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Rational Election Procedures

Author: Russell B. Campbell, Department of Mathematics and Computer
Science, The University of Northern Iowa.

Prerequisites: The prerequisites for this chapter are sets and relations. See
Sections 2.1 and 2.2 and Chapter 8 of Discrete Mathematics and Its Applica-
tions.

Introduction
The word democracy, derived from the Greek dēmos (the people) and kratia
(power), means rule or authority of the people. If a democracy is to be success-
ful, it must manifest the will of the people. A collective will reflecting the diverse
wills of the individuals must be followed. Over the centuries several means to
achieve this end have been proposed. In 1951 Kenneth Arrow* showed that
no such collective will exists. Hence there is inherent inequity which cannot be
avoided.

* Kenneth J. Arrow (1921– ) published Social Choice and Individual Values [1] in

1951, which demonstrated that no such collective will exists. That monograph was

essentially his Ph.D. dissertation, and is the primary reason that he received the Nobel

prize in Economics in 1972. Arrow has been on the faculty of Stanford University for

forty years during which time he has received numerous fellowships and honorary

degrees.
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Individuals are often unhappy if their candidate does not win an election.
But sometimes the outcome indeed does not reflect what the majority of the
people want. One example is that if 60% of the voters are liberal, but divide
their votes evenly between two candidates, the single conservative candidate
wins with only 40% of the vote. Another example occurs in an election with
a runoff, where a candidate who would have won any two-way race may be
eliminated from the runoff. Elections should not result in outcomes the voters
did not want.

A rational election procedure is one under which each individual’s vote will
positively affect his candidate’s standing in the outcome. (This notion is made
precise below.) There is no rational election procedure if there are more than
two candidates. This chapter illustrates some of the reasons why. But more
importantly, it illustrates how the concept of relations and various properties
of relations can be used to concretely formulate the vague notion of fairness in
election procedures. The election procedures in the latter half of this chapter
employ some of the notation introduced in the first half, but do not require
understanding the theorems.

The Problem
The problem was originally posed as choosing a social welfare function (i.e.,
a function which converts the preferences of individuals for alternative social
states into a single collective preference schedule for alternative social states).
We shall specialize to the problem of conducting an election and refer to the
social welfare function which Arrow discussed as a rational election procedure
(REP). Although elections are usually discussed in the context of electing gov-
ernment officials, ranking college football teams by a vote of sportswriters also
requires an election procedure (EP) to convert the individual rankings into a
collective ranking. In order to define an election procedure, and add properties
which will make it a rational election procedure, it is necessary to introduce
some notation.

Let n denote the number of alternative choices (for example, candidates
A, B, C, . . .). The fundamental assumption is that each voter has preferences
among the candidates:

For every voter i, there is a relation Ri which represents his preferences
for the candidates. The statement ARiB means that voter i likes
candidate A at least as well as candidate B. Each relation Ri must
satisfy two axioms: (i) transitivity and (ii) connectivity.

Transitivity provides order to the preferences: if a voter prefers A to D and
also prefers D to B, it is reasonable to expect that the voter prefer A to B.
Connectivity requires that the voter will have a preference (or indifference)
between every pair of candidates; it means that if presented with two alternative
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candidates, a voter will either prefer one to the other or be indifferent between
them (i.e., consider them a tie), thus every pair of candidates is comparable. A
formal definition of connected for a relation Ri follows.

Definition 1 A relation Ri is connected if, given any two alternatives X
and Y , either XRiY or Y RiX (both may hold).

Together transitivity and connectivity require that every individual must
be able to rank the candidates preferentially, but allows for indifference among
some of the candidates.

Definition 2 A relation which is connected and transitive is called a weak
order.

Example 1 A weak order may be represented in the following manner:

{C � B, A � E � D, F},

where the candidates to the left of � are preferred to those to the right, and
the voter is indifferent between candidates separated by commas. Thus, in this
example, the voter prefers candidate C to all alternatives; is indifferent between
B and A which are preferred to D, E, and F ; and is also indifferent between D
and F . Every possible preference of a voter may be represented in the above
manner.

Definition 3 Let W be the set of all weak orders on n candidates and assume
there are N voters. An election procedure (EP) is a function WN → W , i.e., a
mapping from sets of individual preferences to collective preferences.

Transitivity is a property which was used to define both an equivalence
relation and a partial order relation. Connectivity forces reflexivity (see Ex-
ercise 3), which was also part of the definition of both an equivalence relation
and a partial order relation. Therefore, if a weak order is symmetric, it is also
an equivalence relation. The characterization of relations which are both weak
orders and equivalence relations is determined by connectivity and symmetry.

Theorem 1 If a relation R is connected and symmetric, it is the universal
relation (everything is related to everything, i.e., ARB for all A and B).
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Proof: We prove that A �RB cannot happen. Suppose A �RB. By connectivity
BRA, and symmetry forces ARB, which is a contradiction. Therefore ARB.

The universal relation is transitive. Hence the only equivalence relation
(which by definition is symmetric) which is a weak order (which by definition is
connected) is the universal relation, which has a single equivalence class. The
only weak order on a the set of six candidates which is an equivalence relation
can be represented as

{A, B, C, D, E, F},
i.e., indifference among all candidates.

A weak order is by definition transitive, and connected implies reflexive.
Hence if a weak order is antisymmetric, it is also a partial order. Indiffer-
ence between distinct alternatives A and B entails that ARB and BRA, hence
antisymmetry precludes indifference among distinct alternatives.

Definition 4 A relation which is antisymmetric, transitive, and connected
is called a total order or linear order (see Section 8.6 of Discrete Mathematics
and Its Applications).

A weak order which is a partial order (hence a total order) on a set of six
candidates can be represented as a single “chain”, such as

{A � B � E � C � D � F}.
A weak order on a set with more than one element cannot be both an equivalence
relation and a partial order relation (see Exercise 7). The weak order displayed
in Example 1 is neither an equivalence relation nor a partial order.

An important feature of weak orders is that they only express preferences
qualitatively. No numerical values are assigned to the preference rankings. We
are not allowing voting procedures which assign 5 points to a first choice, 3 to a
second, and 1 to a third choice, and then add up the total points to determine
the winner. Such procedures are used for scoring athletic contests such as
track and field, and ranking sports teams based on the votes of sportswriters;
but Arrow did not allow such assignments because he felt it is not possible to
quantify preferences, especially on a scale which is consistent between voters.

Desired Properties of the REP
Arrow summarized the heuristic notions of fair and rational with two properties
which the collective relation R resulting from the EP must have in order to
justify characterizing an EP as rational:
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(i) It must positively reflect the wills of individuals (PR).
(ii) It must be independent of irrelevant alternatives (IA).
To formulate these conditions precisely, we introduce a relation derived

from a weak order.

Definition 5 A strict preference is a relation P defined by

XP Y ⇔ XRY ∧ Y �R X,

where R is a weak order.

This provides that X is related to Y in P if and only if X is strictly
preferred to Y in R. P is irreflexive, and hence not connected. We use accents
(such as ̂, ′ , ˜) to indicate the correspondence of various relations (relations
which are derived from each other share the same accent): R̃ is the collective
preference which comes from the individual preferences {R̃i}; P̂ = R̂ − R̂−1

(the strict preference derived from the weak order R̂). Relations without any
accent also correspond to each other.

Positively reflecting individual preferences is the heuristic notion that if a
voter changes his vote in favor of a candidate, that candidate should not fare
worse in the outcome of the election. Property PR is defined by contrasting two
sets of individual preferences {Ri} and {R̃i} which are identical with respect to
all candidates except Z, but some of the R̃i may manifest a greater preference
for Z than the corresponding Ri. Property PR then requires that R̃ ranks Z
at least as high as R does. A more concise statement of the definition follows:

Definition 6 An election procedure (EP) positively reflects the wills of in-
dividuals (satisfies property PR) if the following holds:

If, whenever two sets of individual preferences {Ri} and {R̃i} satisfy
for all X and Y different from a specified Z and for all i:

1. XRiY ⇔ XR̃iY ,
2. ZRiX ⇒ ZR̃iX , and
3. ZPiX ⇒ ZP̃iX,

then ZPX ⇒ ZP̃X.

In other words, if, all other preferences being the same, there is a stronger
preference for Z in the individual rankings, Z will not manifest a lower prefer-
ence in the collective function (it could be the same).

Independence of irrelevant alternatives says that if a candidate withdraws
from a race, it will not affect the relative rankings of the other candidates. This
is expressed by considering relations on a set T restricted to a set S ⊂ T (i.e.,
if R is a relation on T , R restricted to S ⊂ T is R ∩ (S × S)).
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Definition 7 Independence of irrelevant alternatives is satisfied if, whenever
Ri = R̃i for all i when the relations are restricted to S, then R = R̃ when
restricted to S.

The preceding two definitions allow us to define when an election procedure
is rational

Definition 8 A rational election procedure (REP) is an election procedure
(EP) which satisfies properties PR and IA.

Plurality voting is not a REP as illustrated in the Introduction with the
example of two liberal versus one conservative candidate. If either liberal were
to withdraw, the other would win; hence the victory of the conservative over
either liberal is not independent of irrelevant alternatives. Sequential runoffs
also violates IA as the example in the Introduction shows.

The General Possibility Theorem
The general possibility theorem of Arrow is really an impossibility theorem. It
states that if there are at least two voters and three candidates, there is no
rational election procedure which reflects the preferences of the voters. More
specifically, it states that the only functions from the individual preferences {Ri}
(which are weak orders) to a collective preference R (which is a weak order)
which satisfy positively reflecting individual preferences (PR) and independence
of irrelevant alternatives (IA) either select one of the individual preferences
(i.e., R = Ri for some i) or impose a weak order between at least two of the
candidates independent of the individual preferences (i.e., XR Y for some X
and Y independent of the Ri). The former provides a dictatorship by the ith
voter, while the latter, which is referred to as externally imposed, does not
reflect anyone’s preferences. Neither of these election procedure alternatives is
consistent with our notion of democracy.

To simplify the proof of the general possibility theorem, we restrict our
attention to the case of only two voters and three candidates.

Theorem 2 Arrow’s General Possibility Theorem The only functions
F : W 2 → W which satisfy PR and IA are

1. F (R1, R2) = R1 or F (R1, R2) = R2 (i.e., dictatorships), or
2. F (R1, R2) = R with XRY for some X and Y independent of R1 and

R2 (i.e., externally imposed).
(R1 and R2 are weak orders on the three candidates; the subscripts identify
voters 1 and 2 respectively.)
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For notational convenience, we denote the three candidates with A, B,
and C; and use X and Y generically for the candidates A, B, and C. The
proof is based on a series of lemmas under the assumption that the REP is not
externally imposed, which successively characterize the REP until it is shown
to be a dictatorship. A contradiction is then obtained by applying the lemmas.

Lemma 1 If XP1Y and XP2Y , then XP Y .

Recall that P is the strict preference defined from the weak order R which
results from weak orders R1 and R2 which define the strict preferences P1 and
P2; the mapping which produces R is assumed to satisfy properties IA and PR
in accordance with the hypothesis of the theorem. (This is certainly a desirable
property. If both individuals prefer X to Y , the collective preference should,
but it must be shown.)

Proof: If Y RX for all choices of P1 and P2, R is an externally imposed weak
order, which is one of the forms of the function in the conclusion of the theorem,
so assume XP̂ Y for P̂1 and P̂2 (i.e., such P̂i exist). We may alter the preference
orderings P̂1 and P̂2 by making X strictly preferred to the other alternatives (if
that is not already the case) while leaving the relationships between the other
two alternatives unchanged; denote these preferences as P ′

1 and P ′
2. Because the

REP positively reflects individual preferences (PR), XP ′Y . Hence, by property
IA this will hold for all preferences satisfying the hypothesis of Lemma 1.

The next lemma treats a circumstance when the preferences of the two
voters differ, which the following lemma will show cannot occur.

Lemma 2 If whenever XP1Y and Y P2X , XP Y ; then whenever XP1Y ,
XP Y .

This is also intuitive, it says that if individual 1’s preferences win out
when opposed, they will also win when not opposed. The proof (see Exercise 8)
follows from property PR.

Before proceeding, we need to define a class of relations which will be de-
noted with I. I stands for indifferent, i.e., XI Y ⇔ XR Y ∧ Y R X . We leave
it as an exercise to show that indifference is an equivalence relation (see Exer-
cise 4). This notation allows us to characterize collective preference functions
when voter preferences are opposite.

Lemma 3 If XP1Y and Y P2X , then XI Y .
This says that if the two voters’ preferences for two candidates are oppo-

site, the REP must show indifference between the two candidates (“their votes
cancel”).
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Proof: The alternative is that the REP provides P satisfying XP Y (or Y PX
which would be handled analogously). Property IA extends “XP1Y and Y P2X
and XP Y ” to “whenever XP1Y and Y P2X , XP Y ”, which is the hypothesis
of Lemma 2. The conclusion of Lemma 2 will be used to draw a contradiction.

Assume that AP1B, BP2A, and APB. By property IA this holds for all sets
of voter preferences {Ṗi} with voter 1 preferring A to B and voter 2 preferring
B to A. Consider Ṗ1 prescribing the preference A � B � C and Ṗ2 prescribing
the preference B � C � A. (We use X � Y to denote XP Y , commas separate
alternatives between which the voter is indifferent.) It follows by Lemma 1
that BṖC, hence AṖC by transitivity for these preferences. As noted above,
a single case ({Ṗi}) satisfies the hypotheses of Lemma 2 by property IA, hence
AP1C ⇒ AP C. We now have AP1B ⇒ APB and AP1C ⇒ AP C.

Next consider P̂1 prescribing the preference B � A � C and P̂2 prescribing
the preference C � B � A. It follows by Lemma 1 that BP̂A. AP̂C since it is
true for P̂1. Hence BP̂C by transitivity. BP̂1C, CP̂2B and BP̂C is equivalent
to the hypothesis of Lemma 2. We now have AP1B ⇒ APB, AP1C ⇒ AP C,
and BP1C ⇒ BP C.

Consideration of the individual preferences B � C � A and C � A � B
adds BP1A ⇒ BPA to our list. Continuing in this fashion we can show that
the preference of the first individual governs, i.e., the REP is given by R =
F (R1, R2) = R1 (a dictatorship). This proves Lemma 3 since the assumption
X� IY implied that the REP is a dictatorship, which is one of the forms of the
REP specified in Theorem 2. Our initial choice AP1B, BP2A, and APB was
made without loss of generality, hence provides the result for arbitrary X and Y
(the reader may repeat the proof with BPA and all the other 2–permutations
of A, B, and C).

These lemmas allow us to proceed with the proof of the general possibility
theorem.

Proof of Theorem 2: Consider the preferences P1 prescribing A � B � C and
P2 prescribing C � A � B. It follows from Lemma 1 that APB and from
Lemma 3 that AIC and BIC. The latter two relationships imply AIB by
transitivity, which contradicts APB. Hence there is no REP with the desired
properties.

Extension to more than three candidates is immediate since IA allows us
to restrict any REP to three candidates, but extension to more than two voters
is more recondite and will not be proven here. There is, however, an additional
assumption (which is included in many definitions of “fair”) that simplifies the
proof. This assumption is symmetry, both with respect to voters and with
respect to candidates.
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Symmetric Election Procedures
The hypotheses of Theorem 2 put no restriction on the REP (rational election
procedure) other than that it provide a weak order and satisfy properties PR
and IA. It is reasonable to further require that the election procedure be sym-
metric with respect to both candidates and voters. Symmetry with respect to
candidates means that no candidate has an inherent advantage built into the
election procedure, i.e., all candidates are entering the race as equals. A formal
characterization is that if XR Y (or XP Y or XI Y ) and everyone interchanged
their votes for X and Y , then Y R X (or Y PX or Y IX). Symmetry with re-
spect to voters means that all voters are equal, it only matters what votes are
cast, not who cast them. This is formally stated as: permuting the indices
of the voters associated with the preference schedules, without changing the
preference schedules, will leave the resultant R unchanged.

There are circumstances where these assumptions are not reasonable for
constructing a REP, such as declaring the incumbent the winner if there is a tie
or weighting the votes of women as half the votes of men, but these are rather
anomalous.

Assuming symmetry greatly simplifies the proof of Lemma 3, which re-
duces to the conclusion that indifference is the only symmetric weak order (see
Exercise 9). The following lemmas are preparation for the proof that in the
symmetric case, if there are at least three candidates, there is no REP satisfy-
ing PR and IA other than total indifference for any number of voters.

Lemma 4 If XPiY for all i, then XP Y .

Proof: The proof of Lemma 4 is is analogous to the proof of Lemma 1. If
there is not total indifference, there is a set of preference schedules under which
some candidate is preferred to another. By symmetry there must be a set of
preference schedules for each pair of candidates and, in particular, a set of
preferences yielding XP Y . By PR, we still have XP Y if X is raised above Y
on each schedule in that set, and Lemma 4 follows by IA.

The following lemma provides an easy way to determine the collective
preference if none of the individual preference schedules contain indifference.

Lemma 5 If there is no indifference in the individual preference schedules
and |{i|XPiY }| > |{i|Y PiX}|, then XP Y .

(Note that | | denotes cardinality. This says that if more people strictly
prefer X to Y than Y to X , then the collective will will strictly prefer X to Y .)

Proof: Construct individual preference schedules for three candidates of the
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form X � Z � Y and Z � Y � X where there are more of the former than
the latter. By symmetry (and PR), XR Y and XR Z. By Lemma 4, ZP Y . If
XI Y , ZP X by transitivity which contradicts XR Z. Because IA extends this
special case to the hypothesis of Lemma 5, Lemma 5 is proven.

These lemmas provide the proof of the general possibility theorem in the
case of symmetric election procedures.

Theorem 3 If there are at least three candidates, then there is no REP
which is symmetric with respect to both voters and candidates except complete
indifference.

Proof: With Lemma 5, the preference schedules

A � B � C B � C � A C � A � B

provide APB, BPC, and CPA; thereby violating transitivity of the REP. Since
there is no REP which works if individual preferences are restricted to strict
preferences, there cannot be one for general individual preferences. This ex-
ample is easily extended to show there cannot be a REP with any number of
voters.

In the case of only two candidates, majority rule provides a REP for any
number of voters. The proof is left as Exercises 5 and 6.

Election Procedures

Approval voting

The fact that there is no rational election procedure (which is non-dictatorial
and non-imposed) if there are more than two candidates may have contributed
to the pervasiveness of the two party system. But there is a rational election
procedure which will produce a collective weak order of any number of can-
didates based on individual preferences consistent with PR and IA. However,
although any number of candidates is allowed, all individual preference func-
tions must be dichotomous: individuals either approve or disapprove of each
candidate, but do not distinguish preferentially among the candidates in each
category. The REP is simple — it is the rank order based on the number of
approval votes each candidate receives.

Example 2 The operation of approval voting can be illustrated by a five
candidate race (A, B, C, D, E). Each voter votes for whichever candidates he
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approves. For illustrative purposes assume that the ten ballots cast are

ABE, B, BCE, BD, AE, BCD, CE, BCDE, ABE, ABDE

(i.e., each voter lists the candidates of whom he approves; voter 1 approves
Alfred, Barthowlamew, and Ethelred). Then A received 4 votes, B received 8
votes, C received 4 votes, D received 4 votes, and E received 7 votes. This
provides the preferential order B � E � A, C, D. Ties (indifferences) are
possible; it is not necessary that anyone receive approval from 50% of the voters,
nor does receiving such approval assure election.

The utility of approval voting is given in the following theorem.

Theorem4 Approval voting provides a REP on the restricted domain where
each voter has dichotomous preferences.

Proof: A dichotomous preference (i.e., a partition of the candidates into two
sets: the “approved” set, whose members are related to every candidate, and
the “nonapproved” set, whose members are only related to members of that
set,) is a weak order. It must be shown that the resultant preference schedule
is a weak order, and further that it satisfies properties PR and AI.

The vote tally identifies each candidate with an integer (the number of
votes received). XR Y if the number of votes X received is greater than or
equal to the number of votes received by Y . The trichotomy for two integers a
and b (a > b, a = b, or b > a) is equivalent to connectivity, and the transitive
property of inequality is equivalent to transitivity; hence R is a weak order.
Property PR is satisfied since giving an additional vote to a candidate will in-
crease his vote count without affecting other vote counts, hence cannot result in
his vote count becoming less than another candidate’s. Property IA is satisfied
since the relative ranking of two candidates depends solely on the number of
votes they receive, i.e., is independent of the number of votes other candidates
receive. Hence approval voting provides a REP if all individual preferences are
dichotomous.

Example 3 Unfortunately, allowing individuals only the option of indicating
approval or disapproval for each candidate significantly restricts their ability to
express their preference. Consider the dilemma of an individual who, in a three
candidate race, prefers A to B and prefers B to C (hence prefers A to C). It is
clear that he should not vote for all three candidates or withhold his vote from
all, because then his ballot would not affect the relative totals. He should vote
for A because whatever the vote count is without his ballot, adding a vote to
A can only serve his interest. Similarly he should not vote for C. But it is not
clear whether he should vote for B. If without his ballot there is a tie between
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B and C, then voting AB will serve his interest; but if there is a tie between
A and B voting AB will retain the tie which he could have broken in his favor
had he voted only A. If he does not know how others will vote, he does not
know how to vote to favor his interests.

Majority election procedures

Although approval voting produces a REP, it puts an unreasonable constraint
on the individual preference functions. Since in the case of only two candidates
majority rule provides a rational election procedure, it is natural to try to
modify election procedures so that they entail only two candidates and majority
rule will provide a rational election procedure. Are there satisfactory ways
to dichotomize all elections, i.e., to make all elections a choice between two
alternatives? The answer is no, but it is worth surveying some methods which
have been employed in order to illustrate the problems which have manifested.

Sequential elections

Example 4 One possibility, perhaps more commonly used for passing leg-
islation than for electing candidates, is to put two alternative choices to a vote
at a time. For example, if there are three candidates A, B, and C; a vote could
first be taken between A and B, and then between the winner of that contest
and C. However, as the individual preferences of three voters (A � B � C),
(B � C � A), and (C � A � B) illustrate, the ultimate winner could be
different if the first vote were between B and C, followed by the winner of that
contest versus A.

Condorcet criterion

The paradox in Example 4 was noted by Marie-Jean-Antoine-Nicolas de Car-
itat, marquis de Condorcet*. Although election procedures are fraught with
paradoxes, he concluded, based on two candidate results, that if any candidate
would win all two way races, that person should be the winner. Such a person
is called the Condorcet winner. If such a winner exists, the above paradox
will not occur. It is easy to show that a Condorcet winner is unique, but such
a winner need not exist. A. H. Copeland suggested generalizing the Condorcet

* Marie-Jean-Antoine-Nicolas de Caritat, marquis de Condorcet (1743–1794) was

a protégé of Jean Le Rond d’Alembert. His Essai sur l’application de l’analyse à la

probabilité de décisions rendues à la pluralité des voix (1785) assured him permanent

place in the history of probability. He is also known as one of the first people to

declare for a republic in the French revolution, but died an outlaw because he was too

moderate when Robespierre came to power.
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criterion by selecting as the winner the person who wins the most two way con-
tests in the event that there is no Condorcet winner. Unfortunately, if there are
fewer than five alternatives, there will never be a Copeland winner if there is
not a Condorcet winner (see Exercise 22). Another method must be employed
if one wishes to determine a winner.

Pluralities and runoffs

The essence of majority is maintained in plurality procedures, and runoff elec-
tions can be held in order to assure an actual majority. Runoffs may be held
between the two recipients of the most votes (only first place votes count) or by
sequentially eliminating the recipients of the fewest votes and transferring their
votes to the next highest names on the respective ballots (these two methods
are not equivalent).

Example 5 Although plurality decisions or runoff elections are widely used,
they do not assure election of a Condorcet winner if one exists. In order to ob-
tain a workable system, the most justifiable winner is often eliminated. The
example with 9 voters, four with preference (A � C � B), three with prefer-
ence (B � C � A), and two with preference (C � B � A), illustrates that a
Condorcet winner may lose either under plurality, a runoff between the top two
vote-getters, or sequential runoffs eliminating the low vote-getter until some-
body has a majority. (A voter whose top preference has been eliminated from
a runoff votes for his most favored remaining candidate.)

Applications to Sports
Most of the elections related to government are concerned only with determining
a single winner rather than rank ordering the alternatives. But within the realm
of our leisure activities there is a significant demand to for ranking alternatives.
We conclude by considering some procedures employed to rank sports teams.

The Borda method

A vote count method to produce a collective ranking of alternative candidates
based on individual rankings was proposed by Jean-Charles de Borda* in 1781.
If there are n candidates, the Borda count assigns to the last name on each

* Jean-Charles de Borda (1733–1799) was a French mathematician best known for

his work in fluid mechanics, navigation, and geodesy. While in the French navy he

served on several scientific voyages, but also took part in the American Revolution

and was captured by the British in 1782.
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ballot 0 points, to the next-to-last name 1 point, . . . , and to the first name
n − 1 points. The winner is then determined by summing for each candidate
the number of points from each ballot. This is the method used to rank the top
twenty college football teams by polling sportswriters. It has the advantage of
converting the weak orders of individuals into a collective weak order. It reflects
the entire preference schedules, not just the top candidates on each ballot.

However, the use of numerical rankings quantifies the degree of preference,
which Arrow felt could not be justified. A major problem is that it encourages
insincere voting. If you know that there are two candidates for the best team,
it will be in your interest to rank the one you favor first and the other one
(although you sincerely believe it to be the second best team) last. This gives
voters the ability to essentially blackball a candidate. A Condorcet winner will
not necessarily win by this procedure; in fact, a team which receives a majority
of the first place votes may not win.

Example 6 Suppose three sportswriters decide to rank the football teams of
Dartmouth, Harvard, Brown, and Yale. They might cast the following ballots:
(B � H � D � Y ), (H � D � Y � B), and (B � H � Y � D). Even though
Brown received a majority of the first place votes, the point total for Harvard
is seven, while the total for Brown is only six.

Elimination tournaments

The national championship in collegiate basketball, unlike football, does not rely
on a poll of sportswriters to determine the winner. Rather the “best” teams
are paired off, with the winners subsequently paired against other winners.
(These elimination trees can be found in newspapers during the NCAA playoffs.)
Ultimately, one team wins the finals, and by transitivity is better than all the
other teams in the tournament. But this method only picks a single winner; it
is not clear whether the team defeated in the final game or the team defeated by
the champion in the semi-final is the second best team; there are n/2 candidates
remaining for the worst team. The amount of ambiguity can be diminished
if there are consolation games, but too many games such as a round robin
tournament could produce a violation of transitivity if teams did not perform
consistently. (It is also possible that there is no transitive ranking; abilities
to implement and defend against various styles of play may allow team A to
consistently beat team B, team B to consistently beat team C, and team C to
consistently beat team A.)

Example 7 It is desired to rank the teams RI, CT, NH, and VT. A tour-
nament in which CT beats NH and RI beats VT in the first round followed by
CT defeating RI in the final produces CT as the best team since it defeated NH
and RI, and the RI victory over VT makes CT better than VT by transitivity.
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Otherwise, all that has been demonstrated is that RI is better than VT; either
VT or NH could be the worse team, either RI or or NH could be the second
best team. A consolation game in which VT beat NH would establish the order
CT � RI � V T � NH , but if NH beat VT it would not be determined which
of RI and NH is better.

Example 8 A round robin tournament of six games between four teams in
which A beats B, B beats C, C beats D, D beats A, A ties C, and B ties D
shows that transitivity need not hold.

In summary, whether electing people who will determine the fate of the
world or judging the entrants in a fiddle competition, there is no best procedure.
All we can do is know the limitations of each of the various methods, and hope
it does not matter.
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Exercises

1. Give an example, other than those discussed in the text, of a weak order
which is not a total order.

2. Give an example, other than those discussed in the text, of a partial order
which is not a weak order.



Chapter 3 Rational Election Procedures 55

3. Show that connectivity implies reflexivity for all binary relations on a set A.

4. Show that indifference is an equivalence relation on a set A.

5. Show that the relation resulting from majority rule with just two candidates
is connected and transitive, hence is a weak order.

6. Show that majority rule with just two candidates positively reflects indi-
vidual preferences (PR) and is independent of irrelevant alternatives (IA),
hence provides a REP.

7. Show that a total order cannot be an equivalence relation on a set with
more than one element.

8. Prove Lemma 2: Given that properties PR and IA hold, if whenever XP1Y
and Y P2X , XP Y ; then whenever XP1Y , XP Y .

9. Prove Lemma 3 in the case that the REP is symmetric with respect to
voters and candidates.

In Exercises 10–15, consider an election with three candidates in which the
preferences of the nine voters are: (A � B � C), (A � C � B), (A � C � B),
(A � C � B), (B � C � A), (B � C � A), (B � C � A), (C � B � A), and
(C � B � A).

10. Does any candidate have a majority of the first place votes? Which candi-
date wins by the plurality criterion?

11. Which candidate wins if there is a runoff between the top two candidates?

12. If every voter found only his favorite candidate acceptable, which candidate
would win under approval voting? If every voter found his first two choices
acceptable, which candidate would win under approval voting?

13. If there are sequential elections with the first election between A and B and
then the winner of that contest versus C, which candidate will win?

14. Is there a Condorcet winner?

15. Which candidate wins by the Borda count method?

16. Sometimes the Borda Count method is modified to favor candidates who
receive first place votes by awarding n points for a first place vote, n − 2
points for a second place vote, and in general n−m points for an mth place
vote (2 ≤ m ≤ n). What would be the ranking of the teams in Example 6
if this method were used?

17. In a round robin tournament (everyone plays every other team) with four
teams A beats B and D, C beats A and B. What outcomes for B vs. D
and C vs. D will provide a transitive ranking of the teams?
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18. In a round robin tournament with n teams, what is the least number of
games that can be played and violate transitivity?

19. Extend the example in the proof of Theorem 3 to show that there is no
REP with any number of voters greater than two.

20. Continue the proof of Lemma 3 to show BP1A ⇒ BPA and CP1A ⇒ CPA.

21. Show that |{i|XPiY }| > |{i|Y PiX}| ⇒ |XR Y | using symmetry and PR.

22. Show that for three or four alternatives there cannot be a Copeland winner
unless there is a Condorcet winner.

23. If there is a single elimination tournament with no consolation games for
eight teams, how many total orderings of the teams will be consistent with
the final outcome (i.e., how many total orderings are consistent with A � B,
C � D, E � F , G � H , A � C, E � G, and A � E)?

24. If A can beat B and C, B can beat C and D, C can beat D, and D can beat
A; how should a single elimination tournament be organized so that A will
win? How should a single elimination tournament be organized so that A
will not win?

Computer Projects

1. Write a computer program to determine the winner of an election if there
is a runoff between the top two vote-getters (assuming no candidate had
a majority of votes on the first ballot). The input will be the preference
schedules of each voter (i.e., ordered n-tuples), with the first votes cast for
the names on the top of the lists, and the second votes cast for the highest
ranking of the remaining two candidates.

2. Write a computer program to determine the winner of an election if there are
sequential runoffs with the lowest vote recipient eliminated each round until
one candidate has a majority. The input will be the preference schedules of
each voter (i.e., ordered n-tuples), with the first votes cast for the names on
the top of the lists, and the subsequent votes cast for the highest ranking
of the remaining candidates.

3. Write a computer program to implement approval voting (what form should
the input be in?). (Solution: Input the names of the approved candidates,
adding 1 to their vote count each time the name is entered, or enter Boolean
vectors indicating approval or disapproval and sum them componentwise.)


