
20

The Chinese Postman Problem

Author: John G. Michaels, Department of Mathematics, State University of
New York, College at Brockport.

Prerequisites: The prerequisites for this chapter are Euler circuits in graphs
and shortest path algorithms. See Sections 9.5 and 9.6 of Discrete Mathematics
and Its Applications.

Introduction
The solution of the problem of the seven bridges of Königsberg in 1736 by
Leonhard Euler is regarded as the beginning of graph theory. In the city of
Königsberg there was a park through which a river ran. In this park seven
bridges crossed the river. The problem at the time was to plan a walk that
crossed each of the bridges exactly once, starting and ending at the same point.
Euler set up the problem in terms of a graph, shown in Figure 1, where the
vertices represented the four pieces of land in the park and the edges represented
the seven bridges. Euler proved that such a walk (called an Euler circuit, i.e.,
a circuit that traverses each edge exactly once) was impossible because of the
existence of vertices of odd degree in the graph. In fact, what is known as
Euler’s Theorem gives the precise condition under which an Euler circuit exists
in a connected graph: the graph has an Euler circuit if and only if the degree
of every vertex is even.

354



Chapter 20 The Chinese Postman Problem 355

Figure 1. Königsberg bridge graph.

We now pose a related question about Figure 1. Starting and ending at
point A, what is the minimum number of bridges that must be crossed in order
to cross every bridge at least once? A problem of this type is referred to as a
Chinese Postman Problem, named after the Chinese mathematician Mei-Ko
Kwan, who posed such a problem in 1962 (see [3]). We will develop a method
for solving problems of this type in this chapter.

Solution to the Problem
Before examining methods for solving Chinese Postman Problems, we first look
at several applications of this type of problem. Suppose we have a road network
which must be traversed by:

— a mail carrier delivering mail to buildings along the streets,
— a snowplow which must clear snow from each lane of the streets,
— a highway department crew which must paint a line down the center

of each street,
— a police patrol car which makes its rounds through all streets several

times a day.

In each case, the person (or vehicle) must traverse each street at least once. In
the best situation, where every vertex (i.e., road intersection) has even degree,
no retracing is needed. (Such retracing of edges is referred to as “deadheading”.)
In such a case, any Euler circuit solves the problem.

However, it is rarely the case that every vertex in a road network is even.
(Examining a road map of any town or section of a city will confirm this.)
According to Euler’s Theorem, when there are odd vertices, it is impossible to
plan a circuit that traces every edge exactly once. Since every road needs to be
traced, some roads must be retraced. We pose a new problem — plan a route
so that the total amount of retracing is as small as possible. More precisely, we
have the following definition of the Chinese Postman Problem.



356 Applications of Discrete Mathematics

Definition 1 Given a connected weighted graph or digraph G, the Chinese
Postman Problem is the problem of finding the shortest circuit that uses each
edge in G at least once.

We will now study several examples, showing how to solve problems that
can be phrased in terms of the Chinese Postman Problem.

The simplest case occurs when every vertex in the graph has even degree,
for in this case an Euler circuit solves the problem. Any Euler circuit will have
the minimum total weight since no edges are retraced in an Euler circuit.

However, the following example illustrates the case where there are vertices
of odd degree. This example will provide us with the first step toward a solution
to the more general type of Chinese Postman Problem.

Example 1 A mail carrier delivers mail along each street in the weighted
graph of Figure 2, starting and ending at point A. The first number on an
edge gives the length of time (in minutes) needed to deliver mail along that
block; the second number gives the time for traveling along the block without
delivering mail (i.e., the deadheading time). Assuming that mail is delivered to
houses on both sides of the street by traveling once down that street, find the
shortest route and minimum time required for the mail carrier to deliver the
mail.

Figure 2. Mail carrier’s weighted graph.

Solution: The total time spent on the route is the sum of the mail delivery
time plus any deadheading time. The mail delivery time is simply the sum of
the mail delivery weights on the edges, which is 217 minutes. The problem is
now one of determining the minimum deadheading time.

Observe that the graph has no Euler circuit since vertices D and G have odd
degree. Therefore the mail carrier must retrace at least one street in order to
cover the entire route. For example, the mail carrier might retrace edges {D, F}
and {F, G}. If we insert these two retraced edges in the graph of Figure 2, we
obtain a multigraph where every vertex is even. The new multigraph therefore
has an Euler circuit. This graph is drawn in Figure 3, where the edges are



Chapter 20 The Chinese Postman Problem 357

numbered in the order in which the mail carrier might follow them in an Euler
circuit. (The deadheading edges appear as edges 7 and 12 in this multigraph.)

Figure 3. Mail carrier’s route, including deadheading.

But is there a faster route? To answer this question, we examine the
possible deadheading edges that could be added.

We claim that, no matter what route the mail carrier uses to deliver the
mail, the edges used for deadheading will form a path joining D and G. To see
this, consider the graph of Figure 3. Because D was odd in the original graph,
a deadheading edge must be incident with D. (In our example, this is edge 7.)
When this deadheading edge is added to the original graph, this causes its other
endpoint, F , to become an odd vertex (its degree changed from 4 to 5). Since F
is then odd, there must be another deadheading edge incident with F . (In our
example, this is edge 12.) This will continue until a vertex that was originally
odd is reached. (In our example, this stopped when G was reached.) Thus the
deadheading edges will always form a path joining D and G.

Since the deadheading edges form a path joining D and G, to find the
minimum weight of deadheading edges we need to find a path of minimum
weight joining D and G in Figure 2.

The graph of Figure 2 is small enough that there are relatively few paths
between D and G that we need to examine. (Note that we do not need to
consider any path joining D and G that passes through a vertex more than
once. Any such path could be replaced by a path of smaller weight that does
not pass through any vertex more than once.) We list these paths along with
their deadheading times:

Path Time
(minutes)

D, B, A, G 18
D, C, E, F, G 12

D, C, E, F, I, H, G 11
D, F, G 10

D, F, I, H, G 9

Therefore, the minimum deadheading time is nine minutes. This can be
achieved by planning a route that uses the four edges {D, F}, {F, I}, {I, H},



358 Applications of Discrete Mathematics

and {H, G}. The multigraph with these deadheading edges added is shown in
Figure 4.

Figure 4. Mail carrier’s graph, with deadheading edges for
minimum route added.

Any Euler circuit in the graph of Figure 4 achieves the minimum time.
Thus,

A, B, D, C, E, F, I, H, G, F, D, F, I, H, G, A

and
A, B, D, C, E, F, D, F, I, H, G, F, I, H, G, A

are both examples of fastest routes.
The minimum time is

delivery time + deadheading time = 217 + 9 = 226 minutes.

(Note that the four deadheading edges do not have to be used in succession.
Also note that the number of streets retraced does not matter. The route in
Figure 3 only retraced two blocks, but was not as fast as either of the two routes
in the graph of Figure 4.)

In this example we needed to traverse each edge at least once, forming a
circuit that started and ended at A. No matter how we construct a circuit
starting at A, we are forced to retrace edges. These retraced edges form a path
between the two odd vertices. Therefore, to minimize the deadheading time,
we need to find a path of minimum weight joining the two odd vertices.

In Example 1 there were sufficiently few paths joining the odd vertices
that we could list them all and select one of minimum length. However, if
there are many possibilities to consider, an algorithm for finding a shortest
path should be used. (See the “Shortest Path Problems” chapter of this book
or Dijkstra’s shortest path algorithm in Section 9.6 of Discrete Mathematics
and Its Applications.)

But now suppose that we are working with a weighted graph with more
than two odd vertices. As in Example 1, we know that edges will need to



Chapter 20 The Chinese Postman Problem 359

be retraced and we need to minimize the total weight of the retraced edges.
The following theorem, generalizing the idea developed in Example 1, shows an
important property that the retraced edges have and helps us efficiently select
the edges to be retraced.

Theorem 1 Suppose G is a graph with 2k odd vertices, where k ≥ 1, and
suppose C is a circuit that traces each edge of G at least once. Then the
retraced edges in C can be partitioned into k paths joining pairs of the odd
vertices, where each odd vertex in G is an endpoint of exactly one of the paths.

Proof: There are two parts to the proof. First we prove that the retraced
edges of C can be partitioned into k paths joining pairs of odd vertices, and
then we prove that each odd vertex is an endpoint of exactly one of these paths.

The proof of the first part follows the argument of Example 1. We choose
an odd vertex v1. Since v1 has odd degree, the vertex must have at least one
retraced edge incident with it. We begin a path from v1 along this edge, and
continue adding retraced edges to extend the path, never using a retraced edge
more than once. Continue extending this path, removing each edge used in the
path, until it is impossible to go farther. The argument of Example 1 shows
that this path will only terminate at a second odd vertex v2. The vertex v2

must be distinct from v1. (To see this, note that v1 has odd degree in G. When
the retraced edges are added to G, v1 has even degree. Therefore there must
be an odd number of retraced edges incident with v1. One of these is used to
begin the path from v1; when it is removed, v1 has an even number of retraced
edges remaining. Therefore, if the path from v1 ever reenters v1, there will be a
retraced edge on which it will leave v1. Therefore, the path will not terminate
at v1.) We then begin a second path from another odd vertex v3, which will end
at another odd vertex v4. (The parenthetical remarks earlier in this paragraph
showing that v2 must be distinct from v1 can also be applied here to show
that v4 must be different from v1, v2, and v3.) Proceeding in this fashion, every
retraced edge will be part of one of these paths.

The second part of the theorem follows immediately, since each odd vertex
appeared as an endpoint of some path, and once this happened, that vertex
could never be an endpoint of a second path.

The following example illustrates the use of Theorem 1 in solving a problem
of the Chinese Postman type.

Example 2 A truck is to paint the center strip on each street in the weighted
graph of Figure 5. Each edge is labeled with the time (in minutes) for painting
the line on that street. Find the minimum time to complete this job and a
route that accomplishes this goal. Assume that the truck begins and ends at



360 Applications of Discrete Mathematics

a highway department garage at A and that the time required for the truck to
follow a street is the same regardless of whether or not the truck is painting or
deadheading.

Figure 5. Weighted graph for the line-painting truck.

Solution: Observe that there are four odd vertices — B, D, F, H . Therefore,
traversing each edge on this graph at least once will require deadheading at each
of these vertices. To minimize the total time for the job, we need to minimize
the deadheading time. That is, we need to minimize the sum of the weights
of all duplicated edges. Using Theorem 1 (with k = 2), we know that the
deadheading edges form two paths joining pairs of the four odd vertices.

Therefore, to solve the problem we need to find the two paths with total
weight as small as possible. We first need to list all ways to put the four odd
vertices in two pairs. Then, for each set of two pairs we find a shortest path
joining the two vertices in each of the two pairs, and finally we choose the set
of pairs that has the smallest total weight of its two paths.

In this example, the pairings and shortest paths (with their weights) are

Pairing Path Weight Path Weight
{B, D}, {F, H}: B, E, D 8 F, I, H 9
{B, F}, {D, H}: B, E, F 7 D, E, H 12
{B, H}, {D, F}: B, E, H 8 D, E, F 11

Of these three possible pairings, the pair {B, D},{F, H} has smallest to-
tal weight, 8 + 9 = 17 minutes. Therefore, the truck will spend 17 minutes
deadheading, and the total time on the job spent by the truck will be

painting time + deadheading time = 62 + 17 = 79 minutes.

To find a specific route that achieves this time, take the given graph and
add the retraced streets as multiple edges, as in Figure 6. This new graph has
an Euler circuit, such as

A, B, C, F, E, B, E, D, E, H, I, F, I, H, G, D, A.



Chapter 20 The Chinese Postman Problem 361

Figure 6. Weighted graph for a linepainting truck, with
deadheading edges.

The key idea in the solution of the problem in Example 2 is finding a
perfect matching of minimum weight, that is, a pairing of vertices such
that the sum of the weights on the paths joining the vertices in each pair is as
small as possible. To obtain such a matching, we examined all possible ways of
matching the odd vertices in pairs, and then chose a minimum (i.e., shortest)
matching. If there are n odd vertices, the number of perfect matchings to
examine is O(nn/2). (See the Chapter “Applications of Subgraph Enumeration”
in this book for a method of enumerating these matchings.) Therefore, if n is
large, even a computer can’t accomplish the task. An algorithm of order O(n3)
for finding a matching of minimum weight can be found in reference [4], for
example.

Extensions
In each problem discussed in the last section, some simplifications were implic-
itly made. For example, in the mail carrier’s problem of Example 1, we assumed
that the person delivering the mail was restricted to traveling along only the
streets in the given graph. Thus, when we minimized the deadheading time,
we looked for the shortest path between D and G, using only the given edges.
However, it is possible that there are additional paths or alleys (along which
no mail is to be delivered) that will yield a shorter path between D and G. In
this case we would need to expand the given graph to include all possible edges
that could be used as parts of paths for deadheading, and then find a perfect
matching of minimum weight in this new graph.

There are several other considerations that may need to be considered in a
specific problem. For example, it may be difficult for a street sweeper to make
a left turn at intersections. A snowplow may need to clear roads along a street
network where some left turns are prohibited, some of the streets are one-way
(and therefore may need to be followed twice in the same direction), or parked



362 Applications of Discrete Mathematics

cars may prevent plowing during certain hours on one or both sides of a street.
Also, it may be wise for the mail carrier to use a route where the deadheading
periods occur as late as possible in the delivery route.

The Chinese Postman Problem can be even more complicated when han-
dled on a large scale. For example, the postal service in city does not depend
on one person to deliver mail to all homes and offices. The city must be di-
vided into sections to be served by many mail carriers. That is, the graph or
digraph for the city streets must be drawn as the union of many subgraphs,
each of which poses its own Chinese Postman Problem. But how should the
large graph be divided into subgraphs so that various factors (such as time and
money) are minimized?

A model for solving problems such as this is explained in [7], where a model
for street sweeping in New York City is discussed in detail. Two approaches
to the problem are dealt with: one method that finds a single route for the
entire graph and then divides this route into smaller pieces (the “route first–
cluster second” approach), and a second method that first divides the graph
into pieces and then works with each piece separately (the “cluster first–route
second” approach). Methods such as these have been implemented and have
resulted in considerable cost savings to the municipalities involved.

Suggested Readings

1. J. Edmonds, “The Chinese Postman Problem”, Operations Research, Vol.
13, Supplement 1, 1965, B73.

2. S, Goodman and S. Hedetniemi, “Eulerian Walks in Graphs”, SIAM Jour-
nal of Computing, Vol. 2, 1973, pp.16–27.

3. M. Kwan, “Graphics Programming Using Odd and Even Points”, Chinese
Math., Vol. 1, 1962, pp. 237–77.

4. E. Lawler, Combinatorial Optimization: Networks and Matroids, Dover
Publications, Mineola, N.Y., 2000.

5. E. Reingold and R. Tarjan, “On a Greedy Heuristic for Complete Match-
ing”, SIAM Journal of Computing, Vol. 10, 1981, pp. 676–81.

6. F. Roberts and B. Tesman, Applied Combinatorics, Second Edition, Pren-
tice Hall, Upper Saddle River, N.J., 2005.

7. A. Tucker and L. Bodin, “A Model for Municipal Street Sweeping Op-
erations”, Chapter 6 in Discrete and System Models, ed. W. Lucas, F.
Roberts, and R. Thrall (Volume 3 of Models in Applied Mathematics),
Springer-Verlag, New York, 1983, pp. 76–111.



Chapter 20 The Chinese Postman Problem 363

Exercises

1. Solve Example 1 with the deadheading time on edge {F, I} changed from 1
to 4.

2. A police car patrols the streets in the following graph. The weight on each
edge is the length of time (in minutes) to traverse that street in either
direction. If each street is a two-way street and the car starts and ends
at A, what is the minimum time needed to patrol each street at least once?

3. Solve Example 2 if the weight of edge {G, H} is changed from 7 to 3.

4. If each bridge in the Königsberg bridge graph (Figure 1) must be crossed
at least once, what is the minimum number of bridges that must be crossed
more than once, if the circuit begins and ends at A?

5. Find the minimum number of edges that must be retraced when drawing
each graph as a circuit.

a) K6 b) Kn c) K2,5 d) Km,n.

6. A street washing truck needs to wash the streets of the following map.
The labels on the edges give the time (in minutes) to wash that street.
All streets are two-way, except that the street between D and C is one-
way northbound. If the truck starts and ends its route at A, find a route
that cleans all streets in the smallest amount of time. Assume that one
pass down the center of a street washes the street and that the truck must
observe the one-way restriction on the street joining D and C.

7. Find the minimum number of edges that must be retraced in the graph of
the following figure, where each edge is traced at least once, starting and
ending at vertex 1.



364 Applications of Discrete Mathematics

8. A computer plotter plots the following figure. It takes the plotter 0.05
seconds to plot each horizontal edge and 0.02 seconds to plot each vertical
edge. Assuming that the time required to trace a line remains the same
regardless of whether the plotter is plotting or deadheading, that the plotter
must begin at a vertex and follow the positions of the lines, and that the
plotter must end at the vertex at which it began, what is the minimum
length of time required for the plotter to plot the figure? Note: See [5] for
further details on this application.

9. Suppose a mail carrier delivers mail to both sides of each street in the graph
of Figure 2, and does this by delivering mail on only one side of the street
at a time. The mail delivery time for each side of a street is half the weight
on the edge. (For example, it takes 3 minutes to deliver mail on each side
of street {A, B}). Find the minimum time needed to complete the route.

10. The edges of the squares in an 8 × 8 chessboard are to be traced as a
circuit. What is the smallest number of edges that must be retraced in
order to trace the board?

Computer Projects

1. Write a program that inputs an unweighted graph and finds the minimum
number of edges that must be retraced in a circuit that traces each edge at
least once.

2. Write a program that inputs a weighted graph with two odd vertices and
finds the minimum weight of a circuit that traverses each edge at least once.

3. Write a program that inputs a weighted graph with 2k odd vertices and
finds the minimum weight of a circuit that traverses each edge at least once.


