state space
S was described above. We can make probabilistic predictions about the value
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of Xk+1 as soon as the value of Xk is known, without knowing anything about
X0, X1, . . . Xk−1. In fact, we can state explicitly

p(Xk = j|Xk−1 = i) =

⎧⎨
⎩

1 if i = j = 0 or i = j = 4
1
2 if 0 ≤ j = i − 1 ≤ 3 or 1 ≤ j = i + 1 ≤ 4
0 otherwise

(1)

where p(Xk+1 = j|Xk = i) is a conditional probability (see Section 6.2 of
Discrete Mathematics and Its Applications), namely, the probability that the
gambler will have $j after the (k + 1)st coin toss, given that the gambler had
$i after k tosses.

The probabilities expressed in (1) are called transition probabilities. A
transition probability is associated with each pair of states in the state space;
such a quantity represents the probability of the phenomenon moving from the
first state of the pair to the second state.

Example 2 Suppose that the gambler of Example 1 is given a choice of
five envelopes containing 0, 1, . . . , 4 dollars, respectively. Find the probability
distribution of X0.

Solution: Assuming the gambler is equally likely to choose any of the proffered
envelopes, we have that p(X0 = i) = 0.2, 0 ≤ i ≤ 4.

More generally, we might have

p(X0 = i − 1) = qi 1 ≤ i ≤ 5

where qi is the probability that the gambler has i− 1 dollars to start with, and∑5
i=1 qi = 1. The 1×5 matrix

Q = (q1 q2 q3 q4 q5)

is called the initial probability distribution. The entries of Q are the prob-
abilities of the various possible initial states of the gambler’s wallet. For ease
of notation, it is often useful to list the elements of the state space sequentially.
In this gambling example, we would write S = {s1, s2, s3, s4, s5}, where s1 is
the state where the gambler is broke (i.e., has 0 dollars), s2 is the state where
the gambler has 1 dollar, and so on. Thus, with probability qi the gambler is
initially in state si, for 1 ≤ i ≤ 5.

Example 3 Suppose that we have a package of 1000 seeds of a plant that
has the following life cycle. The plant lives exactly one year, bearing a single
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flower that is either red, yellow or orange. Before dying, the plant produces a
single seed which, when it blooms, produces a flower the color of which depends
(randomly) on the color of the flower of its “parent”. Use Table 1 to model the
color of the flower during succeeding years as a Markov chain.

Offspring

Red Yellow Orange
s1 s2 s3

Red s1 0.3 0.5 0.2
Parent Yellow s2 0.4 0.4 0.2

Orange s3 0.5 0.5 0

Table 1. Transition Probabilities

Solution: Here, the state space S is the set of colors red (denoted s1), yellow
(s2) and orange (s3), and the random process X0, X1, X2 . . . is the yearly suc-
cession of flower colors produced by succeeding generations of plants beginning
with the one that grows from the first seed you have chosen. The rule which
describes how the color of the flower of the offspring depends on that of its
parent is summarized in Table 1.

This table gives the probability that the offspring will bear a flower of
a particular color (corresponding to a column of the table), given the color
of its parent’s flower (corresponding to a row of the table). For example, the
probability that a plant having a red flower produces a plant with a yellow flower
is 0.5. This is the probability of the random process moving from state s1 to
state s2; we denote this as p12. (Note that we are assuming the probability
of observing a particular flower color in any given year depends only on the
color of the flower observed during the preceding year.) The quantity p12 is the
probability of a transition from state s1 to state s2.

We can use basic facts about conditional probability together with the
Markov chain model to make predictions about the behavior of the Markov
chain.

Example 4 In the preceding example, suppose you choose a seed at random
from the package which has 300 seeds that produce red flowers, 400 producing
yellow flowers and the remaining 300 produce orange flowers. Find the proba-
bility that the colors observed in the first two years are red and then orange.

Solution: Denote by X0 the color of the flower produced (the “initial state”);
the initial probability distribution is

Q = (0.3 0.4 0.3).
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To make predictions about the sequence of flower colors observed we need the
information in Table 1 as well as knowledge of the initial probability distribu-
tion. With probability 0.3, we have X0 = s1, i.e., the first flower is red. Given
that X0 = s1, we have X1 = s3 (the next plant has an orange flower) with
probability 0.2. That is, p(X1 = s3|X0 = s1) = 0.2; this comes from Table 1.
Recall that

p(X1 = s3|X0 = s1) =
p(X0 = s1, X1 = s3)

p(X0 = s1)

where p(X0 = s1, X1 = s3) is the probability that the sequence of colors red,
orange is observed in the first two years. It is the probability of the intersection
of the two events X0 = s1 and X1 = s3. Rewriting this expression, we then
have

p(X0 = s1, X1 = s3) = p(X0 = s1) · p(X1 = s3|X0 = s1)
= 0.3 · 0.2
= 0.06

Can we deduce the probability of observing a particular sequence of flower
colors during, say, the first 4 years using an argument similar to the one just
carried out? We in fact can, using Theorem 1 (later in this chapter), and the
fact that the random process in Example 4 is a Markov chain.

Now suppose that X0, X1, X2, . . . are observations made of a random pro-
cess (including the initial state) with state space S = {s1, s2, . . . , sN}. We de-
note the probability of observing a particular sequence of states si0 , si1 , . . . , sik

,
beginning with the initial one, by

p(X0 = si0 , X1 = si1 , . . . , Xk = sik
).

The (conditional) probability of observing the state sik+1 as the (k + 1)st out-
come, given that the first k outcomes observed are si0 , si1 , . . . , sik

, is given by

p(Xk+1 = sik+1 |X0 = si0 , X1 = si1 , . . . , Xk = sik
) =

p(X0 = si0 , X1 = si1 , . . . , Xk = sik
, Xk+1 = sik+1)

p(X0 = si0 , X1 = si1 , . . . , Xk = sik
)

.

Example 5 With reference to Example 1, find an expression which gives
the probability that the gambler has $1 after 2 rounds, given that the gambler
started with $1 and then won the first round.

Solution: We have si0 = 1, si1 = 2, and si2 = 1. The desired probability is
then given by

p(X2 = si2 |X0 = si0 , X1 = si1).
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Markov Chains
The foregoing examples provide motivation for the formal definition of the
Markov chain.

Definition 1 A random process with state space S = {s1, s2, . . . sN} and ob-
served outcomes X0, X1, X2, . . . is called a Markov chain with initial probability
distribution Q = (q1 q2 . . . qN ) if

(i) p(Xk+1 = sik+1 |X0 = si0 , X1 = si1 , . . . , Xk = sik
)

= p(Xk+1 = sik+1 |Xk = sik
) for k = 1, 2, . . .

(ii) p(Xk+1 = sj |Xk = si) = pij for k = 0, 1, 2, . . .

(iii) p(X0 = i) = qi for i = 1, 2, . . . , N .

The numbers pij are the transition probabilities of the Markov chain. The
Markov property, (i), says that we need only use the most recent information,
namely, Xk = sik

, to determine the probability of observing the state sik+1 as
the outcome of the experiment number k + 1, given that the sequence of states
si1 , . . . , sik

were the outcomes of the first k experiments (and the initial state
is si0).

Property (ii) requires that the underlying random mechanism governing
the chance behavior of the random process does not change; the probability
of moving from one particular state to another is always the same regardless
of when this happens. (Sometimes Markov chains are defined to be random
processes satisfying condition (i). Those that also satisfy (ii) are said to have
stationary transition probabilities.)

It might happen that the initial state of the random process is itself de-
termined by chance, such as in Examples 2 and 3. To compute probabilities
associated with a Markov chain whose initial state is unknown, one needs to
know the probability of observing a particular state as the initial state. These
are the probabilities given in (iii). Note that if the initial state is known, as
in Example 1, we still can express this in terms of an initial distribution. For
example, if the Markov chain is known to be initially in state sk, then we have
qk = 1 and qi = 0 for i �= k. This says that with probability 1, the Markov
chain is initially in state sk.

It is very useful to arrange the transition probabilities pij in an N × N
matrix T (N is the number of elements in the state space), so that the (i, j)th
entry will be pij .
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Example 6 Find the matrix of transition probabilities for the Markov chain
of Example 3.

Solution: Using Table 1, this matrix is

T =

⎡
⎣ 0.3 0.5 0.2

0.4 0.4 0.2
0.5 0.5 0

⎤
⎦ .

For instance, the entry in the first row and second column, 0.5, is p12, the
probability that a red flower will produce an offspring that bears a yellow flower.
Since it is impossible for an orange flower to produce an offspring that bears an
orange flower, we have p33 = 0.

We will show that knowing the transition probabilities pij and the ini-
tial probability distribution Q of a Markov chain suffices for determining all
probabilities of interest in connection with the Markov chain. Indeed, all such
probabilities can be computed if we know the probability of observing any spe-
cific sequence of outcomes; any other events of interest are made up of such
sequences.

Example 7 In Example 2, find the probability of starting out with 3 dollars,
and losing the first two rounds, i.e., having 1 dollar left after flipping the coin
twice.

Solution: We must compute p(X0 = 3, X1 = 2, X2 = 1). Using the definition
of conditional probability, we have

p(X0 = 3, X1 = 2, X2 = 1)
= p(X0 = 3, X1 = 2)p(X2 = 1|X0 = 3, X1 = 2)
= p(X0 = 3)p(X1 = 2|X0 = 3)p(X2 = 1|X0 = 3, X1 = 2)
= p(X0 = 3)p(X1 = 2|X0 = 3)p(X2 = 1|X1 = 2) (Property (i) of

Markov chains)
= q4p43p32

= 0.05.

Note that, for example, p43 is the probability of going from state s4, where the
gambler has 3 dollars, to state s3, where the gambler has 2 dollars.

More generally, we have the following basic result.
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Theorem 1 If X0, X1, . . . , Xk denote the first k observed outcomes of the
Markov chain with initial probability distribution Q = (q1 q2 . . . qN ) then

p(X0 = si0 , X1 = si1 , . . . , Xk = sik
)

= p(X0 = si0)p(X1 = si1 |X0 = si0) × · · · × p(Xk = sik
|Xk−1 = sik−1)

= qi0pi0i1pi1i2 . . . pik−1ik
.

Proof: We will demonstrate this using mathematical induction.
Basis step: The case k = 1 is an immediate consequence of the definition of
conditional probability.
Induction step: Assuming the truth of the result for some particular k, we must
then deduce its truth for k + 1. We have

p(X0 = si0 , X1 = si1 , . . . , Xk = sik
, Xk+1 = sik+1)

= p(Xk+1 = sik+1 |X0 = si0 , X1 = si1 , . . . , Xk = sik
)

× p(X0 = si0 , X1 = si1 , . . . , Xk = sik
)

= p(Xk+1 = sik+1 |X0 = si0 , X1 = si1 , . . . , Xk = sik
)

p(X0 = i0)p(X1 = si1 |X0 = si0) × · · · × p(Xk = sik
|Xk−1 = sik−1)

= p(Xk+1 = sik+1 |Xk = sik
)p(X0 = i0)p(X1 = si1 |X0 = si0) × · · ·

× p(Xk = sik
|Xk−1 = sik−1 ),

which is the result. (The definition of conditional probability was used at the
first step, the induction assumption at the second step, and property (i) at the
third step.)

Example 8 Compute the probability of the sequence of outcomes described
in Example 1 (X0 = 2, X1 = 3, X2 = 2, X3 = 1, X4 = 0) using Theorem 1.

Solution: Note that q3 = 1 (state s3 occurs when the gambler has $2), since
we are certain that we begin with $2. We have

p(X0 = 2, X1 = 3, X2 = 2, X3 = 1, X4 = 0) = q3p34p43p32p21

= 1 · 0.5 · 0.5 · 0.5 · 0.5
= 0.0625.

Example 9 With reference to Example 4, what is the probability that,
having planted one of the seeds in the package (chosen at random), we observe
the sequence of flower colors “red, red, yellow, red” over the first four years?

Solution: Using the notation for the state space and Theorem 1, we compute

p(X0 = s1, X1 = s1, X2 = s2, X3 = s1)
= q1p11p12p21

= 0.3 · 0.3 · 0.5 · 0.4
= 0.018.
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Example 10 Referring again to Example 4, compute the probability that
after having planted a randomly chosen seed, we must wait 3 years for the first
red flower.

Solution: This means that one of the following sequences of outcomes must
have occurred:

s2s2s1 s2s3s1 s3s2s1 s3s3s1.

As in Example 9, we can use Theorem 1 to compute the probabilities of observ-
ing these sequences of outcomes; they are (respectively)

0.064, 0.04, 0.06, 0.

Thus, the “event” that the first red flower is observed during the third year
is the sum of these, 0.164. Notice that knowledge of the initial distribution
is essential for computing the desired probability. In this computation, we
wish to suggest how knowledge of the probability that a particular sequence is
observed allows one to compute the probability of a particular event related to
the random process, by simply adding up the probabilities of all the sequences
of outcomes which give rise to the event.

Long-term Behavior
A very important aspect of the analysis of random processes involves discerning
some regularity in the long-term behavior of the process. For example, can
we be assured that in Example 1 the game will necessarily end after a finite
number of coin tosses, or is it conceivable that the game could be indefinitely
prolonged with the gambler never going broke and never reaching his $4 goal? In
Example 4, we might wish to predict the proportion of plants with a particular
flower color among the succeeding generations of the 1000 plants, after planting
all 1000 seeds. In fact, it turns out that these proportions tend to certain
equilibrium values (that after a period of time will remain virtually unchanged
from one year to the next), and that these proportions are not affected by the
initial distribution.

We will see that the Markov chains of Examples 1 and 3 exhibit dra-
matic differences in their long-term behavior. The gambler’s ultimate chances
of reaching a particular state (like winning four dollars) depend very much on
the initial distribution; this is in contrast to the situation in Example 3. For
Markov chains, the kinds of questions we have just suggested can in fact be an-
swered once the initial probability distribution and the transition probabilities
are known.

We first determine the conditional probability that the random process
is in state sj after k experiments, given that it was initially in state si, i.e.,
we compute p(Xk = sj |X0 = si). Theorem 2 shows that these probabilities
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may be found by computing the appropriate power of the matrix of transition
probabilities.

Theorem 2 Let T = [pij ] be the N × N matrix whose (i, j)th entry is the
probability of moving from state si to state sj . Then

Tk = [p(k)
ij ], (5)

where p
(k)
ij = p(Xk = sj |X0 = si).

Remark: Note that p
(k)
ij is not the kth power of the quantity pij . It is rather

the (i, j)th entry of the matrix Tk.

Proof: We will prove the Theorem for the case n = 2. (The case n = 1 is
immediate from the definition of T.) The general proof may be obtained using
mathematical induction (see Exercise 5). First, note that

p(X2 = sj , X0 = si) =
N∑

n=1

p(X2 = sj , X1 = sn, X0 = si)

since X1 must equal exactly one of the elements of the state space. That is, the
N events {X2 = sj , X1 = sn, X0 = si}, (1 ≤ n ≤ N), are disjoint events whose
union is {X2 = sj , X0 = si}. Using this fact, we compute

p
(2)
ij = p(X2 = sj|X0 = si)

=
p(X2 = sj, X0 = si)

p(X0 = si)

=
N∑

n=1

p(X2 = sj , X1 = sn, X0 = si)
p(X0 = si)

(by addition rule for probabilities)

=
N∑

n=1

p(X2 = sj |X1 = sn)
p(X1 = sn, X0 = si)

p(X0 = si)
(by property (i))

=
N∑

n=1

p(X2 = sj |X1 = sn)p(X1 = sn|X0 = si)

=
N∑

n=1

pinpnj . (by property (ii))

This last expression is the (i, j)th entry of the matrix T2.



30 Applications of Discrete Mathematics

Example 11 What happens in the long run to the gambler in Example 1?
In particular, give the long term probabilities of the gambler either reaching
the $4 goal or going broke.

Solution: From (1), the matrix of transition probabilities is

T =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 0 1

⎤
⎥⎥⎥⎦ .

According to Theorem 2, computing the powers of T will provide the prob-
abilities of finding the gambler in specific states, given the gambler’s initial
state.

T2 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0.5 0.25 0 0.5 0
0.25 0 0.5 0 0.25
0 0.25 0 0.25 0.5
0 0 0 0 1

⎤
⎥⎥⎥⎦ ,

T3 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0.625 0 0.25 0 0.125
0.25 0.25 0 0.25 0.25
0.125 0 0.25 0 0.625

0 0 0 0 1

⎤
⎥⎥⎥⎦ ,

T20 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0.749 0 0.001 0 0.250
0.499 0.001 0 0.001 0.499
0.250 0 0.001 0 0.749

0 0 0 0 1

⎤
⎥⎥⎥⎦ ,

T50 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0.750 0 0 0 0.250
0.500 0 0 0 0.500
0.250 0 0 0 0.750

0 0 0 0 1

⎤
⎥⎥⎥⎦ .

(We have rounded the entries to three decimal places.) The matrices Tk for
k > 50 will be the same as T50 (at least up to 3 decimal place accuracy).
According to Theorem 2, the probability of the gambler going broke after three
rounds, given that he starts with $1 is the entry of T3 in the second row and
first column, 0.625. If we want to know the probability that, starting with $2,
we will have $3 after 20 rounds (i.e. we want to compute p

(20)
34 ), we need only

look at the entry in the third row and fourth column of the matrix T20, which is
0.001. Notice that the probability of reaching the goal of $4 (after many rounds)
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depends upon the state in which the gambler is initially observed. Thus, it is
with probability 0.75 that the goal is reached if the gambler starts with $3, 0.5 if
he starts with $2 and 0.25 if he starts with $1. These are the probabilities that
comprise the fifth column of the matrix Tk, for large k (k = 50, say). Similar
statements concerning the chances of the gambler eventually going broke can
easily be made.

The following result may be deduced as a corollary of Theorem 2. It
describes how to compute the probability that the Markov chain will be in
any particular state after k experiments, thus allowing one to make predictions
about the future behavior of the Markov chain.

Corollary 1 Suppose that a Markov chain has initial probability distribu-
tion Q and N ×N matrix T of transition probabilities. Then the 1×N matrix
QTk, denoted Qk, has as ith entry the probability of observing the Markov
chain in state si after k experiments.

Example 12 Suppose now that the gambler initially gets to pick one of ten
envelopes, 6 of them containing $1, and the other four, $2. Find the probabili-
ties of the gambler being each possible state after one round of gambling, and
estimate the long-term chances of the gambler reaching the $4 goal.

Solution: The initial probability distribution is

(0 0.6 0.4 0 0),

i.e., the gambler has a probability of 0.6 of starting with $1 and 0.4 of starting
with $2. By Corollary 1,

Q1 = QT = (0.2 0.3 0.2 0.3 0).

This means that after the first round of gambling, the probabilities that the
gambler has 0,1,2,3, or $4 are, respectively, 0.2, 0.3, 0.2, 0.3, 0. The probability
is 0 that the goal of $4 has been reached.

We have observed that for large k, T(k) will be almost exactly equal to
T(50). This means that the long-term chances of the gambler reaching the $4
goal (or going broke) are approximately equal to the probabilities of being in
these states after 50 coin tosses. These probabilities will depend on the initial
distribution. Using Corollary 1, if

Q = (0 0.6 0.4 0 0),

we obtain
Q50 = (0.6 0 0 0 0.4).



32 Applications of Discrete Mathematics

This means that with this initial distribution, the gambler’s long-term chances
of going broke are 0.6 and are 0.4 of reaching the $4 goal.

In the previous example, if the initial distribution is changed to

Q = (0 0 0.4 0.6 0),

then we find that
Q50 = (0.35 0 0 0 0.65);

and if the initial distribution were

Q = (0 0.4 0 0.6 0),

then
Q50 = (0.45 0 0 0 0.55).

Thus, we see that the probability distribution of this Markov chain after many
rounds of play depends very much on its initial distribution. This should be
contrasted to the behavior of the Markov chain of Example 3 (see Example 13).

The entries in the matrices T20 and T50 suggest that in the long run the
probability is (essentially) 0 that the gambler will not have either gone broke
or reached his goal, irrespective of his initial state. The only reasonably large
entries in these matrices are in columns 1 and 5, corresponding to the probabil-
ities of entering states s1 and s5 respectively. In fact, what our computations
indicate is indeed the case. As the number of rounds gets very large, the proba-
bility of being in states s2, s3, or s4 (corresponding to a fortune of $1, $2 or $3,
respectively) tends to 0. In this setting, this means that the game cannot last
indefinitely; eventually, the gambler will reach $4 or go broke trying. The states
s1 and s5 thus have a different character than the other 3 states; eventually the
gambler enters one of these two states and can never leave it (since we have
assumed the game will stop when one of these states is reached).

Example 13 Analyze the long-term behavior of the Markov chain of Ex-
ample 3.

Solution: We have already used Table 1 to write down the matrix of transition
probabilities of the Markov chain of Example 2:

T =

⎡
⎣ 0.3 0.5 0.2

0.4 0.4 0.2
0.5 0.5 0

⎤
⎦ .
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We then compute

T2 =

⎡
⎣ 0.39 0.45 0.16

0.38 0.46 0.16
0.35 0.45 0.2

⎤
⎦ T3 =

⎡
⎣ 0.377 0.455 0.168

0.378 0.454 0.168
0.385 0.455 0.160

⎤
⎦

T4 =

⎡
⎣ 0.379 0.455 0.166

0.379 0.455 0.166
0.378 0.455 0.168

⎤
⎦ T19 =

⎡
⎣ 0.379 0.454 0.167

0.379 0.454 0.167
0.379 0.454 0.167

⎤
⎦

T20 =

⎡
⎣ 0.379 0.454 0.167

0.379 0.454 0.167
0.379 0.454 0.167

⎤
⎦ .

We also observe that all larger powers of T are the same (to within three
decimal place accuracy), as was true in Example 11. Thus, in the long run, the
behavior of the Markov chain “settles down” in the sense that the probability of
observing a particular state remains essentially constant after an initial period
of time.

The states of a Markov chain are typically classified according to a criterion
suggested by the last two examples.

Definition 2 A state si of a Markov chain is called recurrent if, given that
the chain is in this state at some time, it will return to this state infinitely often
with probability 1, i.e.

p(Xn = si for infinitely many n > k|Xk = si) = 1.

States that are not recurrent are called transient; these are the states which
will not be observed after enough experiments have been performed.

None of the states in Example 3 are transient, whereas in Example 1, states
s2, s3, and s4 are transient. We have not proved this, but the truth of this fact
is certainly suggested by the computations, since the probability of being in any
of these states after only 20 rounds is essentially zero. Criteria for determining
if a state is transient are developed, for example, in [2].

To summarize, in Example 1 there are two states (s1 and s5) which are
recurrent, and the remaining three are transient. Consequently, the long term
behavior of this random process may be succinctly described by saying that
eventually the Markov chain will reach one of the two recurrent states and stay
there. Furthermore, the probability of reaching a particular recurrent state
depends upon the initial state of the random process.
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In Example 2, all states are recurrent. The fact that the numbers in the
columns of the higher powers of the matrix of transition probabilities are the
same means that the probability of observing the particular state corresponding
to the given column after enough experiments have been performed is the same,
regardless of the initial state. For example, the probability of observing a red
flower (i.e. state s1) after 19 (or 20 or more) years is 0.379, irrespective of the
color of the flower produced by the seed that is originally planted! If all 1000
seeds are planted, then after 20 years we expect to see approximately 379 red
flowers, 454 yellow and 167 orange flowers. The same is true of all succeeding
years, although we don’t expect to find the same colors in the same places; it
is the overall proportion of these colors that remains constant.

The random process of Example 3 belongs to a special class of Markov
chain which we now define.

Definition 3 A Markov chain with matrix of transition probabilities T is
called regular if for some k, Tk contains all positive entries.

Regular Markov chains exhibit a long-term behavior quite different from
that of Markov chains that have transient states (such as that of Example 1).
In particular, it turns out that irrespective of the initial distribution Q, the en-
tries of Qk tend toward specific values as k gets large. That is, the probabilities
of observing the various states in the long term can be accurately predicted,
without even knowing the initial probability distribution. To see why this is so,
note that in Example 13 we showed that the Markov chain in Example 3 is reg-
ular. In contrast to the Markov chain discussed in Example 12, the probability
of observing a particular state after a long period of time does not depend on
the state in which the random process is initially observed. If Q = (q1 q2 q3)
is an arbitrary initial probability distribution for this Markov chain, we have
q1 + q2 + q3 = 1. Now for large k,

Tk =

⎡
⎣ 0.379 0.454 0.167

0.379 0.454 0.167
0.379 0.454 0.167

⎤
⎦ ,

so that

Qk = QTk

= ( (q1 + q2 + q3)0.379 (q1 + q2 + q3)0.454 (q1 + q2 + q3)0.167)
= (0.379 0.454 0.167).

Thus, we see that it does not matter what the proportions of colors in the
original package of seeds were. In the long run, the proportion of colors tends
to 0.379 red, 0.454 yellow and 0.166 orange. This distribution of flower colors
is called the equilibrium distribution for the Markov chain.
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Definition 4 A Markov chain with matrix T of transition probabilities is
said to have an equilibrium distribution Qe if QeT = Qe.

Note that if QeT = Qe, then

QeT2 = (QeT)T = QeT = Qe

and in general (by the principle of mathematical induction),

QeTk = Qe

for all positive integers k. According to the Corollary to Theorem 2, this means
that if the initial distribution of the Markov chain is an equilibrium distribution,
then the probability of observing the various possible states of the random
process does not change with the passage of time.

For the Markov chain of Example 3, we deduced that the equilibrium dis-
tribution is

(0.379 0.454 0.167);

furthermore, there is no other equilibrium distribution. To summarize the ob-
servations made concerning this Markov chain, we find that all three possible
flower colors can be expected to be repeatedly observed, regardless of the seed
chosen the first year for planting. If many seeds are planted, the proportion
of the flowers bearing red, yellow, and orange flowers in the long run will be,
respectively, 0.379, 0.454, and 0.167.

If a random process is known to be a regular Markov chain, then it is of
great interest to determine its equilibrium distribution, since this gives a good
idea of the long-term behavior of the process. Notice that the entries of the rows
of the higher powers of T are in fact the entries of the equilibrium distribution.
This is what in general happens with regular Markov chains: the equilibrium
distribution will appear to within any desired accuracy as the entries of the rows
of high enough powers of the matrix of transition probabilities. See Exercise 13
for more on this point.

It is no coincidence that the regular Markov chain of Example 3 possesses
an equilibrium distribution. We conclude our discussion with the statement of
a very important result, the proof of which may be found in any reference on
Markov chains, such as [2].

Theorem 3 Every regular Markov chain has a unique equilibrium distribu-
tion.

Thus, the analysis of the long-term behavior of regular Markov chains can
always be carried out by computing the equilibrium distribution.
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Suggested Readings

1. W. Feller, An Introduction to Probability Theory and its Applications,
Vol.1, Third Edition, John Wiley & Sons, Hoboken, N.J., 1968. (Chapter
15 deals with Markov chains. This text contains a wealth of ideas and
interesting examples in probability theory and is considered a classic.)

2. J. Kemeny and J. Snell Finite Markov Chains, Springer-Verlag, New York,
1983. (This text provides a rigorous and thorough development of the
subject, and is directed to the serious undergraduate. Some applications
are given.)

3. J. Kemeny, J. Snell and G. Thompson Introduction to Finite Mathematics,
Third Edition, Prentice Hall, Upper Saddle River, N.J., 1974. (This was
probably the first finite mathematics text specifically written to introduce
non-science majors to this subject. The basic ideas of a Markov chain are
laid out, and many applications can be found throughout the text.)

4. K. Trivedi, Probability and Statistics with Reliability, Queueing and Com-
puter Science Applications, Second Edition, John Wiley & Sons, Hoboken,
N.J., 2001. (This intermediate-level text provides many applications rele-
vant to computer science.)

Exercises

1. In Example 4, suppose one seed is selected at random from the package.
a) Find the probability of observing an orange flower two years after

observing a red flower.
b) Find the probability that in the first four years the flower colors are:

yellow, orange, red, red.
c) Find the probability of having to wait exactly three years to observe

the first yellow flower.

2. In Example 1, suppose the coin being flipped is not necessarily fair, i.e.,
the probability of heads is p and the probability of tails is 1 − p, where
0 < p < 1. Find the matrix of transition probabilities in this case.

3. Two jars contain 10 marbles each. Every day, there is a simultaneous inter-
change of two marbles between the two jars, i.e., two marbles are chosen,
one from each jar, and placed in the other jar. Suppose that initially, the
first jar contained two red marbles and eight white, and that the second jar
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initially contained all white marbles. Let Xk be the number of red marbles
in the first jar after k days (so X0 = 2 ).

a) Explain why this random process, with observed outcomes X0, X1,
X2, . . ., is a Markov chain. Find the state space of the process.
�b) Find the matrix of transition probabilities of this Markov chain.
c) What is the probability that after three days, there is one red marble

in each jar, i.e., X3 = 1?

4. If T = [pij ] is the matrix of transition probabilities of some Markov chain,
explain why the sum of the entries in any of the rows of T is 1 (i.e.∑N

j=1 pij = 1 for 1 ≤ i ≤ N).

5. Give the complete proof of Theorem 2.

6. a) Are either of the following matrices the matrix of transition probabil-
ities of a regular Markov chain?

A =

⎡
⎣ 1 0 0

0.5 0.3 0.2
0.1 0.9 0

⎤
⎦ B =

⎡
⎣ 0 0.5 0.5

1 0 0
0.3 0 0.7

⎤
⎦ .

b) If T is the matrix of transition probabilities of a regular Markov chain,
prove that there is an integer k such that the entries of the matrix Tm are
all positive for any m ≥ k.

7. In a certain country, it has been observed that a girl whose mother is an
active voter will with probability 0.5 also vote . A girl whose mother doesn’t
vote is found to become a nonvoter with probability 0.9.

a) Model this phenomenon as a Markov chain with two states. Describe
the state space and find the matrix T of transition probablities.

b) Find the equilibrium distribution Qe = (p q) of this Markov chain by
solving the system of equations QeT = Qe, p + q = 1. Give an interpreta-
tion of the equilibrium distribution in this setting.

8. A state sk of a Markov chain is called absorbing if once the random process
enters the state, it remains there, i.e.

pkj =
{

1, if k = j;
0, otherwise

a) Are there any absorbing states for the random process described in
Example 1?

b) Are there any absorbing states for the random process described in
Example 3?

c) Is it possible for a regular Markov chain to have absorbing states?
Hint: Look at Exercise 6 b).

�9. a) Suppose that A and B are events such that exactly one of A or B
occurs, i.e., P (A∪B) = 1 and P (A∩B) = 0. If E is any event, prove that
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P (E) = P (A)P (E|A) + P (B)P (E|B).
b) Referring to Example 1, let rk be the probability that the gambler

reaches his $4 goal before going broke, given that he starts out with $k
(0 ≤ k ≤ 4). Note that r0 = 0 and r4 = 1. For 0 < k < 4, use part
a) to determine a recurrence relation satisfied by the rk. Hint: Let E be
the event that, starting with $k, the gambler reaches his goal before going
broke, A the event that he wins the first round, and B the event that he
loses the first round.

c) Extend the result of part b) to the situation where the gambler’s goal
is to reach $N before going broke.

d) Verify that rk = k/N, 0 ≤ k ≤ N , satisfies the recurrence relation
found in part c).

10. A drunkard decides to take a walk around the perimeter of the Pentagon.
As he reaches each corner of the building (there are 5 corners!), he flips a
coin to determine whether to go back to the last corner or to go to the next
one.

a) Find the appropriate state space for this random process. Model the
position of the drunkard as a Markov chain with 5 states. In particular,
find the appropriate transition probability matrix.

b) Show that the equilibrium distribution of this Markov chain is given
by (0.2 0.2 0.2 0.2 0.2). Give a description of the long-term behavior of
the Markov chain.

c) Suppose that the drunkard has found his way to a square building, and
uses the same method of walking around it. Find the matrix of transition
probabilities in this case, and determine the equilibrium distribution, if it
exists.

�11. A dice game has the following rules: Two dice are rolled, and the sum is
noted. If doubles are rolled at any time (including the first), the player
loses. If he hasn’t rolled doubles initially, he continues to roll the dice until
he either rolls the same sum he started out with (in which case he wins)
or rolls doubles and loses. The game ends when the player either wins or
loses.

a) Find the appropriate state space for the random process described
above, and discuss why it is a Markov chain. Hint: You will need to include
a state corresponding to winning and one corresponding to losing.

b) Find the initial distribution of the Markov chain.
c) Find the matrix of transition probabilities.

12. Let S be the state space of a Markov chain with transition probabilities
pij . A state sj is said to be accessible from state si if pn

ij > 0 for some
n ≥ 0, i.e., sj can be reached (eventually) if the random process starts out
from state si. (We will agree that every state is accessible from itself).
States si and sj are said to communicate if si is accessible from sj and sj
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is accessible from si. When the states communicate, we write si ↔ sj .
� a) Show that the relation “↔” is an equivalence relation on S.

b) If sk is an absorbing state, show that the equivalence class [sk] contains
only sk itself.

c) If si is a transient state and sj is a recurrent state, is it possible that
si ∈ [sj ]?

d) Find the equivalence classes under ↔ in Examples 1 and 3.
� e) If the Markov chain is regular, what can you say about the equivalence

classes?

��13. Show that there are many (in fact, infinitely many) equilibrium distribu-
tions for the Markov chain of Example 1.

��14. Let T be the N ×N matrix of transition probabilities of a regular Markov
chain. It is a fact (mentioned in this chapter) that for large k, each row of
Tk will be very close to the equilibrium distribution Qe = (r1 r2 . . . rN ).
More precisely, if a number e (e stands for “error”) is specified, then there
is a number k0 such that k > k0 implies that for each 1 ≤ j ≤ N ,
|p(k)

ij − rj | ≤ e, 1 ≤ i ≤ N .
a) Show that if Q is any initial probability distribution, then Qk will be

close to the equilibrium distribution for large k.
b) Refer to Corollary 1. There, Qk is obtained from the equation Qk =

QTk. If we want to compute Qk by first computing Tk with k matrix
multiplications and then computing Qk = QTk, how many arithmetic op-
erations (i.e. multiplications and additions) would be required?

c) Prove that Qk can be computed from Qk−1 recursively: Qk = Qk−1T.
Use this to find a quicker way to compute Qk than that suggested in part b).
Determine the number of arithmetic operations required with this method.

d) Refer to Exercise 7. Find Qe using the method you developed in
part c).

Computer Projects

1. Write a computer program to find the equilibrium distribution of any reg-
ular Markov chain using the method suggested in Exercise 14c. This is
known as the power method.

2. Write a computer program that simulates a Markov chain. It should take
as input the matrix of transition probabilities and the initial distribution,
and give as output the sequence X0, X1, . . . . Such a sequence is known as
a sample path of the Markov chain.


