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Stirling Numbers

Author: Thomas A. Dowling, Department of Mathematics, Ohio State Uni-
versity.

Prerequisites: The prerequisites for this chapter are basic counting tech-
niques and equivalence relations. See Sections 5.3 and 8.5 of Discrete Mathe-
matics and Its Applications.

Introduction
A set of objects can be classified according to many different criteria, depending
on the nature of the objects. For example, we might classify

— accidents according to the day of the week on which they occurred

— people according to their profession, age, sex, or nationality
— college students according to their class or major

— positions in a random sequence of digits according to the digit
appearing there

— misprints according to the page on which they occur
— printing jobs according to the printer on which they were done.

In each of these examples, we would have a function from the set of objects to
the set of possible levels of the criterion by which the objects are classified. Sup-
pose we want to know the number of different classifications that are possible,
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96 Applications of Discrete Mathematics

perhaps subject to additional restrictions. This would be necessary, for exam-
ple, in estimating probabilities that a classification satisfied certain conditions.
Determining the number of functions between finite sets, based on the sizes of
the sets and certain restrictions on the functions, is an enumeration problem
considered in Section 7.6 of Discrete Mathematics and Its Applications.

It may be the case, however, that the classification need not distinguish the
various levels of the criterion, if such a distinction is even possible. There could
be many levels, but the actual level on which an object falls is of no concern.
Of interest might be how the set of objects is partitioned into disjoint subsets,
with two objects being in the same subset whenever they fall at the same level
of the criterion. A classification then represents a partition of the set of objects,
where two objects belong to the same class of the partition whenever they fall
at the same level. In this case, rather than counting functions, partitions of the
set of objects would be counted. It is then that the Stirling numbers* become
appropriate.

Along with the binomial coefficients C(n, k), the Stirling numbers are of
fundamental importance in enumeration theory. While C(n, k) is the number
of k-element subsets of an n-element set N , the Stirling number S(n, k) rep-
resents the number of partitions of N into k nonempty subsets. Partitions of
N are associated with sets of functions defined on N , and they correspond to
equivalence relations on N .

Because of their combinatorial interpretation, the numbers S(n, k) will be
met first, despite their name as the Stirling numbers of the second kind. After
we establish their role in a classification of functions defined on N , we consider
their part in relating two sequences of polynomials (as they were originally
defined by Stirling). We will then be led to the Stirling numbers s(n, k) of the
first kind. We will see why they are referred to as being of the first kind, despite
the fact that some of these integers are negative, and thus cannot represent the
size of a set.

Occupancy Problems
Many enumeration problems can be formulated as counting the number of dis-
tributions of balls into cells or urns. The balls here correspond to the objects
and the cells to the levels. These counting problems are generally referred to as
occupancy problems. Suppose n balls are to be placed in k cells, and assume
that any cell could hold all of the balls. The question “In how many ways can
this be done?” asks for the number of distributions of n balls to k cells.

As posed, the question lacks sufficient information to determine what is
meant by a distribution. It therefore cannot be correctly answered. The num-

* They are named in honor of James Stirling (1692–1770), an eighteenth century

associate of Sir Isaac Newton in England.
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ber of distributions depends on whether the n balls and/or the k cells are
distinguishable or identical. And if the n balls are distinguishable, whether the
order in which the balls are placed in each cell matters. Let us assume that the
order of placement does not distinguish two distributions.

Suppose first that both the balls and the cells are distinguishable. Then the
collection of balls can be interpreted as an n-element set N and the collection
of cells as a k-element set K. A distribution then corresponds to a function
f : N → K. The number of distributions is then kn.

If, however, the balls are identical, but the cells are distinguishable, then
a distribution corresponds to an n-combination with repetition from the set
K of k cells (see Section 5.5 of Discrete Mathematics and Its Applications).
The number of balls placed in cell j represents the number of occurrences of
element j in the n-combination. The number of distributions in this case is
C(k + n − 1, n).

Occupancy problems can have additional restrictions on the number of balls
that can be placed in each cell. Suppose, for example, that at most one ball
can be placed in each cell. If both the balls and the cells are distinguishable,
we would then be seeking the number of one-to-one functions f : N → K.
Such a function corresponds to an n-permutation from a k-set, so the number
is P (k, n) = k(k − 1) · · · (k − n + 1). If instead there must be at least one
ball in each cell, we want the number of onto functions f : N → K. Using
inclusion-exclusion, that number is equal to

k−1∑
i=0

(−1)iC(k, i)(k − i)n.

(See Section 7.6 of Discrete Mathematics and Its Applications.)

Partitions and Stirling Numbers of the Second Kind
An ordered partition of N with length k is a k-tuple (A1, A2, . . . , Ak) of
disjoint subsets Ai of N with union N . By taking K = {1, 2, · · · , k}, we can
interpret any function f : N → K as an ordered partition of N with length k.
We let Ai be the subset of N whose elements have image i. Then, since f assigns
exactly one image in K to each element of N , the subsets Ai are disjoint and
their union is N . Then Ai is nonempty if and only if i is the image of at least
one element of N . Thus the function f is onto if and only if all k of the sets Ai

are nonempty.
Recall that a partition of a set N is a set P = {Ai|i ∈ I} of disjoint,

nonempty subsets Ai of N that have union N . We shall call these subsets
classes. An ordered partition of N of a given length may have empty subsets Ai,
but the empty set is not allowed as a class in a partition. If it were, then even
though the classes are disjoint, they would not necessarily be different sets, since
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the empty set might be repeated. Given an equivalence relation R on N , the
distinct equivalence classes Ai are disjoint with union N . The reflexive property
then implies that they are nonempty, so the equivalence classes form a partition
of N . Conversely, given a partition P = {Ai|i ∈ I}, an equivalence relation R
is defined by aR b if and only if there is some class Ai of P containing a and b.
Thus, there is a one-to-one correspondence between the set of partitions of N
and the set of equivalence relations on N .

A binary relation on N is defined as a subset of the set N×N . Since N×N
has n2 elements, the number of binary relations on N is 2n2

. The number of
these that are equivalence relations, which is equal to the number of partitions
of N , is called a Bell number*, and denoted by Bn. For example, the number
of ways that ten people can be separated into nonempty groups is the Bell
number B10. Two of the people satisfy the corresponding equivalence relation R
if and only if they belong to the same group.

Suppose we want instead the number of ways the ten people can be sep-
arated into exactly three nonempty groups. That is, how many equivalence
relations are there on a ten-element set that have exactly three equivalence
classes? More generally, of the Bn equivalence relations, we might ask how
many have exactly k equivalence classes? Since this is the number of partitions
of N into k classes, we are led to our definition of a Stirling number S(n, k)
of the second kind. (Note that the Bell number Bn is then the sum over k of
these numbers, that is, Bn =

∑n
k=1 S(n, k).)

Definition 1 The Stirling number of the second kind, S(n, k), is the number
of partitions of an n-element set into k classes.

Example 1 Find S(4, 2) and S(4, 3).

Solution: Suppose N = {a, b, c, d}. The 2-class partitions of the 4-element
set N are

({a, b, c}, {d}), ({a, b, d}, {c}), ({a, c, d}, {b}), ({b, c, d}, {a})

({a, b}, {c, d}), ({a, c}, {b, d}), ({a, d}, {b, c}).

It follows that S(4, 2) = 7.
The 3-class partitions of N are

({a, b}, {c}, {d}), ({a, c}, {b}, {d}), ({a, d}, {b}, {c})

* We won’t pursue the Bell numbers here, but see any of the references and also

Section 8.5, Exercise 68, of Discrete Mathematics and Its Applications for more

about them.
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({b, c}, {a}, {d}), ({b, d}, {a}, {c}), ({c, d}, {a}, {b})
We therefore have S(4, 3) = 6.

In occupancy problems, a partition corresponds to a distribution in which
the balls are distinguishable, the cells are identical, and there is at least one
ball in each cell. The number of distributions of n balls into k cells is there-
fore S(n, k). If we remove the restriction that there must be at least one ball
in each cell, then a distribution corresponds to a partition of the set N with at
most k classes. By the sum rule the number of such distributions equals

S(n, 1) + S(n, 2) + · · · + S(n, k).

Since the classes Ai of a partition P = {Ai|i ∈ I} must be disjoint and
nonempty, we have S(n, k) = 0 for k > n. Further, since ({S}) itself is the
only partition of N with one class, S(n, 1) = 1 for n ≥ 1. Given these initial
conditions, together with S(0, 0) = 1, S(n, 0) = 0 for n ≥ 1, the Stirling
numbers S(n, k) can be recursively computed using the following theorem.

Theorem 1 Let n and k be positive integers. Then

S(n + 1, k) = S(n, k − 1) + k S(n, k). (1)

Proof: We give a combinatorial proof. Let S be an (n + 1)-element set. Fix
a ∈ S, and let S′ = S − {a} be the n-element set obtained by removing a
from S. The S(n + 1, k) partitions of S into k classes can each be uniquely
obtained from either

(i) a partition P ′ of S′ with k − 1 classes by adding a singleton class
{a}, or

(ii) a partition P ′ of S′ with k classes by first selecting one of the k
classes of P ′ and then adding a to that class.

Since the cases are exclusive, we obtain S(n, k) by the sum rule by adding the
number S(n, k − 1) of partitions of (i) to the number k S(n, k) of partitions
in (ii).

Example 2 Let P be one of the partitions of N = {a, b, c, d} in Example 1.
Then P is obtained from the S(3, 1) = 1 one-class partition ({a, b, c}) of N ′ =
N−{d} = {a, b, c} by adding {d} as a second class, or from one of the S(3, 2) = 3
two-class partitions

({a, b}, {c}), ({a, c}, {b}), ({b, c}, {a})
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of N ′ by choosing one of these partitions, then choosing one of its two classes,
and finally by adding d to the class chosen.

Example 3 Use Theorem 1 to find S(5, 3).

Solution: We have S(4, 2) = 7 and S(4, 3) = 6 from Example 1. Then we
find by Theorem 1 that S(5, 3) = S(4, 2) + 3 S(4, 3) = 7 + 3 · 6 = 25.

The Pascal recursion C(n + 1, k) = C(n, k − 1) + C(n, k) used to compute
the binomial coefficients has a similar form, but the coefficient in the second
term of the sum is 1 for C(n, k) and k for S(n, k).

Using the recurrence relation in Theorem 1, we can obtain each of the
Stirling numbers S(n, k) from the two Stirling numbers S(n−1, k−1), S(n−1, k)
previously found. These are given in Table 1 for 1 ≤ k ≤ n ≤ 6.

n \ k 1 2 3 4 5 6
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1

Table 1. Stirling numbers of the second kind, S(n,k).

Inverse Partitions of Functions
Recall that a function f : N → K is onto if every element b ∈ K is an image
of some element a ∈ N , so b = f(a). If we denote the set of images by
f(N) = {f(a)|a ∈ N}, then f is onto if and only if f(N) = K.

Example 4 Suppose N = {a, b, c, d}, K = {1, 2, 3}, and the function f is
defined by f(a) = f(b) = f(d) = 2, f(c) = 1. Then f(N) = {1, 2} �= K, so f is
not onto.

Every function f : N → K determines an equivalence relation on N under
which two elements of N are related if and only if they have the same image
under f . Since the equivalence classes form a partition of N , we make the
following definition.
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Definition 2 The inverse partition defined by a function f : N → K is the
partition P (f) of N into equivalence classes with respect to the the equivalence
relation Rf defined by aRfb if and only if f(a) = f(b).

Given the function f , every element b ∈ f(N) determines an equivalence
class of Rf . Suppose we denote by f−1(b) the set of elements in N that have b
as their image*. Then f−1(b) is an equivalence class, called the inverse image
of b. It follows that

a ∈ f−1(b) if and only if b = f(a).

Thus, the equivalence classes f−1(b) for b ∈ f(N) form the inverse parti-
tion P (f) of N , and the number of equivalence classes is the size of the set f(N).
Therefore f : N → K is onto if and only if P (f) has k classes.

Example 5 Find the inverse partition of N defined by the function f of
Example 4.

Solution: For the function f in Example 4, the set of elements of N with
image 1 is f−1(1) = {a, b, d}, while the set of elements with image 2 is f−1(2) =
{c}. Since no elements have 3 as an image, the set f−1(3) is empty, so it is not
an equivalence class. Thus the inverse partition of N defined by f is the 2-class
partition P (f) = ({a, b, d}, {c}).

An Identity for Stirling Numbers
We can classify the kn distributions of n distinguishable balls into k distinguish-
able cells by the number j of nonempty cells. Such a distribution is determined
by a j-class partition P of the set of balls together with an injective function ϕ
from the j classes of P to the k cells. The classification obtained in this way
leads to an identity involving the Stirling numbers of the second kind. Denote
by F (N, K) the set of functions f : N → K. Recall that the size of F (N, K)
is kn. Let us classify the functions f ∈ F (N, K) according to the size of their
image sets f(N), or equivalently, according to the number of classes in their
inverse partitions P (f).

* What we have denoted by f−1 is actually a function from K to the power

set P (N) of N , and not the inverse function of f . The function f : N → K has an

inverse function from K to N if and only if it is a one-to-one correspondence.
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Given a j-class partition P = {A1, , A2, . . . , Aj} of N , consider the set of
functions f ∈ F (N, K) for which P (f) = P . Two elements in N can have the
same image if and only if they belong to the same Ai. Hence a function f has
P (f) = P if and only if there is a one-to-one function ϕ : {A1, A2, . . . , Aj} → K
such that f(a) = ϕ(Ai) for all i and all a ∈ Ai. The number of one-to-one
functions from a j-set to a k-set is the falling factorial

(k)j = P (k, j) = k(k − 1) · · · (k − j + 1).

Hence, for any j-class partition P , the number of functions f ∈ F (N, K) such
that P (f) = P is (k)j . Since there are S(n, j) j-class partitions of N , by the
product rule there are S(n, j)(k)j functions f ∈ F (N, K) such that f(N) has
size j. Summing over j gives us

kn =
k∑

j=1

S(n, j)(k)j . (2)

The jth term in the sum is the number of functions f for which |f(N)| = j.
We noted earlier that the onto functions correspond to distributions in

the occupancy problem where the balls and the cells are distinguishable and
there must be at least one ball in each cell. If we remove the restriction that
there must be at least one ball in each cell, then a distribution corresponds to
a function f : N → K. Classification of the kn distributions according to the
number of nonempty cells gives (2). If we consider the term where j = k in (2),
and note that (k)k = k!, we have the following theorem.

Theorem 2 The number of functions from a set with n elements onto a set
with k elements is S(n, k)k!.

The inclusion-exclusion principle can be used to show that the number of
onto functions from a set with n elements to a set with k elements is

k∑
i=0

(−1)iC(k, i)(k − i)n. (3)

By Theorem 2, we may equate (3) to S(n, k)k!, and we obtain

S(n, k) =
1
k!

k∑
i=0

(−1)iC(k, i)(k − i)n. (4)

Example 6 Let n = 5, k = 3. Then if the 35 functions f : N → K
are classified according to the number of classes in their inverse partitions, we
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obtain

35 =
3∑

j=1

S(5, j)(3)j = 1 · 3 + 15 · 6 + 25 · 6 = 243,

which is of course easily verified. Theorem 2 shows that the number of these
functions that are onto is S(5, 3)3! = 25 · 6 = 150. Alternatively, by the
inclusion-exclusion expression (3), we have

3∑
i=0

(−1)kC(3, i)(3 − i)5 = 35 − 3 · 25 + 3 · 15

= 243 − 96 + 3 = 150.

Before turning to polynomials in a real variable x, we need to write the
summation in (2) in a different form. Since S(n, j) = 0 for j > n and (k)j = 0
for an integer j > k, the term S(n, j)(k)j in (2) can be nonzero only when j ≤ n
and j ≤ k. Thus we can replace the upper limit k in (2) by n, which gives

kn =
n∑

j=1

S(n, j)(k)j . (2′)

Stirling Numbers and Polynomials
Recall that a polynomial of degree n in a real variable x is a function p(x) of
the form

p(x) = anxn + an−1x
n−1 + · · · + a0,

where an, an−1, . . . , a0 are constants with an �= 0. Suppose we extend the
definition of the falling factorial (k)n from the set N ×N to the set R×N by
defining the function (x)n for any real number x and any nonnegative integer n
to be (x)n = 1 when n = 0 and (x)n = x(x − 1) · · · (x − n + 1) when n ≥ 1.
Equivalently, define (x)n recursively by (x)0 = 1 and (x)n = (x−n + 1)(x)n−1.
As the product of n linear factors, (x)n is a polynomial of degree n. We can
then replace k by x in (2′) to obtain

xn =
n∑

j=1

S(n, j)(x)j . (5)

Subtracting the right-hand side from each side gives

xn −
n∑

j=1

S(n, j)(x)j = 0. (6)
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But (x)j = x(x − 1) · · · (x − j + 1) is a polynomial of degree j, for 1 ≤ j ≤ n.
Hence the left-hand side of (6) is a polynomial p(x) of degree at most n. But
since p(x) = 0 for every positive integer x and since a polynomial of degree n
has at most n real roots, p(x) must be identically zero. Then we obtain for
every real number x

xn =
n∑

j=1

S(n, j)(x)j . (7)

Equation (7) represents (2′) extended from positive integers k to arbitrary
real numbers x. Since k does not appear in (7), we may replace the index
variable j by k, rewriting (7) as

xn =
n∑

k=1

S(n, k)(x)k. (7′)

Equation (7′) represents (7) in a form convenient for comparison with (10) in
the next section.

Example 7 Let n = 3. Then (x)1 = x, (x)2 = x(x − 1) = x2 − x, and
(x)3 = x(x − 1)(x− 2) = x3 − 3x2 + 2x. Substituting these into the right-hand
side of (5) gives

S(3, 1)(x)1+S(3, 2)(x)2 + S(3, 3)(x)3
= 1 · x + 3 · (x2 − x) + 1 · (x3 − 3x2 + 2x)
= x3.

Stirling Numbers of the First Kind
There is an interpretation of (7) that will be understood more readily by readers
who are familiar with linear algebra. The set of polynomials p(x) with real coef-
ficients (or with coefficients in any field) forms a vector space*. A fundamental
basis of this vector space is a sequence of polynomials {pk(x)|k = 0, 1, . . .} such
that pk(x) has degree k. Every polynomial can be uniquely expressed as a
linear combination of the polynomials in a fundamental basis. Two important
fundamental bases are the standard basis {xk|k = 0, 1, . . .} and the falling fac-
torial basis {(x)k|k = 0, 1, . . .}. The standard basis is in fact the one used in
the definition of a polynomial in x, since a polynomial is defined as a linear
combination of the powers of x. Then Equation (7) expresses the basis {xk} in
terms of the basis {(x)k}.

* This vector space has infinite (but countable) dimension.
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In fact, (7) was Stirling’s original definition of the numbers S(n, k) as the
coefficients in changing from the falling factorial basis {(x)k} to the standard
basis {xk}. These numbers were said to be of the second kind since they change
a basis to the standard basis. More commonly, we would be changing from the
standard basis to another basis, and the coefficients would be of the first kind.
When the other basis is the sequence {(x)k} of falling factorial polynomials, we
encounter the Stirling numbers of the first kind.

To illustrate these ideas, let us first suppose we want to express the basis
{(x − 1)k} in terms of the standard basis {xk}. Using the Binomial Theorem,
we can express the polynomial (x − 1)n as

(x − 1)n =
n∑

k=0

(−1)n−kC(n, k)xk. (8)

The coefficients (−1)n−kC(n, k) in (8), that change the standard basis to the
other basis (and which are the coefficients when the product (x − 1)n of n
identical factors is expanded), by analogy would be called binomial coefficients
of the first kind. On the other hand, if we express x as (x − 1) + 1 and apply
the Binomial Theorem, we obtain

xn = ((x − 1) + 1)n =
n∑

k=0

C(n, k)(x − 1)k. (9)

Thus, the binomial coefficients C(n, k) are used in (9) to change from the other
basis to the standard basis, and would therefore be referred to as the binomial
coefficients of the second kind.

The coefficients needed to change the falling factorial basis {(x)k} to the
standard basis {xk} can be obtained by simply expanding the product (x)n =
x(x − 1) . . . (x − n + 1).

Example 8 Write (x)3 in terms of the standard basis {xk}.
Solution: Let n = 3. Then expanding the product (x)3 and reversing the
order of the terms gives

(x)3 = x(x − 1)(x − 2)

= x3 − 3x2 + 2x

= 2x − 3x2 + x3.

Let us now define the Stirling numbers of the first kind.
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Definition 3 The Stirling numbers of the first kind s(n, k) are the numbers
satisfying

(x)n =
n∑

k=0

s(n, k)xk. (10)

That (10) uniquely determines the coefficients s(n, k) follows either from the
definition of multiplication of polynomials or from the fact that every polyno-
mial can be uniquely expressed as a linear combination of the polynomials in a
basis.

Example 9 Find the Stirling numbers which express (x)3 in terms of the
polynomials 1, x, x2.

Solution: Using the definition of s(n, k) and Example 8, we have

(x)3 = s(3, 0) · 1 + s(3, 1)x + s(3, 2)x2 + s(3, 3)x3

= 2x − 3x2 + x3.

Hence, the Stirling numbers of the first kind which express (x)3 in terms of the
polynomials 1, x, x2 and x3 in the standard basis are s(3, 0) = 0, s(3, 1) = 2,
s(3, 2) = −3, s(3, 3) = 1.

Note that in Example 9 some of the Stirling numbers s(n, k) of the first
kind can be negative. Hence, unlike the Stirling numbers of the second kind,
those of the first kind cannot represent the sizes of sets. (But their absolute
values do. See Exercise 16.)

Consider for a fixed n the sequence of numbers s(n, k). These are zero when
n > k. We can determine their sum over 1 ≤ k ≤ n immediately from (10). The
polynomial (x)n vanishes whenever x is a positive integer and n > x. Thus, on
setting x = 1 in (10), we get

n∑
k=1

s(n, k) = 0 for n ≥ 2. (11)

There is a recurrence relation for s(n, k) analogous to the recurrence rela-
tion in Theorem 1 for S(n, k), but we will obtain this one by a method different
from the combinatorial argument given there. We start by finding the bound-
ary values where k = 0. Using the convention that (x)0 = 1 if x = 0 and 0
otherwise, we have s(0, 0) = 1. And since x is a factor of (x)n for n ≥ 1, the
constant term is 0, so s(n, 0) for n ≥ 1.

The analogue of Theorem 1 is then given by the following theorem.
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Theorem 3 Let n and k be positive integers. Then

s(n + 1, k) = s(n, k − 1) − n s(n, k). (12)

Proof: We make use of the fact that (x)n+1 = x(x−1) · · · (x−n+1)(x−n) =
(x − n)(x)n. Then by (10),

(x)n+1 =
n+1∑
k=0

s(n + 1, k)xk. (13)

But
(x)n+1 = (x − n)(x)n

=
n∑

j=0

s(n, j)xj+1 − n

n∑
j=0

s(n, j)xj . (14)

When we equate the coefficients of xk in (13) and (14), we find that s(n+1, k) =
s(n, k − 1) − n s(n, k).

Example 10 Use recurrence relation (12) to find s(5, 3).

Solution: We see from Example 9 that s(3, 1) = 2, s(3, 2) = −3, and s(3, 3) =
1. Thus, by (12), we find s(4, 2) = 2−3·(−3) = 11 and s(4, 3) = −3−3·1 = −6.
We then obtain s(5, 3) = 11 − 4 · (−6) = 35.

The values of s(n, k) for 1 ≤ k ≤ n ≤ 6 shown in Table 2 were computed
using (12).

n \ k 1 2 3 4 5 6
1 1
2 -1 1
3 2 -3 1
4 -6 11 -6 1
5 24 -50 35 -10 1
6 -120 274 -225 85 -15 1

Table 2. Stirling numbers of the first kind, s(n,k).

Comments
When we observe the tables of values of the Stirling numbers for 1 ≤ k ≤ n ≤ 6,
we notice that the numbers in certain columns or diagonals come from well-
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known sequences. We will examine some of these. Proofs will be left for the
exercises.

First consider the numbers S(n, 2) in the second column of Table 1. For
2 ≤ n ≤ 6 these are 1, 3, 7, 15, 31. It appears that S(n, 2) has the form 2n−1 − 1
(Exercise 14). The numbers S(n, n−1) just below the main diagonal in Table 1
are 1, 3, 6, 10, 15 for 2 ≤ n ≤ 6, suggesting (Exercise 13) that S(n, n − 1) is the
triangular number

C(n, 2) =
1
2
n(n − 1).

Next consider Table 2, which gives the values s(n, k) of the Stirling numbers
of the first kind. We can easily verify that the row sums are zero for 2 ≤ n ≤ 6,
as given for all n ≥ 2 by (9). Observe that the numbers s(n, 1) in the first
column of Table 2 satisfy s(n, 1) = (−1)n−1(n − 1)! for 1 ≤ n ≤ 6. This in
fact holds for all n (Exercise 14). The numbers s(n, n− 1) just below the main
diagonal in Table 2 are the negatives of the Stirling numbers S(n, n− 1) of the
second kind, which are apparently the triangular numbers C(n, 2) (Exercise 13).

Note also that the numbers s(n, k) alternate in sign in both rows and
columns. It is not difficult to prove (Exercise 16) that the sign of s(n, k) is
(−1)n−k, so that the absolute value of s(n, k) is

t(n, k) = (−1)n−ks(n, k).

These integers t(n, k) are the signless Stirling numbers of the first kind.
As nonnegative integers, these numbers have a combinatorial interpretation
(Exercise 18).

Suggested Readings

A basic treatment of the Stirling numbers is in reference [2]. A great deal of
information about the generating functions of the Stirling numbers and further
properties of these numbers can be found in the more advanced books [1], [3],
[4], and [5].

1. M. Aigner, Combinatorial Theory , Springer, New York, 1997.

2. K. Bogart, Introductory Combinatorics, Brooks/Cole, Belmont, CA, 2000.

3. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Ex-
pansions, Springer, New York, 1974.

4. R. Stanley, Enumerative Combinatorics, Volume 1, Cambridge University
Press, New York, 2000.

5. H. Wilf, generatingfunctionology, Third Edition, A K Peters, Wellesley,
MA, 2005.
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Exercises

1. For n = 7 and 1 ≤ k ≤ 7, find the Stirling numbers S(n, k) and s(n, k).

2. Express (x)4 as a polynomial by expanding the product x(x−1)(x−2)(x−3).

3. Express the polynomial x4 as a linear combination of the falling factorial
polynomials (x)k.

4. Find the number of onto functions from an eight-element set to a five-
element set.

5. Let n = 3 and x = 3. Classify the xn = 27 functions f from N = {1, 2, 3}
to X = {a, b, c} according to the size of the image set f(N) to verify that
there are S(3, j)(3)j such functions f with |f(N)| = j, for 1 ≤ j ≤ 3.

6. In how many ways can seven distinguishable balls be placed in four identical
boxes so that

a) there is at least one ball in each box?
b) some box(es) may be empty?

7. Suppose each of a group of six people is assigned one of three tasks at
random. Find the probability (to three decimal places) that

a) task 3 is not assigned.
b) all three tasks are assigned.
c) exactly two of the tasks are assigned.

8. In how many ways can a set of 12 people be divided into three (nonempty)
subsets.

9. Suppose a k-sided die is rolled until each of the numbers 1, 2, . . . , k have
appeared at least once, at which time the rolls are stopped. Give an ex-
pression for the number of possible sequences of n rolls that satisfy the
condition.

10. A computer is programmed to produce a random sequence of n digits.
a) How many possible sequences are there?
b) How many of these sequences have each of the 10 digits appearing?

11. A pool table has four corner pockets and two center pockets. There is one
white ball (the cue ball) and 15 colored balls numbered 1, 2, . . . , 15. In a
game each of the numbered balls is sunk into a pocket (and remains there)
after being struck by the cue ball, which the player has propelled with a
cue stick. Thus a game produces a distribution of the numbered balls in
the set of pockets.

a) Assuming the pockets are distinguishable, how many distributions are
there?
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b) Suppose we assume the corner pockets are identical and the center
pockets are identical, but that a corner pocket is distinguishable from a
center pocket. Give an expression for the number of distributions in which
all of the numbered balls are sunk in corner pockets or they are all sunk in
center pockets.

12. Let n and k be positive integers with n + 1 ≥ k. Prove that S(n + 1, k) =∑n
j=0 C(n, j)S(n − j, k − 1).

13. Prove that
a) S(n, n − 1) = C(n, 2).
b) s(n, n − 1) = −C(n, 2).

14. Prove that
a) S(n, 2) = 2n−1 − 1.
b) s(n, 1) = (−1)n−1(n − 1)!.

15. Let m and n be nonnegative integers with n ≤ m. The Kronecker delta
function δ(m, n) is equal to 1 if m = n and 0 otherwise. Prove that

m∑
k=n

S(m, k)s(k, n) = δ(m, n).

In Exercises 16–20, let n and k be positive integers with k ≤ n.

16. Prove that the sign of the Stirling number of the first kind is (−1)n−k.
(Thus the signless Stirling number of the first kind t(n, k) = |s(n, k)| is
equal to (−1)n−ks(n, k).)

17. Find a recurrence relation for the signless Stirling numbers t(n, k) of the
first kind similar to the recurrence relation (12) satisfied by the Stirling
numbers s(n, k) of the first kind.

18. A cyclic permutation (or cycle) of a set A is a permutation that cycli-
cally permutes the elements of A. For example, the permutation σ, with
σ(1) = 2, σ(2) = 4, σ(3) = 1, σ(4) = 5, σ(5) = 3, is cyclic, and denoted
by (12453) or any of its cyclic equivalents, such as (24531) or (31245). It
can be shown that every permutation of a set N can be expressed as a
product of cycles that cyclically permute disjoint subsets of N , unique ex-
cept for the order of the cycles. Thus, for example, (153)(24) is the cyclic
decomposition of the permutation σ given by σ(1) = 5, σ(2) = 4,
σ(3) = 1, σ(4) = 2, σ(5) = 3. Prove that t(n, k) is the number of
permutations of an n-element set that have exactly k cycles in their cyclic
decomposition. Hint: Use Exercise 17.

19. Suppose a computer is programmed to produce a random permutation of
n different characters.
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a) Give an expression for the probability that the permutation will have
exactly k cycles.

b) Calculate the probabilities with n = 8 that the permutation will have
two cycles and that it will have three cycles. Which is more likely?

�20. Let a(n, k) be the sum of the products 1c12c2 · · · kck , taken over all k-tuples
(c1, c2, . . . , ck) such that ci is a nonnegative integer for i = 1, 2, . . . , k and
the sum of the cis is n−k. Prove that a(n, k) satisfies the initial conditions
and the recurrence relation (1) for the Stirling numbers S(n, k) of the second
kind. (This shows that S(n, k) = a(n, k).)

21. (Requires calculus.) Let k be a fixed positive integer. It can be shown that
the ratios S(n, k − 1)/S(n, k) and s(n, k − 1)/s(n, k) both approach 0 as a
limit as n approaches ∞. Use these facts to find

a) lim
n→∞S(n + 1, k)/S(n, k).

b) lim
n→∞ s(n + 1, k)/s(n, k).

�22. (Requires calculus.) The exponential generating function of a sequence (an)
is defined to be the power series

A∗(x) =
∞∑

n=0

an
xn

n!
.

Let k be a fixed positive integer and let an = S(n, k). Prove that

A∗(x) =
(ex − 1)k

k!
.

�23. Find the expansion of the polynomial Pk(x) = (1 − x)(1 − 2x) . . . (1 − kx).

Computer Projects

1. Write a computer program that uses the recurrence relation (1) to compute
Stirling numbers of the second kind.

2. Write a computer program that uses the recurrence relation (12) to compute
Stirling numbers of the first kind.


