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Much of discrete mathematics is devoted to the study of discrete structures, used to
represent discrete objects. Many important discrete structures are built using sets, which

are collections of objects. Among the discrete structures built from sets are combinations,
unordered collections of objects used extensively in counting; relations, sets of ordered pairs
that represent relationships between objects; graphs, sets of vertices and edges that connect
vertices; and finite state machines, used to model computing machines. These are some of the
topics we will study in later chapters.

The concept of a function is extremely important in discrete mathematics. A function assigns
to each element of a set exactly one element of a set. Functions play important roles throughout
discrete mathematics. They are used to represent the computational complexity of algorithms,
to study the size of sets, to count objects, and in a myriad of other ways. Useful structures such as
sequences and strings are special types of functions. In this chapter, we will introduce the notion
of a sequence, which represents ordered lists of elements. We will introduce some important
types of sequences, and we will address the problem of identifying a pattern for the terms of a
sequence from its first few terms. Using the notion of a sequence, we will define what it means
for a set to be countable, namely, that we can list all the elements of the set in a sequence.

In our study of discrete mathematics, we will often add consecutive terms of a sequence
of numbers. Because adding terms from a sequence, as well as other indexed sets of numbers,
is such a common occurrence, a special notation has been developed for adding such terms.
In this section, we will introduce the notation used to express summations. We will develop
formulae for certain types of summations. Such summations appear throughout the study of
discrete mathematics, as, for instance, when we analyze the number of steps a procedure uses
to sort a list of numbers into increasing order.

2.1 Sets

Introduction

In this section, we study the fundamental discrete structure on which all other discrete structures
are built, namely, the set. Sets are used to group objects together. Often, the objects in a set have
similar properties. For instance, all the students who are currently enrolled in your school make
up a set. Likewise, all the students currently taking a course in discrete mathematics at any
school make up a set. In addition, those students enrolled in your school who are taking a course
in discrete mathematics form a set that can be obtained by taking the elements common to the
first two collections. The language of sets is a means to study such collections in an organized
fashion. We now provide a definition of a set. This definition is an intuitive definition, which is
not part of a formal theory of sets.

DEFINITION 1 A set is an unordered collection of objects.

Note that the term object has been used without specifying what an object is. This description
of a set as a collection of objects, based on the intuitive notion of an object, was first stated
by the German mathematician Georg Cantor in 1895. The theory that results from this intuitive
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definition of a set, and the use of the intuitive notion that any property whatever there is a set
consisting of exactly the objects with this property, leads to paradoxes, or logical inconsistencies.
This was shown by the English philosopher Bertrand Russell in 1902 (see Exercise 38 for a
description of one of these paradoxes). These logical inconsistencies can be avoided by building
set theory beginning with axioms. We will use Cantor’s original version of set theory, known
as naive set theory, without developing an axiomatic version of set theory, because all sets
considered in this book can be treated consistently using Cantor’s original theory.

DEFINITION 2 The objects in a set are called the elements, or members, of the set. A set is said to contain
its elements.

We will now introduce notation used to describe membership in sets. We write a ∈ A to
denote that a is an element of the set A. The notation a �∈ A denotes that a is not an element of
the set A. Note that lowercase letters are usually used to denote elements of sets.

There are several ways to describe a set. One way is to list all the members of a set, when
this is possible. We use a notation where all members of the set are listed between braces. For
example, the notation {a, b, c, d} represents the set with the four elements a, b, c, and d .

EXAMPLE 1 The set V of all vowels in the English alphabet can be written as V = {a, e, i, o, u}. ▲

EXAMPLE 2 The set O of odd positive integers less than 10 can be expressed by O = {1, 3, 5, 7, 9}. ▲

EXAMPLE 3 Although sets are usually used to group together elements with common properties, there is
nothing that prevents a set from having seemingly unrelated elements. For instance, {a, 2, Fred,
New Jersey} is the set containing the four elements a, 2, Fred, and New Jersey. ▲

Sometimes the brace notation is used to describe a set without listing all its members. Some
members of the set are listed, and then ellipses (. . .) are used when the general pattern of the
elements is obvious.

EXAMPLE 4 The set of positive integers less than 100 can be denoted by {1, 2, 3, . . . , 99}. ▲

Another way to describe a set is to use set builder notation. We characterize all those
elements in the set by stating the property or properties they must have to be members. For
instance, the set O of all odd positive integers less than 10 can be written as

O = {x | x is an odd positive integer less than 10},
or, specifying the universe as the set of positive integers, as

O = {x ∈ Z+ | x is odd and x < 10}.
We often use this type of notation to describe sets when it is impossible to list all the elements
of the set. For instance, the set Q+ of all positive rational numbers can be written as

Q+ = {x ∈ R | x = p/q, for some positive integers p and q.

These sets, each denoted using a boldface letter, play an important role in discrete
mathematics:

N = {0, 1, 2, 3, . . .}, the set of natural numbers
Z = {. . . , −2, −1, 0, 1, 2, . . .}, the set of integers
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Z+ = {1, 2, 3, . . .}, the set of positive integers
Q = {p/q | p ∈ Z, q ∈ Z, and q �= 0}, the set of rational numbers
R, the set of real numbers

(Note that some people do not consider 0 a natural number, so be careful to check how the term
natural numbers is used when you read other books.)

Sets can have other sets as members, as Example 5 illustrates.

EXAMPLE 5 The set {N, Z, Q, R} is a set containing four elements, each of which is a set. The four elements
of this set are N, the set of natural numbers; Z, the set of integers; Q, the set of rational numbers;
and R, the set of real numbers. ▲

Remark: Note that the concept of a datatype, or type, in computer science is built upon the
concept of a set. In particular, a datatype or type is the name of a set, together with a set of
operations that can be performed on objects from that set. For example, boolean is the name of
the set {0, 1} together with operators on one or more elements of this set, such as AND, OR,
and NOT.

Because many mathematical statements assert that two differently specified collections of
objects are really the same set, we need to understand what it means for two sets to be equal.

DEFINITION 3 Two sets are equal if and only if they have the same elements. That is, if A and B are sets,
then A and B are equal if and only if ∀x(x ∈ A ↔ x ∈ B). We write A = B if A and B are
equal sets.

EXAMPLE 6 The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements. Note that the
order in which the elements of a set are listed does not matter. Note also that it does not matter
if an element of a set is listed more than once, so {1, 3, 3, 3, 5, 5, 5, 5} is the same as the set
{1, 3, 5} because they have the same elements. ▲

Sets can be represented graphically using Venn diagrams, named after the English mathe-
matician John Venn, who introduced their use in 1881. In Venn diagrams the universal set U,

which contains all the objects under consideration, is represented by a rectangle. (Note that the
universal set varies depending on which objects are of interest.) Inside this rectangle, circles
or other geometrical figures are used to represent sets. Sometimes points are used to represent
the particular elements of the set. Venn diagrams are often used to indicate the relationships
between sets. We show how a Venn diagram can be used in Example 7.

GEORG CANTOR (1845–1918) Georg Cantor was born in St. Petersburg, Russia, where his father was a
successful merchant. Cantor developed his interest in mathematics in his teens. He began his university studies
in Zurich in 1862, but when his father died he left Zurich. He continued his university studies at the University
of Berlin in 1863, where he studied under the eminent mathematicians Weierstrass, Kummer, and Kronecker.
He received his doctor’s degree in 1867, after having written a dissertation on number theory. Cantor assumed
a position at the University of Halle in 1869, where he continued working until his death.

Cantor is considered the founder of set theory. His contributions in this area include the discovery that the
set of real numbers is uncountable. He is also noted for his many important contributions to analysis. Cantor
also was interested in philosophy and wrote papers relating his theory of sets with metaphysics.

Cantor married in 1874 and had five children. His melancholy temperament was balanced by his wife’s happy disposition.
Although he received a large inheritance from his father, he was poorly paid as a professor. To mitigate this, he tried to obtain a
better-paying position at the University of Berlin. His appointment there was blocked by Kronecker, who did not agree with Cantor’s
views on set theory. Cantor suffered from mental illness throughout the later years of his life. He died in 1918 in a psychiatric clinic.
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FIGURE 1 Venn Diagram for the Set of Vowels.

EXAMPLE 7 Draw a Venn diagram that represents V, the set of vowels in the English alphabet.

Solution: We draw a rectangle to indicate the universal set U, which is the set of the 26 letters
of the English alphabet. Inside this rectangle we draw a circle to represent V. Inside this circle
we indicate the elements of V with points (see Figure 1). ▲

There is a special set that has no elements. This set is called the empty set, or null set, and
is denoted by ∅. The empty set can also be denoted by { } (that is, we represent the empty set
with a pair of braces that encloses all the elements in this set). Often, a set of elements with
certain properties turns out to be the null set. For instance, the set of all positive integers that
are greater than their squares is the null set. A set with one element is called a singleton set.

A common error is to confuse the empty set ∅ with the set {∅}, which is a singleton set.
The single element of the set {∅} is the empty set itself! A useful analogy for remembering this
difference is to think of folders in a computer file system. The empty set can be thought of as
an empty folder and the set consisting of just the empty set can be thought of as a folder with
exactly one folder inside, namely, the empty folder.

DEFINITION 4 The set A is said to be a subset of B if and only if every element of A is also an element of
B. We use the notation A ⊆ B to indicate that A is a subset of the set B.

We see that A ⊆ B if and only if the quantification

∀x(x ∈ A → x ∈ B)

is true.

BERTRAND RUSSELL (1872–1970) Bertrand Russell was born into a prominent English family active in
the progressive movement and having a strong commitment to liberty. He became an orphan at an early age
and was placed in the care of his father’s parents, who had him educated at home. He entered Trinity College,
Cambridge, in 1890, where he excelled in mathematics and in moral science. He won a fellowship on the basis
of his work on the foundations of geometry. In 1910 Trinity College appointed him to a lectureship in logic and
the philosophy of mathematics.

Russell fought for progressive causes throughout his life. He held strong pacifist views, and his protests
against World War I led to dismissal from his position at Trinity College. He was imprisoned for 6 months in
1918 because of an article he wrote that was branded as seditious. Russell fought for women’s suffrage in Great

Britain. In 1961, at the age of 89, he was imprisoned for the second time for his protests advocating nuclear disarmament.
Russell’s greatest work was in his development of principles that could be used as a foundation for all of mathematics. His most

famous work is Principia Mathematica, written with Alfred North Whitehead, which attempts to deduce all of mathematics using
a set of primitive axioms. He wrote many books on philosophy, physics, and his political ideas. Russell won the Nobel Prize for
literature in 1950.
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FIGURE 2 Venn Diagram Showing that A Is a Subset of B.

EXAMPLE 8 The set of all odd positive integers less than 10 is a subset of the set of all positive integers
less than 10, the set of rational numbers is a subset of the set of real numbers, the set of all
computer science majors at your school is a subset of the set of all students at your school, and
the set of all people in China is a subset of the set of all people in China (that is, it is a subset of
itself). ▲

Theorem 1 shows that every nonempty set S is guaranteed to have at least two subsets, the
empty set and the set S itself, that is, ∅ ⊆ S and S ⊆ S.

THEOREM 1 For every set S,
(i ) ∅ ⊆ S and (ii ) S ⊆ S.

Proof: We will prove (i ) and leave the proof of (ii ) as an exercise.
Let S be a set. To show that ∅ ⊆ S, we must show that ∀x(x ∈ ∅ → x ∈ S) is true. Because

the empty set contains no elements, it follows that x ∈ ∅ is always false. It follows that the
conditional statement x ∈ ∅ → x ∈ S is always true, because its hypothesis is always false and
a conditional statement with a false hypothesis is true. That is, ∀x(x ∈ ∅ → x ∈ S) is true. This
completes the proof of (i). Note that this is an example of a vacuous proof.

When we wish to emphasize that a set A is a subset of the set B but that A �= B, we write
A ⊂ B and say that A is a proper subset of B. For A ⊂ B to be true, it must be the case that
A ⊆ B and there must exist an element x of B that is not an element of A. That is, A is a proper
subset of B if

∀x(x ∈ A → x ∈ B) ∧ ∃x(x ∈ B ∧ x �∈ A)

is true. Venn diagrams can be used to illustrate that a set A is a subset of a set B. We draw the
universal set U as a rectangle. Within this rectangle we draw a circle for B. Because A is a subset
of B, we draw the circle for A within the circle for B. This relationship is shown in Figure 2.

JOHN VENN (1834–1923) John Venn was born into a London suburban family noted for its philanthropy.
He attended London schools and got his mathematics degree from Caius College, Cambridge, in 1857. He was
elected a fellow of this college and held his fellowship there until his death. He took holy orders in 1859 and,
after a brief stint of religious work, returned to Cambridge, where he developed programs in the moral sciences.
Besides his mathematical work, Venn had an interest in history and wrote extensively about his college and
family.

Venn’s book Symbolic Logic clarifies ideas originally presented by Boole. In this book, Venn presents a
systematic development of a method that uses geometric figures, known now as Venn diagrams. Today these
diagrams are primarily used to analyze logical arguments and to illustrate relationships between sets. In addition

to his work on symbolic logic, Venn made contributions to probability theory described in his widely used textbook on that subject.
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One way to show that two sets have the same elements is to show that each set is a subset
of the other. In other words, we can show that if A and B are sets with A ⊆ B and B ⊆ A, then
A = B. This turns out to be a useful way to show that two sets are equal. That is, A = B, where
A and B are sets, if and only if ∀x(x ∈ A → x ∈ B) and ∀x(x ∈ B → x ∈ A), or equivalently
if and only if ∀x(x ∈ A ↔ x ∈ B).

Sets may have other sets as members. For instance, we have the sets

A = {∅, {a}, {b}, {a, b}} and B = {x | x is a subset of the set {a, b}}.

Note that these two sets are equal, that is, A = B. Also note that {a} ∈ A, but a /∈ A.
Sets are used extensively in counting problems, and for such applications we need to discuss

the size of sets.

DEFINITION 5 Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we
say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.

EXAMPLE 9 Let A be the set of odd positive integers less than 10. Then |A| = 5. ▲

EXAMPLE 10 Let S be the set of letters in the English alphabet. Then |S| = 26. ▲

EXAMPLE 11 Because the null set has no elements, it follows that |∅| = 0. ▲

We will also be interested in sets that are not finite.

DEFINITION 6 A set is said to be infinite if it is not finite.

EXAMPLE 12 The set of positive integers is infinite. ▲

The cardinality of infinite sets will be discussed in Section 2.4.

The Power Set

Many problems involve testing all combinations of elements of a set to see if they satisfy some
property. To consider all such combinations of elements of a set S, we build a new set that has
as its members all the subsets of S.

DEFINITION 7 Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is
denoted by P(S).

EXAMPLE 13 What is the power set of the set {0, 1, 2}?

Solution: The power set P({0, 1, 2}) is the set of all subsets of {0, 1, 2}. Hence,

P({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.
Note that the empty set and the set itself are members of this set of subsets. ▲
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EXAMPLE 14 What is the power set of the empty set? What is the power set of the set {∅}?

Solution: The empty set has exactly one subset, namely, itself. Consequently,

P(∅) = {∅}.
The set {∅} has exactly two subsets, namely, ∅ and the set {∅} itself. Therefore,

P({∅}) = {∅, {∅}}. ▲

If a set has n elements, then its power set has 2n elements. We will demonstrate this fact in
several ways in subsequent sections of the text.

Cartesian Products

The order of elements in a collection is often important. Because sets are unordered, a different
structure is needed to represent ordered collections. This is provided by ordered n-tuples.

DEFINITION 8 The ordered n-tuple (a1, a2, . . . , an) is the ordered collection that has a1 as its first element,
a2 as its second element, . . . , and an as its nth element.

We say that two ordered n-tuples are equal if and only if each corresponding pair of their
elements is equal. In other words, (a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if ai = bi , for
i = 1, 2, . . . , n. In particular, 2-tuples are called ordered pairs. The ordered pairs (a, b) and
(c, d) are equal if and only if a = c and b = d. Note that (a, b) and (b, a) are not equal unless
a = b.

Many of the discrete structures we will study in later chapters are based on the notion of the
Cartesian product of sets (named after René Descartes). We first define the Cartesian product
of two sets.

RENÉ DESCARTES (1596–1650) René Descartes was born into a noble family near Tours, France, about
200 miles southwest of Paris. He was the third child of his father’s first wife; she died several days after his
birth. Because of René’s poor health, his father, a provincial judge, let his son’s formal lessons slide until, at
the age of 8, René entered the Jesuit college at La Flèche. The rector of the school took a liking to him and
permitted him to stay in bed until late in the morning because of his frail health. From then on, Descartes spent
his mornings in bed; he considered these times his most productive hours for thinking.

Descartes left school in 1612, moving to Paris, where he spent 2 years studying mathematics. He earned
a law degree in 1616 from the University of Poitiers. At 18 Descartes became disgusted with studying and
decided to see the world. He moved to Paris and became a successful gambler. However, he grew tired

of bawdy living and moved to the suburb of Saint-Germain, where he devoted himself to mathematical study. When his gambling
friends found him, he decided to leave France and undertake a military career. However, he never did any fighting. One day, while
escaping the cold in an overheated room at a military encampment, he had several feverish dreams, which revealed his future career
as a mathematician and philosopher.

After ending his military career, he traveled throughout Europe. He then spent several years in Paris, where he studied mathemat-
ics and philosophy and constructed optical instruments. Descartes decided to move to Holland, where he spent 20 years wandering
around the country, accomplishing his most important work. During this time he wrote several books, including the Discours, which
contains his contributions to analytic geometry, for which he is best known. He also made fundamental contributions to philosophy.

In 1649 Descartes was invited by Queen Christina to visit her court in Sweden to tutor her in philosophy. Although he was
reluctant to live in what he called “the land of bears amongst rocks and ice,” he finally accepted the invitation and moved to Sweden.
Unfortunately, the winter of 1649–1650 was extremely bitter. Descartes caught pneumonia and died in mid-February.
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DEFINITION 9 Let A and B be sets. The Cartesian product of A and B, denoted by A × B, is the set of all
ordered pairs (a, b), where a ∈ A and b ∈ B. Hence,

A × B = {(a, b) | a ∈ A ∧ b ∈ B}.

EXAMPLE 15 Let A represent the set of all students at a university, and let B represent the set of all courses
offered at the university. What is the Cartesian product A × B?

Solution: The Cartesian product A × B consists of all the ordered pairs of the form (a, b), where
a is a student at the university and b is a course offered at the university. The set A × B can be
used to represent all possible enrollments of students in courses at the university. ▲

EXAMPLE 16 What is the Cartesian product of A = {1, 2} and B = {a, b, c}?
Solution: The Cartesian product A × B is

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}. ▲

A subset R of the Cartesian product A × B is called a relation from the set A to the set
B. The elements of R are ordered pairs, where the first element belongs to A and the second to
B. For example, R = {(a, 0), (a, 1), (a, 3), (b, 1), (b, 2), (c, 0), (c, 3)} is a relation from the set
{a, b, c} to the set {0, 1, 2, 3}. We will study relations at length in Chapter 8.

The Cartesian products A × B and B × A are not equal, unless A = ∅ or B = ∅ (so that
A × B = ∅) or A = B (see Exercises 26 and 30, at the end of this section). This is illustrated
in Example 17.

EXAMPLE 17 Show that the Cartesian product B × A is not equal to the Cartesian product A × B, where A
and B are as in Example 16.

Solution: The Cartesian product B × A is

B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.
This is not equal to A × B, which was found in Example 16. ▲

The Cartesian product of more than two sets can also be defined.

DEFINITION 10 The Cartesian product of the sets A1, A2, . . . , An , denoted by A1 × A2 × · · · × An ,
is the set of ordered n-tuples (a1, a2, . . . , an), where ai belongs to Ai for i =
1, 2, . . . , n. In other words,

A1 × A2 × · · · × An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n}.

EXAMPLE 18 What is the Cartesian product A × B × C , where A = {0, 1}, B = {1, 2}, and C = {0, 1, 2}?

Solution: The Cartesian product A × B × C consists of all ordered triples (a, b, c),
where a ∈ A, b ∈ B, and c ∈ C . Hence,

A × B × C = {(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1),

(1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}. ▲
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Using Set Notation with Quantifiers

Sometimes we restrict the domain of a quantified statement explicitly by making use of a
particular notation. For example, ∀x∈ S(P(x)) denotes the universal quantification of P(x) over
all elements in the set S. In other words, ∀x∈ S(P(x)) is shorthand for ∀x(x ∈ S → P(x)).
Similarly, ∃x∈ S(P(x)) denotes the existential quantification of P(x) over all elements in S.
That is, ∃x∈ S(P(x)) is shorthand for ∃x(x ∈ S ∧ P(x)).

EXAMPLE 19 What do the statements ∀x∈R (x2 ≥ 0) and ∃x∈Z (x2 = 1) mean?

Solution: The statement ∀x∈R(x2 ≥ 0) states that for every real number x , x2 ≥ 0. This state-
ment can be expressed as “The square of every real number is nonnegative.” This is a true
statement.

The statement ∃x∈Z(x2 = 1) states that there exists an integer x such that x2 = 1. This
statement can be expressed as “There is an integer whose square is 1.” This is also a true
statement because x = 1 is such an integer (as is −1). ▲

Truth Sets of Quantifiers

We will now tie together concepts from set theory and from predicate logic. Given a predicate
P , and a domain D, we define the truth set of P to be the set of elements x in D for which
P(x) is true. The truth set of P(x) is denoted by {x ∈ D | P(x)}.

EXAMPLE 20 What are the truth sets of the predicates P(x), Q(x), and R(x), where the domain is the set of
integers and P(x) is “|x | = 1,” Q(x) is “x2 = 2,” and R(x) is “|x | = x .”

Solution: The truth set of P , {x ∈ Z | |x | = 1}, is the set of integers for which |x | = 1. Because
|x | = 1 when x = 1 or x = −1, and for no other integers x , we see that the truth set of P is the
set {−1, 1}.

The truth set of Q, {x ∈ Z | x2 = 2}, is the set of integers for which x2 = 2. This is the
empty set because there are no integers x for which x2 = 2.

The truth set of R, {x ∈ Z | |x | = x}, is the set of integers for which |x | = x . Because
|x | = x if and only if x ≥ 0, it follows that the truth set of R is N, the set of nonnegative
integers. ▲

Note that ∀x P(x) is true over the domain U if and only if the truth set of P is the set U .
Likewise, ∃x P(x) is true over the domain U if and only if the truth set of P is nonempty.

Exercises

1. List the members of these sets.

a) {x | x is a real number such that x2 = 1}
b) {x | x is a positive integer less than 12}
c) {x | x is the square of an integer and x < 100}
d) {x | x is an integer such that x2 = 2}

2. Use set builder notation to give a description of each of
these sets.

a) {0, 3, 6, 9, 12}
b) {−3, −2, −1, 0, 1, 2, 3}
c) {m, n, o, p}

3. Determine whether each of these pairs of sets are equal.

a) {1, 3, 3, 3, 5, 5, 5, 5, 5}, {5, 3, 1}
b) {{1}}, {1, {1}} c) ∅, {∅}

4. Suppose that A = {2, 4, 6}, B = {2, 6}, C = {4, 6}, and
D = {4, 6, 8}. Determine which of these sets are subsets
of which other of these sets.

5. For each of the following sets, determine whether 2 is an
element of that set.

a) {x ∈ R | x is an integer greater than 1}
b) {x ∈ R | x is the square of an integer}
c) {2,{2}} d) {{2},{{2}}}
e) {{2},{2,{2}}} f) {{{2}}}



9 2 / Basic Structures: Sets, Functions, Sequences, and Sums 2-10

6. For each of the sets in Exercise 5, determine whether {2}
is an element of that set.

7. Determine whether each of these statements is true or
false.

a) 0 ∈ ∅ b) ∅ ∈ {0}
c) {0} ⊂ ∅ d) ∅ ⊂ {0}
e) {0} ∈ {0} f) {0} ⊂ {0}
g) {∅} ⊆ {∅}

8. Determine whether these statements are true or false.

a) ∅ ∈ {∅} b) ∅ ∈ {∅, {∅}}
c) {∅} ∈ {∅} d) {∅} ∈ {{∅}}
e) {∅} ⊂ {∅, {∅}} f) {{∅}} ⊂ {∅, {∅}}
g) {{∅}} ⊂ {{∅}, {∅}}

9. Determine whether each of these statements is true or
false.

a) x ∈ {x} b) {x} ⊆ {x} c) {x} ∈ {x}
d) {x} ∈ {{x}} e) ∅ ⊆ {x} f) ∅ ∈ {x}

10. Use a Venn diagram to illustrate the subset of odd
integers in the set of all positive integers not
exceeding 10.

11. Use a Venn diagram to illustrate the set of all months of
the year whose names do not contain the letter R in the
set of all months of the year.

12. Use a Venn diagram to illustrate the relationship A ⊆ B
and B ⊆ C .

13. Use a Venn diagram to illustrate the relationships A ⊂ B
and B ⊂ C .

14. Use a Venn diagram to illustrate the relationships A ⊂ B
and A ⊂ C .

15. Suppose that A, B, and C are sets such that A ⊆ B and
B ⊆ C . Show that A ⊆ C .

16. Find two sets A and B such that A ∈ B and A ⊆ B.

17. What is the cardinality of each of these sets?

a) {a} b) {{a}}
c) {a, {a}} d) {a, {a}, {a, {a}}}

18. What is the cardinality of each of these sets?

a) ∅ b) {∅}
c) {∅, {∅}} d) {∅, {∅}, {∅, {∅}}}

19. Find the power set of each of these sets, where a and b
are distinct elements.

a) {a} b) {a, b} c) {∅, {∅}}
20. Can you conclude that A = B if A and B are two sets

with the same power set?

21. How many elements does each of these sets have where
a and b are distinct elements?

a) P({a, b, {a, b}})
b) P({∅, a, {a}, {{a}}})
c) P(P(∅))

22. Determine whether each of these sets is the power set of
a set, where a and b are distinct elements.

a) ∅ b) {∅, {a}}
c) {∅, {a}, {∅, a}} d) {∅, {a}, {b}, {a, b}}

23. Let A = {a, b, c, d} and B = {y, z}. Find

a) A × B b) B × A

24. What is the Cartesian product A × B, where A is
the set of courses offered by the mathematics depart-
ment at a university and B is the set of mathematics pro-
fessors at this university?

25. What is the Cartesian product A × B × C , where A is the
set of all airlines and B and C are both the set of all cities
in the United States?

26. Suppose that A × B = ∅, where A and B are sets. What
can you conclude?

27. Let A be a set. Show that ∅ × A = A × ∅ = ∅.

28. Let A = {a, b, c}, B = {x, y}, and C = {0, 1}. Find

a) A × B × C b) C × B × A
c) C × A × B d) B × B × B

29. How many different elements does A × B have if A has
m elements and B has n elements?

30. Show that A × B �= B × A, when A and B are nonempty,
unless A = B.

31. Explain why A × B × C and (A × B) × C are not the
same.

32. Explain why (A × B) × (C × D) and A × (B × C) × D
are not the same.

33. Translate each of these quantifications into English and
determine its truth value.

a) ∀x∈R (x2 �= −1) b) ∃x∈Z (x2 = 2)
c) ∀x∈Z (x2 > 0) d) ∃x∈R (x2 = x)

34. Translate each of these quantifications into English and
determine its truth value.

a) ∃x∈R (x3 = −1) b) ∃x∈Z (x + 1 > x)
c) ∀x∈Z (x − 1 ∈ Z) d) ∀x∈Z (x2 ∈ Z)

35. Find the truth set of each of these predicates where the
domain is the set of integers.

a) P(x): “x2 < 3” b) Q(x): “x2 > x”
c) R(x): “2x + 1 = 0”

36. Find the truth set of each of these predicates where the
domain is the set of integers.

a) P(x): “x3 ≥ 1”
b) Q(x): “x2 = 2”
c) R(x): “x < x2”

37.∗ The defining property of an ordered pair is that two or-
dered pairs are equal if and only if their first elements
are equal and their second elements are equal. Surpris-
ingly, instead of taking the ordered pair as a primitive con-
cept, we can construct ordered pairs using basic notions
from set theory. Show that if we define the ordered pair
(a, b) to be {{a}, {a, b}}, then (a, b) = (c, d) if and only
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if a = c and b = d. [Hint: First show that {{a}, {a, b}} =
{{c}, {c, d}} if and only if a = c and b = d .]

38.∗ This exercise presents Russell’s paradox. Let S be the set
that contains a set x if the set x does not belong to itself,
so that S = {x | x /∈ x}.
a) Show the assumption that S is a member of S leads to

a contradiction.

b) Show the assumption that S is not a member of S leads
to a contradiction.

By parts (a) and (b) it follows that the set S cannot be de-
fined as it was. This paradox can be avoided by restricting
the types of elements that sets can have.

39.∗ Describe a procedure for listing all the subsets of a finite
set.

2.2 Set Operations

Introduction

Two sets can be combined in many different ways. For instance, starting with the set of mathe-
matics majors at your school and the set of computer science majors at your school, we can form
the set of students who are mathematics majors or computer science majors, the set of students
who are joint majors in mathematics and computer science, the set of all students not majoring
in mathematics, and so on.

DEFINITION 1 Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set that contains
those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs
to B. This tells us that

A ∪ B = {x | x ∈ A ∨ x ∈ B}.

The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area
that represents A ∪ B is the shaded area within either the circle representing A or the circle
representing B.

We will give some examples of the union of sets.

EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, {1, 3, 5} ∪ {1, 2, 3} =
{1, 2, 3, 5}. ▲

EXAMPLE 2 The union of the set of all computer science majors at your school and the set of all mathematics
majors at your school is the set of students at your school who are majoring either in mathematics
or in computer science (or in both). ▲

DEFINITION 2 Let A and B be sets. The intersection of the sets A and B, denoted by A ∩ B, is the set
containing those elements in both A and B.

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and
x belongs to B. This tells us that

A ∩ B = {x | x ∈ A ∧ x ∈ B}.
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U

BA

A � B is shaded.

FIGURE 1 Venn Diagram Representing
the Union of A and B.

U

BA

A � B is shaded.

FIGURE 2 Venn Diagram Representing
the Intersection of A and B.

The Venn diagram shown in Figure 2 represents the intersection of two sets A and B. The shaded
area that is within both the circles representing the sets A and B is the area that represents the
intersection of A and B.

We give some examples of the intersection of sets.

EXAMPLE 3 The intersection of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 3}; that is, {1, 3, 5} ∩ {1, 2, 3} =
{1, 3}. ▲

EXAMPLE 4 The intersection of the set of all computer science majors at your school and the set of all
mathematics majors is the set of all students who are joint majors in mathematics and computer
science. ▲

DEFINITION 3 Two sets are called disjoint if their intersection is the empty set.

EXAMPLE 5 Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Because A ∩ B = ∅, A and B are disjoint.

▲
We often are interested in finding the cardinality of a union of two finite sets A and B. Note

that |A| + |B| counts each element that is in A but not in B or in B but not in A exactly once,
and each element that is in both A and B exactly twice. Thus, if the number of elements that
are in both A and B is subtracted from |A| + |B|, elements in A ∩ B will be counted only once.
Hence,

|A ∪ B| = |A| + |B| − |A ∩ B|.

The generalization of this result to unions of an arbitrary number of sets is called the principle
of inclusion–exclusion. The principle of inclusion–exclusion is an important technique used in
enumeration. We will discuss this principle and other counting techniques in detail in Chapters 5
and 7.

There are other important ways to combine sets.
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U

BA

A – B is shaded.

FIGURE 3 Venn Diagram for
the Difference of A and B.

U

A

A is shaded.

FIGURE 4 Venn Diagram for
the Complement of the Set A.

DEFINITION 4 Let A and B be sets. The difference of A and B, denoted by A − B, is the set containing those
elements that are in A but not in B. The difference of A and B is also called the complement
of B with respect to A.

An element x belongs to the difference of A and B if and only if x ∈ A and x /∈ B. This tells us
that

A − B = {x | x ∈ A ∧ x /∈ B}.
The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The shaded
area inside the circle that represents A and outside the circle that represents B is the area that
represents A − B.

We give some examples of differences of sets.

EXAMPLE 6 The difference of {1, 3, 5} and {1, 2, 3} is the set {5}; that is, {1, 3, 5} − {1, 2, 3} = {5}. This is
different from the difference of {1, 2, 3} and {1, 3, 5}, which is the set {2}. ▲

EXAMPLE 7 The difference of the set of computer science majors at your school and the set of mathematics
majors at your school is the set of all computer science majors at your school who are not also
mathematics majors. ▲

Once the universal set U has been specified, the complement of a set can be defined.

DEFINITION 5 Let U be the universal set. The complement of the set A, denoted by A, is the complement
of A with respect to U . In other words, the complement of the set A is U − A.

An element belongs to A if and only if x /∈ A. This tells us that

A = {x | x /∈ A}.

In Figure 4 the shaded area outside the circle representing A is the area representing A.
We give some examples of the complement of a set.
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TABLE 1 Set Identities.

Identity Name

A ∪ ∅ = A Identity laws

A ∩ U = A

A ∪ U = U Domination laws

A ∩ ∅ = ∅
A ∪ A = A Idempotent laws

A ∩ A = A

(A) = A Complementation law

A ∪ B = B ∪ A Commutative laws

A ∩ B = B ∩ A

A ∪ (B ∪ C) = (A ∪ B) ∪ C Associative laws

A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) Distributive laws

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∪ B = A ∩ B De Morgan’s laws

A ∩ B = A ∪ B

A ∪ (A ∩ B) = A Absorption laws

A ∩ (A ∪ B) = A

A ∪ A = U Complement laws

A ∩ A = ∅

EXAMPLE 8 Let A = {a, e, i, o, u} (where the universal set is the set of letters of the English alpha-
bet). Then A = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}. ▲

EXAMPLE 9 Let A be the set of positive integers greater than 10 (with universal set the set of all positive
integers). Then A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. ▲

Set Identities

Table 1 lists the most important set identities. We will prove several of these identities here,
using three different methods. These methods are presented to illustrate that there are often
many different approaches to the solution of a problem. The proofs of the remaining identities
will be left as exercises. The reader should note the similarity between these set identities and
the logical equivalences discussed in Section 1.2. In fact, the set identities given can be proved
directly from the corresponding logical equivalences. Furthermore, both are special cases of
identities that hold for Boolean algebra (discussed in Chapter 11).

One way to show that two sets are equal is to show that each is a subset of the other. Recall
that to show that one set is a subset of a second set, we can show that if an element belongs to
the first set, then it must also belong to the second set. We generally use a direct proof to do this.
We illustrate this type of proof by establishing the second of De Morgan’s laws.
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EXAMPLE 10 Prove that A ∩ B = A ∪ B.

Solution: To show that A ∩ B = A ∪ B, we will show that A ∩ B ⊆ A ∪ B and that A ∪ B ⊆
A ∩ B.

First, we will show that A ∩ B ⊆ A ∪ B. So suppose that x ∈ A ∩ B. By the definition
of complement, x �∈ A ∩ B. By the definition of intersection, ¬((x ∈ A) ∧ (x ∈ B)) is true.
Applying De Morgan’s law (from logic), we see that ¬(x ∈ A) or ¬(x ∈ B). Hence, by the
definition of negation, x �∈ A or x �∈ B. By the definition of complement, x ∈ A or x ∈ B. It
follows by the definition of union that x ∈ A ∪ B. This shows that A ∩ B ⊆ A ∪ B.

Next, we will show that A ∪ B ⊆ A ∩ B. Now suppose that x ∈ A ∪ B. By the definition
of union, x ∈ A or x ∈ B. Using the definition of complement, we see that x �∈ A or x �∈ B.
Consequently, ¬(x ∈ A) ∨ ¬(x ∈ B) is true. By De Morgan’s law (from logic), we conclude
that ¬((x ∈ A) ∧ (x ∈ B)) is true. By the definition of intersection, it follows that ¬(x ∈
A ∩ B) holds. We use the definition of complement to conclude that x ∈ A ∩ B. This shows
that A ∪ B ⊆ A ∩ B. Because we have shown that each set is a subset of the other, the two sets
are equal, and the identity is proved. ▲

We can more succinctly express the reasoning used in Example 10 using set builder notation,
as Example 11 illustrates.

EXAMPLE 11 Use set builder notation and logical equivalences to establish the second De Morgan law A ∩ B =
A ∪ B.

Solution: We can prove this identity with the following steps.

A ∩ B = {x | x /∈ A ∩ B} by definition of complement

= {x | ¬(x ∈ (A ∩ B))} by definition of does not belong symbol

= {x | ¬(x ∈ A ∧ x ∈ B)} by definition of intersection

= {x | ¬(x ∈ A) ∨ ¬(x ∈ B)} by the first De Morgan law for logical equivalences

= {x | x /∈ A ∨ x /∈ B} by definition of does not belong symbol

= {x | x ∈ A ∨ x ∈ B} by definition of complement

= {x | x ∈ A ∪ B} by definition of union

= A ∪ B by meaning of set builder notation

Note that besides the definitions of complement, union, set membership, and set builder
notation, this proof uses the first De Morgan law for logical equivalences. ▲

Proving a set identity involving more than two sets by showing each side of the identity is
a subset of the other often requires that we keep track of different cases, as illustrated by the
proof in Example 12 of one of the distributive laws for sets.

EXAMPLE 12 Prove the first distributive law from Table 1, which states that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
for all sets A, B, and C .

Solution: We will prove this identity by showing that each side is a subset of the other side.
Suppose that x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C . By the definition of union,

it follows that x ∈ A, and x ∈ B or x ∈ C (or both). Consequently, we know that x ∈ A and
x ∈ B or that x ∈ A and x ∈ C . By the definition of intersection, it follows that x ∈ A ∩ B
or x ∈ A ∩ C . Using the definition of union, we conclude that x ∈ (A ∩ B) ∪ (A ∩ C). We
conclude that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).
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TABLE 2 A Membership Table for the Distributive Property.

A B C B ∪ C A ∩ (B ∪ C) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

Now suppose that x ∈ (A ∩ B) ∪ (A ∩ C). Then, by the definition of union, x ∈ A ∩ B or
x ∈ A ∩ C . By the definition of intersection, it follows that x ∈ A and x ∈ B or that x ∈ A and
x ∈ C . From this we see that x ∈ A, and x ∈ B or x ∈ C . Consequently, by the definition of
union we see that x ∈ A and x ∈ B ∪ C . Furthermore, by the definition of intersection, it follows
that x ∈ A ∩ (B ∪ C). We conclude that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). This completes the
proof of the identity. ▲

Set identities can also be proved using membership tables. We consider each combination
of sets that an element can belong to and verify that elements in the same combinations of sets
belong to both the sets in the identity. To indicate that an element is in a set, a 1 is used; to
indicate that an element is not in a set, a 0 is used. (The reader should note the similarity between
membership tables and truth tables.)

EXAMPLE 13 Use a membership table to show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Solution: The membership table for these combinations of sets is shown in Table 2. This table
has eight rows. Because the columns for A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are the same, the
identity is valid. ▲

Additional set identities can be established using those that we have already proved. Consider
Example 14.

EXAMPLE 14 Let A, B, and C be sets. Show that

A ∪ (B ∩ C) = (C ∪ B) ∩ A.

Solution: We have

A ∪ (B ∩ C) = A ∩ (B ∩ C) by the first De Morgan law

= A ∩ (B ∪ C) by the second De Morgan law

= (B ∪ C) ∩ A by the commutative law for intersections

= (C ∪ B) ∩ A by the commutative law for unions. ▲

Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the sets A ∪ B ∪ C and A ∩
B ∩ C are well defined; that is, the meaning of this notation is unambiguous when A, B, and
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FIGURE 5 The Union and Intersection of A, B, and C .

C are sets. That is, we do not have to use parentheses to indicate which operation comes first
because A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C . Note that A ∪ B ∪ C
contains those elements that are in at least one of the sets A, B, and C, and that A ∩ B ∩ C
contains those elements that are in all of A, B, and C . These combinations of the three sets, A,

B, and C, are shown in Figure 5.

EXAMPLE 15 Let A = {0, 2, 4, 6, 8}, B = {0, 1, 2, 3, 4}, and C = {0, 3, 6, 9}. What are A ∪ B ∪ C and
A ∩ B ∩ C?

Solution: The set A ∪ B ∪ C contains those elements in at least one of A, B, and C . Hence,

A ∪ B ∪ C = {0, 1, 2, 3, 4, 6, 8, 9}.

The set A ∩ B ∩ C contains those elements in all three of A, B, and C . Thus,

A ∩ B ∩ C = {0}. ▲

We can also consider unions and intersections of an arbitrary number of sets. We use these
definitions.

DEFINITION 6 The union of a collection of sets is the set that contains those elements that are members of
at least one set in the collection.

We use the notation

A1 ∪ A2 ∪ · · · ∪ An =
n⋃

i=1

Ai

to denote the union of the sets A1, A2, . . . , An .

DEFINITION 7 The intersection of a collection of sets is the set that contains those elements that are members
of all the sets in the collection.
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We use the notation

A1 ∩ A2 ∩ · · · ∩ An =
n⋂

i=1

Ai

to denote the intersection of the sets A1, A2, . . . , An . We illustrate generalized unions and
intersections with Example 16.

EXAMPLE 16 Let Ai = {i, i + 1, i + 2, . . .}. Then,

n⋃
i=1

Ai =
n⋃

i=1

{i, i + 1, i + 2, . . . } = {1, 2, 3, . . . },

and

n⋂
i=1

Ai =
n⋂

i=1

{i, i + 1, i + 2, . . . } = {n, n + 1, n + 2, . . . }. ▲

We can extend the notation we have introduce for unions and intersections to other families of
sets. In particular, we can use the notation

A1 ∪ A2 ∪ · · · ∪ An ∪ · · · =
∞⋃

i=1

Ai

to denote the union of the sets A1, A2, . . . , An, . . . . Similarly, the intersection of these sets can
be denoted by

A1 ∩ A2 ∩ · · · ∩ An ∩ · · · =
∞⋂

i=1

Ai .

More generally, the notations
⋂

i∈I Ai and
⋃

i∈I Ai are used to denote the intersection and
union of the sets Ai for i ∈ I , respectively. Note that we have

⋂
i∈I Ai = {x | ∀i ∈ I (x ∈ Ai )}

and
⋃

i∈I Ai = {x | ∃i ∈ I (x ∈ Ai )}.

EXAMPLE 17 Suppose that Ai = {1, 2, 3, . . . , i} for i = 1, 2, 3, . . . . Then,

∞⋃
i=1

Ai =
∞⋃

i=1

{1, 2, 3, . . . , i} = {1, 2, 3, . . .} = Z+

and

∞⋂
i=1

Ai =
∞⋂

i=1

{1, 2, 3, . . . , i} = {1}.

To see that the union of these sets is the set of positive integers, note that every positive
integer is in at least one of the sets, because the integer n belongs to An = {1, 2, . . . , n} and
every element of the sets in the union is a positive integer. To see that the intersection of these
sets, note that the only element that belongs to all the sets A1, A2, . . . is 1. To see this note that
A1 = {1} and 1 ∈ Ai for i = 1, 2, . . . . ▲
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Computer Representation of Sets

There are various ways to represent sets using a computer. One method is to store the elements
of the set in an unordered fashion. However, if this is done, the operations of computing the
union, intersection, or difference of two sets would be time-consuming, because each of these
operations would require a large amount of searching for elements. We will present a method for
storing elements using an arbitrary ordering of the elements of the universal set. This method
of representing sets makes computing combinations of sets easy.

Assume that the universal set U is finite (and of reasonable size so that the number of
elements of U is not larger than the memory size of the computer being used). First, specify an
arbitrary ordering of the elements of U, for instance a1, a2, . . . , an . Represent a subset A of U
with the bit string of length n, where the i th bit in this string is 1 if ai belongs to A and is 0 if
ai does not belong to A. Example 18 illustrates this technique.

EXAMPLE 18 Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements of U has the elements in
increasing order; that is, ai = i . What bit strings represent the subset of all odd integers in U,

the subset of all even integers in U, and the subset of integers not exceeding 5 in U?

Solution: The bit string that represents the set of odd integers in U, namely, {1, 3, 5, 7, 9}, has
a one bit in the first, third, fifth, seventh, and ninth positions, and a zero elsewhere. It is

10 1010 1010.

(We have split this bit string of length ten into blocks of length four for easy reading because
long bit strings are difficult to read.) Similarly, we represent the subset of all even integers in
U, namely, {2, 4, 6, 8, 10}, by the string

01 0101 0101.

The set of all integers in U that do not exceed 5, namely, {1, 2, 3, 4, 5}, is represented by the
string

11 1110 0000. ▲

Using bit strings to represent sets, it is easy to find complements of sets and unions, inter-
sections, and differences of sets. To find the bit string for the complement of a set from the bit
string for that set, we simply change each 1 to a 0 and each 0 to 1, because x ∈ A if and only if
x /∈ A. Note that this operation corresponds to taking the negation of each bit when we associate
a bit with a truth value—with 1 representing true and 0 representing false.

EXAMPLE 19 We have seen that the bit string for the set {1, 3, 5, 7, 9} (with universal set {1, 2, 3, 4,

5, 6, 7, 8, 9, 10}) is

10 1010 1010.

What is the bit string for the complement of this set?

Solution: The bit string for the complement of this set is obtained by replacing 0s with 1s and
vice versa. This yields the string

01 0101 0101,

which corresponds to the set {2, 4, 6, 8, 10}. ▲
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To obtain the bit string for the union and intersection of two sets we perform bitwise Boolean
operations on the bit strings representing the two sets. The bit in the i th position of the bit string
of the union is 1 if either of the bits in the i th position in the two strings is 1 (or both are 1), and
is 0 when both bits are 0. Hence, the bit string for the union is the bitwise OR of the bit strings
for the two sets. The bit in the i th position of the bit string of the intersection is 1 when the bits
in the corresponding position in the two strings are both 1, and is 0 when either of the two bits
is 0 (or both are). Hence, the bit string for the intersection is the bitwise AND of the bit strings
for the two sets.

EXAMPLE 20 The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 11 1110 0000 and 10 1010 1010,
respectively. Use bit strings to find the union and intersection of these sets.

Solution: The bit string for the union of these sets is

11 1110 0000 ∨ 10 1010 1010 = 11 1110 1010,

which corresponds to the set {1, 2, 3, 4, 5, 7, 9}. The bit string for the intersection of these sets
is

11 1110 0000 ∧ 10 1010 1010 = 10 1010 0000,

which corresponds to the set {1, 3, 5}. ▲

Exercises

1. Let A be the set of students who live within one mile of
school and let B be the set of students who walk to classes.
Describe the students in each of these sets.

a) A ∩ B b) A ∪ B
c) A − B d) B − A

2. Suppose that A is the set of sophomores at your school
and B is the set of students in discrete mathematics at
your school. Express each of these sets in terms of A and
B.

a) the set of sophomores taking discrete mathematics in
your school

b) the set of sophomores at your school who are not tak-
ing discrete mathematics

c) the set of students at your school who either are sopho-
mores or are taking discrete mathematics

d) the set of students at your school who either are not
sophomores or are not taking discrete mathematics

3. Let A = {1, 2, 3, 4, 5} and B = {0, 3, 6}. Find

a) A ∪ B. b) A ∩ B.
c) A − B. d) B − A.

4. Let A = {a, b, c, d, e} and B = {a, b, c, d, e, f,
g, h}. Find

a) A ∪ B. b) A ∩ B.
c) A − B. d) B − A.

In Exercises 5–10 assume that A is a subset of some underlying
universal set U .

5. Prove the complementation law in Table 1 by showing that

A = A.

6. Prove the identity laws in Table 1 by showing that

a) A ∪ ∅ = A. b) A ∩ U = A.

7. Prove the domination laws in Table 1 by showing that

a) A ∪ U = U . b) A ∩ ∅ = ∅.

8. Prove the idempotent laws in Table 1 by showing that

a) A ∪ A = A. b) A ∩ A = A.

9. Prove the complement laws in Table 1 by showing that

a) A ∪ A = U. b) A ∩ A = ∅.

10. Show that

a) A − ∅ = A. b) ∅ − A = ∅.

11. Let A and B be sets. Prove the commutative laws from
Table 1 by showing that

a) A ∪ B = B ∪ A.
b) A ∩ B = B ∩ A.

12. Prove the first absorption law from Table 1 by showing
that if A and B are sets, then A ∪ (A ∩ B) = A.

13. Prove the second absorption law from Table 1 by showing
that if A and B are sets, then A ∩ (A ∪ B) = A.

14. Find the sets A and B if A − B = {1, 5, 7, 8}, B − A =
{2, 10}, and A ∩ B = {3, 6, 9}.

15. Prove the first De Morgan law in Table 1 by showing that
if A and B are sets, then A ∪ B = A ∩ B
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a) by showing each side is a subset of the other side.
b) using a membership table.

16. Let A and B be sets. Show that

a) (A ∩ B) ⊆ A. b) A ⊆ (A ∪ B).
c) A − B ⊆ A. d) A ∩ (B − A) = ∅.
e) A ∪ (B − A) = A ∪ B.

17. Show that if A, B, and C are sets, then A ∩ B ∩ C =
A ∪ B ∪ C
a) by showing each side is a subset of the other side.
b) using a membership table.

18. Let A, B, and C be sets. Show that

a) (A ∪ B) ⊆ (A ∪ B ∪ C).
b) (A ∩ B ∩ C) ⊆ (A ∩ B).
c) (A − B) − C ⊆ A − C .
d) (A − C) ∩ (C − B) = ∅.
e) (B − A) ∪ (C − A) = (B ∪ C) − A.

19. Show that if A and B are sets, then A − B = A ∩ B.

20. Show that if A and B are sets, then (A ∩ B) ∪
(A ∩ B) = A.

21. Prove the first associative law from Table 1 by showing that
if A, B, and C are sets, then A ∪ (B ∪ C) = (A ∪ B) ∪ C .

22. Prove the second associative law from Table 1 by show-
ing that if A, B, and C are sets, then A ∩ (B ∩ C) =
(A ∩ B) ∩ C .

23. Prove the second distributive law from Table 1 by show-
ing that if A, B, and C are sets, then A ∪ (B ∩ C) =
(A ∪ B) ∩ (A ∪ C).

24. Let A, B, and C be sets. Show that (A − B) − C =
(A − C) − (B − C).

25. Let A = {0, 2, 4, 6, 8, 10}, B = {0, 1, 2, 3, 4, 5, 6}, and
C = {4, 5, 6, 7, 8, 9, 10}. Find

a) A ∩ B ∩ C . b) A ∪ B ∪ C .
c) (A ∪ B) ∩ C . d) (A ∩ B) ∪ C .

26. Draw the Venn diagrams for each of these combinations
of the sets A, B, and C .

a) A ∩ (B ∪ C) b) A ∩ B ∩ C
c) (A − B) ∪ (A − C) ∪ (B − C)

27. Draw the Venn diagrams for each of these combinations
of the sets A, B, and C .

a) A ∩ (B − C) b) (A ∩ B) ∪ (A ∩ C)
c) (A ∩ B) ∪ (A ∩ C)

28. Draw the Venn diagrams for each of these combinations
of the sets A, B, C , and D.

a) (A ∩ B) ∪ (C ∩ D) b) A ∪ B ∪ C ∪ D
c) A − (B ∩ C ∩ D)

29. What can you say about the sets A and B if we know that

a) A ∪ B = A? b) A ∩ B = A?
c) A − B = A? d) A ∩ B = B ∩ A?
e) A − B = B − A?

30. Can you conclude that A = B if A, B, and C are sets
such that

a) A ∪ C = B ∪ C? b) A ∩ C = B ∩ C?
c) A ∪ B = B ∪ C and A ∩ C = B ∩ C?

31. Let A and B be subsets of a universal set U . Show that
A ⊆ B if and only if B ⊆ A?

The symmetric difference of A and B, denoted by A ⊕ B, is
the set containing those elements in either A or B, but not in
both A and B.

32. Find the symmetric difference of {1, 3, 5} and {1, 2, 3}.
33. Find the symmetric difference of the set of computer

science majors at a school and the set of mathematics
majors at this school.

34. Draw a Venn diagram for the symmetric difference of the
sets A and B.

35. Show that A ⊕ B = (A ∪ B) − (A ∩ B).

36. Show that A ⊕ B = (A − B) ∪ (B − A).

37. Show that if A is a subset of a universal set U , then

a) A ⊕ A = ∅. b) A ⊕ ∅ = A.
c) A ⊕ U = A. d) A ⊕ A = U .

38. Show that if A and B are sets, then

a) A ⊕ B = B ⊕ A. b) (A ⊕ B) ⊕ B = A.

39. What can you say about the sets A and B if A ⊕ B = A?

40.∗ Determine whether the symmetric difference is associa-
tive; that is, if A, B, and C are sets, does it follow that
A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C?

41.∗ Suppose that A, B, and C are sets such that A ⊕ C =
B ⊕ C . Must it be the case that A = B?

42. If A, B, C , and D are sets, does it follow that
(A ⊕ B) ⊕ (C ⊕ D) = (A ⊕ C) ⊕ (B ⊕ D)?

43. If A, B, C , and D are sets, does it follow that
(A ⊕ B) ⊕ (C ⊕ D) = (A ⊕ D) ⊕ (B ⊕ C)?

44.∗ Show that if A, B, and C are sets, then

|A ∪ B ∪ C | = |A| + |B| + |C | − |A ∩ B|
− |A ∩ C | − |B ∩ C | + |A ∩ B ∩ C |.

(This is a special case of the inclusion–exclusion princi-
ple, which will be studied in Chapter 7.)

45.∗ Let Ai = {1, 2, 3, . . . , i} for i = 1, 2, 3, . . . . Find

a)
n⋃

i=1

Ai . b)
n⋂

i=1

Ai .

46.∗ Let Ai = {. . . , −2, −1, 0, 1, . . . , i}. Find

a)
n⋃

i=1

Ai . b)
n⋂

i=1

Ai .

47. Let Ai be the set of all nonempty bit strings (that is, bit
strings of length at least one) of length not exceeding i .
Find

a)
n⋃

i=1

Ai . b)
n⋂

i=1

Ai .

48. Find
⋃∞

i=1 Ai and
⋂∞

i=1 Ai if for every positive integer i ,

a) Ai = {i, i + 1, i + 2, . . .}.
b) Ai = {0, i}.
c) Ai = (0, i), that is, the set of real numbers x with

0 < x < i.
d) Ai = (i, ∞), that is, the set of real numbers x with

x > i.
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49. Find
⋃∞

i=1 Ai and
⋂∞

i=1 Ai if for every positive integer i ,

a) Ai = {−i, −i + 1, . . . , −1, 0, 1, . . . , i − 1, i}.
b) Ai = {−i, i}.
c) Ai = [−i, i], that is, the set of real numbers x with

−i ≤ x ≤ i.
d) Ai = [i, ∞], that is, the set of real numbers x with

x ≥ i.
50. Suppose that the universal set is U = {1, 2, 3, 4,

5, 6, 7, 8, 9, 10}. Express each of these sets with bit strings
where the i th bit in the string is 1 if i is in the set and 0
otherwise.

a) {3, 4, 5}
b) {1, 3, 6, 10}
c) {2, 3, 4, 7, 8, 9}

51. Using the same universal set as in the last problem, find
the set specified by each of these bit strings.

a) 11 1100 1111
b) 01 0111 1000
c) 10 0000 0001

52. What subsets of a finite universal set do these bit strings
represent?

a) the string with all zeros
b) the string with all ones

53. What is the bit string corresponding to the difference of
two sets?

54. What is the bit string corresponding to the symmetric
difference of two sets?

55. Show how bitwise operations on bit strings can be
used to find these combinations of A = {a, b, c, d, e},
B = {b, c, d, g, p, t, v}, C = {c, e, i, o, u, x, y, z}, and
D = {d, e, h, i , n, o, t, u, x, y}.
a) A ∪ B b) A ∩ B
c) (A ∪ D) ∩ (B ∪ C) d) A ∪ B ∪ C ∪ D

56. How can the union and intersection of n sets that all are
subsets of the universal set U be found using bit strings?

The successor of the set A is the set A ∪ {A}.
57. Find the successors of the following sets.

a) {1, 2, 3} b) ∅
c) {∅} d) {∅, {∅}}

58. How many elements does the successor of a set with n
elements have?

Sometimes the number of times that an element occurs
in an unordered collection matters. Multisets are unor-
dered collections of elements where an element can oc-
cur as a member more than once. The notation {m1 · a1,

m2 · a2, . . . , mr · ar } denotes the multiset with element a1 oc-
curring m1 times, element a2 occurring m2 times, and so on.
The numbers mi , i = 1, 2, . . . , r are called the multiplicities
of the elements ai , i = 1, 2, . . . , r .

Let P and Q be multisets. The union of the multisets P
and Q is the multiset where the multiplicity of an element is
the maximum of its multiplicities in P and Q. The intersec-
tion of P and Q is the multiset where the multiplicity of an
element is the minimum of its multiplicities in P and Q. The

difference of P and Q is the multiset where the multiplicity of
an element is the multiplicity of the element in P less its mul-
tiplicity in Q unless this difference is negative, in which case
the multiplicity is 0. The sum of P and Q is the multiset where
the multiplicity of an element is the sum of multiplicities in
P and Q. The union, intersection, and difference of P and
Q are denoted by P ∪ Q, P ∩ Q, and P − Q, respectively
(where these operations should not be confused with the anal-
ogous operations for sets). The sum of P and Q is denoted by
P + Q.

59. Let A and B be the multisets {3 · a, 2 · b, 1 · c} and
{2 · a, 3 · b, 4 · d}, respectively. Find

a) A ∪ B. b) A ∩ B.
c) A − B. d) B − A.
e) A + B.

60. Suppose that A is the multiset that has as its elements the
types of computer equipment needed by one department
of a university where the multiplicities are the number
of pieces of each type needed, and B is the analogous
multiset for a second department of the university. For
instance, A could be the multiset {107 · personal comput-
ers, 44 · routers, 6 · servers} and B could be the multiset
{14 · personal computers, 6 · routers, 2 · mainframes}.
a) What combination of A and B represents the equip-

ment the university should buy assuming both depart-
ments use the same equipment?

b) What combination of A and B represents the equip-
ment that will be used by both departments if both
departments use the same equipment?

c) What combination of A and B represents the equip-
ment that the second department uses, but the first
department does not, if both departments use the
same equipment?

d) What combination of A and B represents the equip-
ment that the university should purchase if the depart-
ments do not share equipment?

Fuzzy sets are used in artificial intelligence. Each element in
the universal set U has a degree of membership, which is a
real number between 0 and 1 (including 0 and 1), in a fuzzy
set S. The fuzzy set S is denoted by listing the elements with
their degrees of membership (elements with 0 degree of mem-
bership are not listed). For instance, we write {0.6 Alice, 0.9
Brian, 0.4 Fred, 0.1 Oscar, 0.5 Rita} for the set F (of famous
people) to indicate that Alice has a 0.6 degree of membership
in F , Brian has a 0.9 degree of membership in F , Fred has
a 0.4 degree of membership in F , Oscar has a 0.1 degree of
membership in F , and Rita has a 0.5 degree of membership
in F (so that Brian is the most famous and Oscar is the least
famous of these people). Also suppose that R is the set of rich
people with R = {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.9 Oscar, 0.7
Rita}.
61. The complement of a fuzzy set S is the set S, with the

degree of the membership of an element in S equal to
1 minus the degree of membership of this element in S.
Find F (the fuzzy set of people who are not famous) and
R (the fuzzy set of people who are not rich).



2-23 2.3 Functions 22

62. The union of two fuzzy sets S and T is the fuzzy set
S ∪ T , where the degree of membership of an element in
S ∪ T is the maximum of the degrees of membership of
this element in S and in T . Find the fuzzy set F ∪ R of
rich or famous people.

63. The intersection of two fuzzy sets S and T is the fuzzy
set S ∩ T , where the degree of membership of an element
in S ∩ T is the minimum of the degrees of membership
of this element in S and in T . Find the fuzzy set F ∩ R
of rich and famous people.

2.3 Functions

Introduction

In many instances we assign to each element of a set a particular element of a second set (which
may be the same as the first). For example, suppose that each student in a discrete mathematics
class is assigned a letter grade from the set {A, B, C, D, F}. And suppose that the grades are A
for Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F for Stevens. This assignment
of grades is illustrated in Figure 1.

This assignment is an example of a function. The concept of a function is extremely impor-
tant in mathematics and computer science. For example, in discrete mathematics functions are
used in the definition of such discrete structures as sequences and strings. Functions are also
used to represent how long it takes a computer to solve problems of a given size. Many computer
programs and subroutines are designed to calculate values of functions. Recursive functions,
which are functions defined in terms of themselves, are used throughout computer science; they
will be studied in Chapter 4. This section reviews the basic concepts involving functions needed
in discrete mathematics.

DEFINITION 1 Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one
element of B to each element of A. We write f (a) = b if b is the unique element of B
assigned by the function f to the element a of A. If f is a function from A to B, we write
f : A → B.

Remark: Functions are sometimes also called mappings or transformations.

Functions are specified in many different ways. Sometimes we explicitly state the assign-
ments, as in Figure 1. Often we give a formula, such as f (x) = x + 1, to define a function.
Other times we use a computer program to specify a function.

Adams

Chou

Goodfriend

Rodriguez

Stevens

A

B

C

D

F

FIGURE 1 Assignment of Grades in a Discrete Mathematics Class.
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A B

a b = f (a)

f

f

FIGURE 2 The Function f Maps A to B.

A function f : A → B can also be defined in terms of a relation from A to B. Recall from
Section 2.1 that a relation from A to B is just a subset of A × B. A relation from A to B that
contains one, and only one, ordered pair (a, b) for every element a ∈ A, defines a function f
from A to B. This function is defined by the assignment f (a) = b, where (a, b) is the unique
ordered pair in the relation that has a as its first element.

DEFINITION 2 If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.
If f (a) = b, we say that b is the image of a and a is a preimage of b. The range of f is the
set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A
to B.

Figure 2 represents a function f from A to B.

When we define a function we specify its domain, its codomain, and the mapping of elements
of the domain to elements in the codomain. Two functions are equal when they have the same
domain, have the same codomain, and map elements of their common domain to the same
elements in their common codomain. Note that if we change either the domain or the codomain
of a function, then we obtain a different function. If we change the mapping of elements, then
we also obtain a different function.

Examples 1–5 provide examples of functions. In each case, we describe the domain, the
codomain, the range, and the assignment of values to elements of the domain.

EXAMPLE 1 What are the domain, codomain, and range of the function that assigns grades to students
described in the first paragraph of the introduction of this section?

Solution: Let G be the function that assigns a grade to a student in our discrete mathematics class.
Note that G(Adams) = A, for instance. The domain of G is the set {Adams, Chou, Goodfriend,
Rodriguez, Stevens}, and the codomain is the set {A, B, C , D, F}. The range of G is the set {A,
B, C , F}, because each grade except D is assigned to some student. ▲

EXAMPLE 2 Let R be the relation consisting of ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire,
22), (Eddie, 24), and (Felicia, 22), where each pair consists of a graduate student and the age of
this student. What is the function that this relation determines?

Solution: This relation defines the function f , where with f (Abdul ) = 22, f (Brenda) = 24,
f (Carla) = 21, f (Desire) = 22, f (Eddie) = 24, and f (Felicia) = 22. Here the domain is the
set {Abdul, Brenda, Carla, Desire, Eddie, Felicia}. To define the function f , we need to specify
a codomain. Here, we can take the codomain to be the set of positive integers to make sure
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that the codomain contains all possible ages of students. (Note that we could choose a smaller
codomain, but that would change the function.) Finally, the range is the set {21, 22, 24}. ▲

EXAMPLE 3 Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that
string. For example, f (11010) = 10. Then, the domain of f is the set of all bit strings of length
2 or greater, and both the codomain and range are the set {00, 01, 10, 11}. ▲

EXAMPLE 4 Let f : Z → Z assign the square of an integer to this integer. Then, f (x) = x2, where the
domain of f is the set of all integers, we take the the codomain of f to be the set of all
integers, and the range of f is the set of all integers that are perfect squares, namely, {0, 1, 4,

9, . . . }. ▲

EXAMPLE 5 The domain and codomain of functions are often specified in programming languages. For
instance, the Java statement

int floor(float real){. . .}
and the Pascal statement

function floor(x : real): integer

both state that the domain of the floor function is the set of real numbers and its codomain is
the set of integers. ▲

Two real-valued functions with the same domain can be added and multiplied.

DEFINITION 3 Let f1 and f2 be functions from A to R. Then f1 + f2 and f1 f2 are also functions from A to
R defined by

( f1 + f2)(x) = f1(x) + f2(x),

( f1 f2)(x) = f1(x) f2(x).

Note that the functions f1 + f2 and f1 f2 have been defined by specifying their values at x in
terms of the values of f1 and f2 at x .

EXAMPLE 6 Let f1 and f2 be functions from R to R such that f1(x) = x2 and f2(x) = x − x2.
What are the functions f1 + f2 and f1 f2?

Solution: From the definition of the sum and product of functions, it follows that

( f1 + f2)(x) = f1(x) + f2(x) = x2 + (x − x2) = x

and

( f1 f2)(x) = x2(x − x2) = x3 − x4. ▲

When f is a function from a set A to a set B, the image of a subset of A can also be defined.
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DEFINITION 4 Let f be a function from the set A to the set B and let S be a subset of A. The image of S
under the function f is the subset of B that consists of the images of the elements of S. We
denote the image of S by f (S), so

f (S) = { t | ∃s ∈ S (t = f (s)) }.

We also use the shorthand { f (s) | s ∈ S} to denote this set.

Remark: The notation f (S) for the image of the set S under the function f is potentially
ambiguous. Here, f (S) denotes a set, and not the value of the function f for the set S.

EXAMPLE 7 Let A = {a, b, c, d, e} and B = {1, 2, 3, 4} with f (a) = 2, f (b) = 1, f (c) = 4, f (d) = 1,
and f (e) = 1. The image of the subset S = {b, c, d} is the set f (S) = {1, 4}. ▲

One-to-One and Onto Functions

Some functions never assign the same value to two different domain elements. These functions
are said to be one-to-one.

DEFINITION 5 A function f is said to be one-to-one, or injective, if and only if f (a) = f (b) implies
that a = b for all a and b in the domain of f. A function is said to be an injection if it
is one-to-one.

Note that a function f is one-to-one if and only if f (a) �= f (b) whenever a �= b. This way
of expressing that f is one-to-one is obtained by taking the contrapositive of the implication in
the definition.

Remark: We can express that f is one-to-one using quantifiers as ∀a∀b( f (a) = f (b) → a = b)
or equivalently ∀a∀b(a �= b → f (a) �= f (b)), where the universe of discourse is the domain of
the function.

We illustrate this concept by giving examples of functions that are one-to-one and other
functions that are not one-to-one.

EXAMPLE 8 Determine whether the function f from {a, b, c, d} to {1, 2, 3, 4, 5} with f (a) = 4, f (b) = 5,
f (c) = 1, and f (d) = 3 is one-to-one.

Solution: The function f is one-to-one because f takes on different values at the four elements
of its domain. This is illustrated in Figure 3. ▲

EXAMPLE 9 Determine whether the function f (x) = x2 from the set of integers to the set of integers is
one-to-one.

Solution: The function f (x) = x2 is not one-to-one because, for instance, f (1) =
f (−1) = 1, but 1 �= −1.



2-27 2.3 Functions 26

a

b

c

d

1

2

3

4

5

FIGURE 3 A One-to-One Function.

Note that the function f (x) = x2 with its domain restricted to Z+ is one-to-one. (Technically,
when we restrict the domain of a function, we obtain a new function whose values agree with
those of the original function for the elements of the restricted domain. The restricted function
is not defined for elements of the original domain outside of the restricted domain.) ▲

EXAMPLE 10 Determine whether the function f (x) = x + 1 from the set of real numbers to itself is one-to-one.

Solution: The function f (x) = x + 1 is a one-to-one function. To demonstrate this,
note that x + 1 �= y + 1 when x �= y. ▲

We now give some conditions that guarantee that a function is one-to-one.

DEFINITION 6 A function f whose domain and codomain are subsets of the set of real numbers is called
increasing if f (x) ≤ f (y), and strictly increasing if f (x) < f (y), whenever x < y and x
and y are in the domain of f. Similarly, f is called decreasing if f (x) ≥ f (y), and strictly
decreasing if f (x) > f (y), whenever x < y and x and y are in the domain of f. (The word
strictly in this definition indicates a strict inequality.)

Remark: A function f is increasing if ∀x∀y(x < y → f (x) ≤ f (y)), strictly increasing if
∀x∀y(x < y → f (x) < f (y)), decreasing if ∀x∀y(x < y → f (x) ≥ f (y)), and strictly de-
creasing if ∀x∀y(x < y → f (x) > f (y)), where the universe of discourse is the domain of f.

From these definitions, we see that a function that is either strictly increasing or strictly
decreasing must be one-to-one. However, a function that is increasing, but not strictly increasing,
or decreasing, but not strictly decreasing, is not necessarily one-to-one.

For some functions the range and the codomain are equal. That is, every member of the
codomain is the image of some element of the domain. Functions with this property are called
onto functions.

DEFINITION 7 A function f from A to B is called onto, or surjective, if and only if for every element b ∈ B
there is an element a ∈ A with f (a) = b. A function f is called a surjection if it is onto.

Remark: A function f is onto if ∀y∃x( f (x) = y), where the domain for x is the domain of the
function and the domain for y is the codomain of the function.

We now give examples of onto functions and functions that are not onto.
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FIGURE 4 An Onto Function.

EXAMPLE 11 Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f (a) = 3, f (b) = 2, f (c) = 1,
and f (d) = 3. Is f an onto function?

Solution: Because all three elements of the codomain are images of elements in the domain, we
see that f is onto. This is illustrated in Figure 4. Note that if the codomain were {1, 2, 3, 4},
then f would not be onto. ▲

EXAMPLE 12 Is the function f (x) = x2 from the set of integers to the set of integers onto?

Solution: The function f is not onto because there is no integer x with x2 = −1, for instance. ▲

EXAMPLE 13 Is the function f (x) = x + 1 from the set of integers to the set of integers onto?

Solution: This function is onto, because for every integer y there is an integer x such that
f (x) = y. To see this, note that f (x) = y if and only if x + 1 = y, which holds if and only if
x = y − 1. ▲

DEFINITION 8 The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto.

Examples 14 and 15 illustrate the concept of a bijection.

EXAMPLE 14 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) = 1, and
f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, f is a bijection. ▲

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 68 at the end of this section.) This is
not necessarily the case if A is infinite (as will be shown in Section 2.4).

EXAMPLE 15 Let A be a set. The identity function on A is the function ιA : A → A, where

ιA(x) = x

for all x ∈ A. In other words, the identity function ιA is the function that assigns each element
to itself. The function ιA is one-to-one and onto, so it is a bijection. (Note that ι is the Greek
letter iota.) ▲
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FIGURE 5 Examples of Different Types of Correspondences.

Inverse Functions and Compositions of Functions

Now consider a one-to-one correspondence f from the set A to the set B. Because f is an onto
function, every element of B is the image of some element in A. Furthermore, because f is also
a one-to-one function, every element of B is the image of a unique element of A. Consequently,
we can define a new function from B to A that reverses the correspondence given by f . This
leads to Definition 9.

DEFINITION 9 Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f
is the function that assigns to an element b belonging to B the unique element a in A such that
f (a) = b. The inverse function of f is denoted by f −1. Hence, f −1(b) = a when f (a) = b.

Remark: Be sure not to confuse the function f −1 with the function 1/f , which is the function
that assigns to each x in the domain the value 1/ f (x). Notice that the latter makes sense only
when f (x) is a non-zero real number. They are not the same.

Figure 6 illustrates the concept of an inverse function.
If a function f is not a one-to-one correspondence, we cannot define an inverse function of

f . When f is not a one-to-one correspondence, either it is not one-to-one or it is not onto. If
f is not one-to-one, some element b in the codomain is the image of more than one element in
the domain. If f is not onto, for some element b in the codomain, no element a in the domain
exists for which f (a) = b. Consequently, if f is not a one-to-one correspondence, we cannot
assign to each element b in the codomain a unique element a in the domain such that f (a) = b
(because for some b there is either more than one such a or no such a).

f

A B

a = f –1(b) b = f (a)f (a)

f –1(b)

f –1

FIGURE 6 The Function f −1 Is the Inverse of Function f .
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A one-to-one correspondence is called invertible because we can define an inverse of this
function. A function is not invertible if it is not a one-to-one correspondence, because the
inverse of such a function does not exist.

EXAMPLE 16 Let f be the function from {a, b, c} to {1, 2, 3} such that f (a) = 2, f (b) = 3, and f (c) = 1. Is
f invertible, and if it is, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The in-
verse function f −1 reverses the correspondence given by f , so f −1(1) = c, f −1(2) = a, and
f −1(3) = b. ▲

EXAMPLE 17 Let f : Z → Z be such that f (x) = x + 1. Is f invertible, and if it is, what is its inverse?

Solution: The function f has an inverse because it is a one-to-one correspondence, as we have
shown. To reverse the correspondence, suppose that y is the image of x , so that y = x + 1. Then
x = y − 1. This means that y − 1 is the unique element of Z that is sent to y by f . Consequently,
f −1(y) = y − 1. ▲

EXAMPLE 18 Let f be the function from R to R with f (x) = x2. Is f invertible?

Solution: Because f (−2) = f (2) = 4, f is not one-to-one. If an inverse function were defined,
it would have to assign two elements to 4. Hence, f is not invertible. ▲

Sometimes we can restrict the domain or the codomain of a function, or both, to obtain an
invertible function, as Example 19 illustrates.

EXAMPLE 19 Show that if we restrict the function f (x) = x2 in Example 18 to a function from the set of all
nonnegative real numbers to the set of all nonnegative real numbers, then f is invertible.

Solution: The function f (x) = x2 from the set of nonnegative real numbers to the set of non-
negative real numbers is one-to-one. To see this, note that if f (x) = f (y), then x2 = y2, so
x2 − y2 = (x + y)(x − y) = 0. This means that x + y = 0 or x − y = 0, so x = −y or x = y.
Because both x and y are nonnegative, we must have x = y. So, this function is one-to-one.
Furthermore, f (x) = x2 is onto when the codomain is the set of all nonnegative real numbers,
because each nonnegative real number has a square root. That is, if y is a nonnegative real
number, there exists a nonnegative real number x such that x = √

y, which means that x2 = y.

Because the function f (x) = x2 from the set of nonnegative real numbers to the set of non-
negative real numbers is one-to-one and onto, it is invertible. Its inverse is given by the rule
f −1(y) = √

y. ▲

DEFINITION 10 Let g be a function from the set A to the set B and let f be a function from the set B to the
set C . The composition of the functions f and g, denoted by f ◦ g, is defined by

( f ◦ g)(a) = f (g(a)).

In other words, f ◦ g is the function that assigns to the element a of A the element assigned
by f to g(a). That is, to find ( f ◦ g)(a) we first apply the function g to a to obtain g(a) and
then we apply the function f to the result g(a) to obtain ( f ◦ g)(a) = f (g(a)). Note that the
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FIGURE 7 The Composition of the Functions f and g.

composition f ◦ g cannot be defined unless the range of g is a subset of the domain of f . In
Figure 7 the composition of functions is shown.

EXAMPLE 20 Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = c, and g(c) = a.
Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f (a) = 3, f (b) = 2, and
f (c) = 1. What is the composition of f and g, and what is the composition of g and f ?

Solution: The composition f ◦ g is defined by ( f ◦ g)(a) = f (g(a)) = f (b) = 2, ( f ◦ g) (b) =
f (g(b)) = f (c) = 1, and ( f ◦ g)(c) = f (g(c)) = f (a) = 3.

Note that g ◦ f is not defined, because the range of f is not a subset of the domain of g. ▲

EXAMPLE 21 Let f and g be the functions from the set of integers to the set of integers defined by f (x) =
2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g
and f ?

Solution: Both the compositions f ◦ g and g ◦ f are defined. Moreover,

( f ◦ g)(x) = f (g(x)) = f (3x + 2) = 2(3x + 2) + 3 = 6x + 7

and

(g ◦ f )(x) = g( f (x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11. ▲

Remark: Note that even though f ◦ g and g ◦ f are defined for the functions f and g in
Example 21, f ◦ g and g ◦ f are not equal. In other words, the commutative law does not hold
for the composition of functions.

When the composition of a function and its inverse is formed, in either order, an identity
function is obtained. To see this, suppose that f is a one-to-one correspondence from the set A
to the set B. Then the inverse function f −1 exists and is a one-to-one correspondence from B
to A. The inverse function reverses the correspondence of the original function, so f −1(b) = a
when f (a) = b, and f (a) = b when f −1(b) = a. Hence,

( f −1 ◦ f )(a) = f −1( f (a)) = f −1(b) = a,

and

( f ◦ f −1)(b) = f ( f −1(b)) = f (a) = b.
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FIGURE 8 The Graph of
f (n) = 2n + 1 from Z to Z.
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FIGURE 9 The Graph of
f (x) = x2 from Z to Z.

Consequently f −1 ◦ f = ιA and f ◦ f −1 = ιB , where ιA and ιB are the identity functions on
the sets A and B, respectively. That is, ( f −1)−1 = f .

The Graphs of Functions

We can associate a set of pairs in A × B to each function from A to B. This set of pairs is called
the graph of the function and is often displayed pictorially to aid in understanding the behavior
of the function.

DEFINITION 11 Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a, b) | a ∈ A and f (a) = b}.

From the definition, the graph of a function f from A to B is the subset of A × B containing the
ordered pairs with the second entry equal to the element of B assigned by f to the first entry.

EXAMPLE 22 Display the graph of the function f (n) = 2n + 1 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n + 1), where n is an integer.
This graph is displayed in Figure 8. ▲

EXAMPLE 23 Display the graph of the function f (x) = x2 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (x, f (x)) = (x, x2), where x is
an integer. This graph is displayed in Figure 9. ▲

Some Important Functions

Next, we introduce two important functions in discrete mathematics, namely, the floor and ceiling
functions. Let x be a real number. The floor function rounds x down to the closest integer less
than or equal to x , and the ceiling function rounds x up to the closest integer greater than or
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FIGURE 10 Graphs of the (a) Floor and (b) Ceiling Functions.

equal to x . These functions are often used when objects are counted. They play an important
role in the analysis of the number of steps used by procedures to solve problems of a particular
size.

DEFINITION 12 The floor function assigns to the real number x the largest integer that is less than or equal to
x . The value of the floor function at x is denoted by �x�. The ceiling function assigns to the
real number x the smallest integer that is greater than or equal to x . The value of the ceiling
function at x is denoted by �x�.

Remark: The floor function is often also called the greatest integer function. It is often denoted
by [x].

EXAMPLE 24 These are some values of the floor and ceiling functions:

� 1
2
� = 0, � 1

2
� = 1, �− 1

2
� = −1, �− 1

2
� = 0, �3.1� = 3, �3.1� = 4, �7� = 7, �7� = 7. ▲

We display the graphs of the floor and ceiling functions in Figure 10. In Figure 10(a) we display
the graph of the floor function �x�. Note that this function has the same value throughout the
interval [n, n + 1), namely n, and then it jumps up to n + 1 when x = n + 1. In Figure 10(b)
we display the graph of the ceiling function �x�. Note that this function has the same value
throughout the interval (n, n + 1], namely n + 1, and then jumps to n + 2 when x is a little
larger than n + 1.

The floor and ceiling functions are useful in a wide variety of applications, including those
involving data storage and data transmission. Consider Examples 25 and 26, typical of basic
calculations done when database and data communications problems are studied.

EXAMPLE 25 Data stored on a computer disk or transmitted over a data network are usually represented as a
string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits
of data?

Solution: To determine the number of bytes needed, we determine the smallest integer that is at
least as large as the quotient when 100 is divided by 8, the number of bits in a byte. Consequently,
�100/8� = �12.5� = 13 bytes are required. ▲
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TABLE 1 Useful Properties of the Floor
and Ceiling Functions.
(n is an integer)

(1a) �x� = n if and only if n ≤ x < n + 1

(1b) �x� = n if and only if n − 1 < x ≤ n

(1c) �x� = n if and only if x − 1 < n ≤ x

(1d) �x� = n if and only if x ≤ n < x + 1

(2) x − 1 < �x� ≤ x ≤ �x� < x + 1

(3a) �−x� = −�x�
(3b) �−x� = −�x�
(4a) �x + n� = �x� + n

(4b) �x + n� = �x� + n

EXAMPLE 26 In asynchronous transfer mode (ATM) (a communications protocol used on backbone networks),
data are organized into cells of 53 bytes. How many ATM cells can be transmitted in 1 minute
over a connection that transmits data at the rate of 500 kilobits per second?

Solution: In 1 minute, this connection can transmit 500,000 · 60 = 30,000,000 bits. Each ATM
cell is 53 bytes long, which means that it is 53 · 8 = 424 bits long. To determine the number
of cells that can be transmitted in 1 minute, we determine the largest integer not exceeding the
quotient when 30,000,000 is divided by 424. Consequently, �30,000,000/424� = 70,754 ATM
cells can be transmitted in 1 minute over a 500 kilobit per second connection. ▲

Table 1, with x denoting a real number, displays some simple but important properties of the
floor and ceiling functions. Because these functions appear so frequently in discrete mathematics,
it is useful to look over these identities. Each property in this table can be established using
the definitions of the floor and ceiling functions. Properties (1a), (1b), (1c), and (1d) follow
directly from these definitions. For example, (1a) states that �x� = n if and only if the integer
n is less than or equal to x and n + 1 is larger than x . This is precisely what it means for
n to be the greatest integer not exceeding x , which is the definition of �x� = n. Properties
(1b), (1c), and (1d) can be established similarly. We will prove property (4a) using a direct
proof.

Proof: Suppose that �x� = m, where m is a positive integer. By property (1a), it follows that m ≤
x < m + 1. Adding n to both sides of this inequality shows that m + n ≤ x + n < m + n + 1.
Using property (1a) again, we see that �x + n� = m + n = �x� + n. This completes the proof.
Proofs of the other properties are left as exercises.

The floor and ceiling functions enjoy many other useful properties besides those displayed in
Table 1. There are also many statements about these functions that may appear to be correct, but
actually are not. We will consider statements about the floor and ceiling functions in Examples
27 and 28.

A useful approach for considering statements about the floor function is to let x = n + ε,
where n = �x� is an integer, and ε, the fractional part of x , satisfies the inequality 0 ≤ ε < 1.
Similarly, when considering statements about the ceiling function, it is useful to write x = n − ε,
where n = �x� is an integer and 0 ≤ ε < 1.
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EXAMPLE 27 Prove that if x is a real number, then �2x� = �x� + �x + 1
2
�.

Solution: To prove this statement we let x = n + ε, where n is a positive integer and 0 ≤ ε < 1.
There are two cases to consider, depending on whether ε is less than or greater than or equal
to 1

2
. (The reason we choose these two cases will be made clear in the proof.)

We first consider the case when 0 ≤ ε < 1
2
. In this case, 2x = 2n + 2ε and �2x� = 2n

because 0 ≤ 2ε < 1. Similarly, x + 1
2

= n + ( 1
2

+ ε), so �x + 1
2
� = n, because 0 < 1

2
+ ε < 1.

Consequently, �2x� = 2n and �x� + �x + 1
2
� = n + n = 2n.

Next, we consider the case when 1
2

≤ ε < 1. In this case, 2x = 2n + 2ε = (2n + 1) + (2ε −
1). Because 0 ≤ 2ε − 1 < 1, it follows that �2x� = 2n + 1. Because �x + 1

2
� = �n + ( 1

2
+

ε)� = �n + 1 + (ε − 1
2
)� and 0 ≤ ε − 1

2
< 1, it follows that �x + 1

2
� = n + 1. Consequently,

�2x� = 2n + 1 and �x� + �x + 1
2
� = n + (n + 1) = 2n + 1. This concludes the proof. ▲

EXAMPLE 28 Prove or disprove that �x + y� = �x� + �y� for all real numbers x and y.

Solution: Although this statement may appear reasonable, it is false. A counterexample is
supplied by x = 1

2
and y = 1

2
. With these values we find that �x + y� = � 1

2
+ 1

2
� = �1� = 1,

but �x� + �y� = � 1
2
� + � 1

2
� = 1 + 1 = 2. ▲

There are certain types of functions that will be used throughout the text. These include
polynomial, logarithmic, and exponential functions. A brief review of the properties of these
functions needed in this text is given in Appendix 2. In this book the notation log x will be used
to denote the logarithm to the base 2 of x , because 2 is the base that we will usually use for
logarithms. We will denote logarithms to the base b, where b is any real number greater than 1,
by logb x , and the natural logarithm by ln x .

Another function we will use throughout this text is the factorial function f : N → Z+,
denoted by f (n) = n!. The value of f (n) = n! is the product of the first n positive integers, so
f (n) = 1 · 2 · · · (n − 1) · n [and f (0) = 0! = 1].

EXAMPLE 29 We have f (1) = 1! = 1, f (2) = 2! = 1 · 2 = 2, f (6) = 6! = 1 · 2 · 3 · 4 · 5 · 6 = 720,
and f (20) = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 · 16 · 17 · 18 · 19 · 20 =
2,432,902,008,176,640,000. ▲

JAMES STIRLING (1692–1770) was born near the town of Stirling, Scotland. His family strongly supported the Jacobite cause
of the Stuarts as an alternative to the British crown. The first information known about James is that he entered Balliol College,
Oxford, on a scholarship in 1711. However, he later lost his scholarship when he refused to pledge his allegiance to the British
crown. The first Jacobean rebellion took place in 1715, and Stirling was accused of communicating with rebels. He was charged
with cursing King George, but he was acquitted of these charges. Even though he could not graduate from Oxford because of his
politics, he remained there for several years. Stirling published his first work, which extended Newton’s work on plane curves, in
1717. He traveled to Venice, where a chair of mathematics had been promised to him, an appointment that unfortunately fell through.
Nevertheless, Stirling stayed in Venice, continuing his mathematical work. He attended the University of Padua in 1721, and in 1722
he returned to Glasgow. Stirling apparently fled Italy after learning the secrets of the Italian glass industry, avoiding the efforts of
Italian glass makers to assassinate him to protect their secrets.

In late 1724 Stirling moved to London, staying there 10 years teaching mathematics and actively engaging in research. In 1730
he published Methodus Differentialis, his most important work, presenting results on infinite series, summations, interpolation, and
quadrature. It is in this book that his asymptotic formula for n! appears. Stirling also worked on gravitation and the shape of the
earth; he stated, but did not prove, that the earth is an oblate spheroid. Stirling returned to Scotland in 1735, when he was appointed
manager of a Scottish mining company. He was very successful in this role and even published a paper on the ventilation of mine
shafts. He continued his mathematical research, but at a reduced pace, during his years in the mining industry. Stirling is also noted
for surveying the River Clyde with the goal of creating a series of locks to make it navigable. In 1752 the citizens of Glasgow
presented him with a silver teakettle as a reward for this work.
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Example 29 illustrates that the factorial function grows extremely rapidly as n grows.
The rapid growth of the factorial function is made clearer by Stirling’s formula, a result
from higher mathematics that tell us that n! ∼ √

2πn(n/e)n . Here, we have used the notation
f (n) ∼ g(n), which means that the ratio f (n)/g(n) approaches 1 as n grows without bound
(that is, limn→∞ f (n)/g(n) = 1). The symbol ∼ is read “is asymptotic to.” Stirling’s formula is
named after James Stirling, a Scottish mathematician of the eighteenth century.

Exercises

1. Why is f not a function from R to R if

a) f (x) = 1/x?
b) f (x) = √

x?

c) f (x) = ±
√

(x2 + 1)?

2. Determine whether f is a function from Z to R if

a) f (n) = ±n.
b) f (n) = √

n2 + 1.
c) f (n) = 1/(n2 − 4).

3. Determine whether f is a function from the set of all bit
strings to the set of integers if

a) f (S) is the position of a 0 bit in S.
b) f (S) is the number of 1 bits in S.
c) f (S) is the smallest integer i such that the i th bit of

S is 1 and f (S) = 0 when S is the empty string, the
string with no bits.

4. Find the domain and range of these functions. Note that
in each case, to find the domain, determine the set of ele-
ments assigned values by the function.

a) the function that assigns to each nonnegative integer
its last digit

b) the function that assigns the next largest integer to a
positive integer

c) the function that assigns to a bit string the number of
one bits in the string

d) the function that assigns to a bit string the number of
bits in the string

5. Find the domain and range of these functions. Note that
in each case, to find the domain, determine the set of ele-
ments assigned values by the function.

a) the function that assigns to each bit string the number
of ones minus the number of zeros

b) the function that assigns to each bit string twice the
number of zeros in that string

c) the function that assigns the number of bits left over
when a bit string is split into bytes (which are blocks
of 8 bits)

d) the function that assigns to each positive integer the
largest perfect square not exceeding this integer

6. Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-
gers the first integer of the pair

b) the function that assigns to each positive integer its
largest decimal digit

c) the function that assigns to a bit string the number of
ones minus the number of zeros in the string

d) the function that assigns to each positive integer the
largest integer not exceeding the square root of the
integer

e) the function that assigns to a bit string the longest
string of ones in the string

7. Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-
gers the maximum of these two integers

b) the function that assigns to each positive integer the
number of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that do
not appear as decimal digits of the integer

c) the function that assigns to a bit string the number of
times the block 11 appears

d) the function that assigns to a bit string the numerical
position of the first 1 in the string and that assigns the
value 0 to a bit string consisting of all 0s

8. Find these values.

a) �1.1� b) �1.1�
c) �−0.1� d) �−0.1�
e) �2.99� f) �−2.99�
g) � 1

2
+ � 1

2
� � h) � � 1

2
� + � 1

2
� + 1

2
�

9. Find these values.

a) � 3
4
� b) � 7

8
�

c) �− 3
4
� d) �− 7

8
�

e) �3� f) �−1�
g) � 1

2
+ � 3

2
� � h) � 1

2
· � 5

2
� �

10. Determine whether each of these functions from
{a, b, c, d} to itself is one-to-one.

a) f (a) = b, f (b) = a, f (c) = c, f (d) = d
b) f (a) = b, f (b) = b, f (c) = d , f (d) = c
c) f (a) = d, f (b) = b, f (c) = c, f (d) = d

11. Which functions in Exercise 10 are onto?

12. Determine whether each of these functions from Z to Z
is one-to-one.

a) f (n) = n − 1 b) f (n) = n2 + 1
c) f (n) = n3 d) f (n) = �n /2�

13. Which functions in Exercise 12 are onto?

14. Determine whether f : Z × Z → Z is onto if

a) f (m, n) = 2m − n.
b) f (m, n) = m2 − n2.
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c) f (m, n) = m + n + 1.
d) f (m, n) = |m| − |n|.
e) f (m, n) = m2 − 4.

15. Determine whether the function f : Z × Z → Z is onto if

a) f (m, n) = m + n.
b) f (m, n) = m2 + n2.
c) f (m, n) = m.
d) f (m, n) = |n|.
e) f (m, n) = m − n.

16. Give an example of a function from N to N that is

a) one-to-one but not onto.
b) onto but not one-to-one.
c) both onto and one-to-one (but different from the iden-

tity function).
d) neither one-to-one nor onto.

17. Give an explicit formula for a function from the set of
integers to the set of positive integers that is

a) one-to-one, but not onto.
b) onto, but not one-to-one.
c) one-to-one and onto.
d) neither one-to-one nor onto.

18. Determine whether each of these functions is a bijection
from R to R.

a) f (x) = −3x + 4
b) f (x) = −3x2 + 7
c) f (x) = (x + 1)/(x + 2)
d) f (x) = x5 + 1

19. Determine whether each of these functions is a bijection
from R to R.

a) f (x) = 2x + 1
b) f (x) = x2 + 1
c) f (x) = x3

d) f (x) = (x2 + 1)/(x2 + 2)

20. Let f : R → R and let f (x) > 0 for all x ∈ R. Show
that f (x) is strictly increasing if and only if the function
g(x) = 1/ f (x) is strictly decreasing.

21. Let f : R → R and let f (x) > 0. Show that f (x) is strictly
decreasing if and only if the function g(x) = 1/ f (x) is
strictly increasing.

22. Give an example of an increasing function with the set
of real numbers as its domain and codomain that is not
one-to-one.

23. Give an example of a decreasing function with the set
of real numbers as its domain and codomain that is not
one-to-one.

24. Show that the function f (x) = e x from the set of real
number to the set of real numbers is not invertible, but
if the codomain is restricted to the set of positive real
numbers, the resulting function is invertible.

25. Show that the function f (x) = |x | from the set of real
numbers to the set of nonnegative real numbers is not
invertible, but if the domain is restricted to the set
of nonnegative real numbers, the resulting function is
invertible.

26. Let S = {−1, 0, 2, 4, 7}. Find f (S) if

a) f (x) = 1. b) f (x) = 2x + 1.
c) f (x) = �x /5�. d) f (x) =�(x2 + 1)/3�.

27. Let f (x) = �x2/3�. Find f (S) if

a) S = {−2, −1, 0, 1, 2, 3}.
b) S = {0, 1, 2, 3, 4, 5}.
c) S = {1, 5, 7, 11}.
d) S = {2, 6, 10, 14}.

28. Let f (x) = 2x . What is

a) f (Z)? b) f (N)? c) f (R)?

29. Suppose that g is a function from A to B and f is a func-
tion from B to C .

a) Show that if both f and g are one-to-one functions,
then f ◦ g is also one-to-one.

b) Show that if both f and g are onto functions, then
f ◦ g is also onto.

30.∗ If f and f ◦ g are one-to-one, does it follow that g is
one-to-one? Justify your answer.

31.∗ If f and f ◦ g are onto, does it follow that g is onto?
Justify your answer.

32. Find f ◦ g and g ◦ f , where f (x) = x2 + 1 and g(x) =
x + 2, are functions from R to R.

33. Find f + g and fg for the functions f and g given in
Exercise 32.

34. Let f (x) = ax + b and g(x) = cx + d , where a, b, c, and
d are constants. Determine for which constants a, b, c,
and d it is true that f ◦ g = g ◦ f .

35. Show that the function f (x) = ax + b from R to R is
invertible, where a and b are constants, with a �= 0, and
find the inverse of f .

36. Let f be a function from the set A to the set B. Let S and
T be subsets of A. Show that

a) f (S ∪ T ) = f (S) ∪ f (T ).
b) f (S ∩ T ) ⊆ f (S) ∩ f (T ).

37. Give an example to show that the inclusion in part (b) in
Exercise 36 may be proper.

Let f be a function from the set A to the set B. Let S be a
subset of B. We define the inverse image of S to be the subset
of A whose elements are precisely all pre-images of all ele-
ments of S. We denote the inverse image of S by f −1(S), so
f −1(S) = {a ∈ A | f (a) ∈ S}. (Beware: The notation f −1 is
used in two different ways. Do not confuse the notation intro-
duced here with the notation f −1(y) for the value at y of the
inverse of the invertible function f . Notice also that f −1(S),
the inverse image of the set S, makes sense for all functions f ,
not just invertible functions.)

38. Let f be the function from R to R defined by
f (x) = x2. Find

a) f −1({1}). b) f −1({x | 0 < x < 1}).
c) f −1({x | x > 4}).

39. Let g(x) = �x�. Find

a) g−1({0}). b) g−1({−1, 0, 1}).
c) g−1({x | 0 < x < 1}).
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40. Let f be a function from A to B. Let S and T be subsets
of B. Show that

a) f −1(S ∪ T ) = f −1(S) ∪ f −1(T ).
b) f −1(S ∩ T ) = f −1(S) ∩ f −1(T ).

41. Let f be a function from A to B. Let S be a subset of B.

Show that f −1(S) = f −1(S).

42. Show that �x + 1
2
� is the closest integer to the number x ,

except when x is midway between two integers, when it
is the larger of these two integers.

43. Show that �x − 1
2
� is the closest integer to the number x ,

except when x is midway between two integers, when it
is the smaller of these two integers.

44. Show that if x is a real number, then �x� − �x� = 1
if x is not an integer and �x� − �x� = 0 if x is an
integer.

45. Show that if x is a real number, then x − 1 < �x� ≤ x ≤
�x� < x + 1.

46. Show that if x is a real number and m is an integer, then
�x + m� = �x� + m.

47. Show that if x is a real number and n is an integer, then

a) x < n if and only if �x� < n.
b) n < x if and only if n < �x�.

48. Show that if x is a real number and n is an integer, then

a) x ≤ n if and only if �x� ≤ n.
b) n ≤ x if and only if n ≤ �x�.

49. Prove that if n is an integer, then �n/2� = n/2 if n is even
and (n − 1)/2 if n is odd.

50. Prove that if x is a real number, then �−x� = −�x� and
�−x� = −�x�.

51. The function INT is found on some calculators, where
INT(x) = �x� when x is a nonnegative real number and
INT(x) = �x� when x is a negative real number. Show
that this INT function satisfies the identity INT(−x) =
−INT(x).

52. Let a and b be real numbers with a < b. Use the floor
and/or ceiling functions to express the number of integers
n that satisfy the inequality a ≤ n ≤ b.

53. Let a and b be real numbers with a < b. Use the floor
and/or ceiling functions to express the number of integers
n that satisfy the inequality a < n < b.

54. How many bytes are required to encode n bits of data
where n equals

a) 4? b) 10? c) 500? d) 3000?

55. How many bytes are required to encode n bits of data
where n equals

a) 7? b) 17? c) 1001? d) 28,800?

56. How many ATM cells (described in Example 26) can be
transmitted in 10 seconds over a link operating at the fol-
lowing rates?

a) 128 kilobits per second (1 kilobit = 1000 bits)
b) 300 kilobits per second
c) 1 megabit per second (1 megabit = 1,000,000 bits)

57. Data are transmitted over a particular Ethernet network
in blocks of 1500 octets (blocks of 8 bits). How many
blocks are required to transmit the following amounts of
data over this Ethernet network? (Note that a byte is a syn-
onym for an octet, a kilobyte is 1000 bytes, and a megabyte
is 1,000,000 bytes.)

a) 150 kilobytes of data
b) 384 kilobytes of data
c) 1.544 megabytes of data
d) 45.3 megabytes of data

58. Draw the graph of the function f (n) = 1 − n2 from Z to
Z.

59. Draw the graph of the function f (x) = �2x� from R to
R.

60. Draw the graph of the function f (x) = �x/2� from R to
R.

61. Draw the graph of the function f (x) = �x� + �x/2� from
R to R.

62. Draw the graph of the function f (x) = �x� + �x/2� from
R to R.

63. Draw graphs of each of these functions.

a) f (x) = �x + 1
2
� b) f (x) = �2x + 1�

c) f (x) = �x/3� d) f (x) = �1/x�
e) f (x) = �x − 2� + �x + 2�
f) f (x) = �2x��x/2� g) f (x) = ��x − 1

2
� + 1

2
�

64. Draw graphs of each of these functions.

a) f (x) = �3x − 2� b) f (x) = �0.2x�
c) f (x) = �−1/x� d) f (x) = �x2�
e) f (x) = �x/2��x/2� f) f (x) = �x/2� + �x/2�
g) f (x) = �2 �x/2� + 1

2
�

65. Find the inverse function of f (x) = x3 + 1.

66. Suppose that f is an invertible function from Y to Z and
g is an invertible function from X to Y . Show that the
inverse of the composition f ◦ g is given by ( f ◦ g)−1 =
g−1 ◦ f −1.

67. Let S be a subset of a universal set U . The characteristic
function fS of S is the function from U to the set {0, 1}
such that fS(x) = 1 if x belongs to S and fS(x) = 0 if x
does not belong to S. Let A and B be sets. Show that for
all x ,

a) f A∩B(x) = f A(x) · fB(x)

b) f A∪B(x) = f A(x) + fB(x) − f A(x) · fB(x)

c) f A(x) = 1 − f A(x)

d) f A⊕B(x) = f A(x) + fB(x) − 2 f A(x) fB(x)

68. Suppose that f is a function from A to B, where A and B
are finite sets with |A| = |B|. Show that f is one-to-one
if and only if it is onto.

69. Prove or disprove each of these statements about the floor
and ceiling functions.

a) ��x�� = �x� for all real numbers x .

b) �2x� = 2�x� whenever x is a real number.

c) �x� + �y� − �x + y� = 0 or 1 whenever x and y are
real numbers.
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d) �xy� = �x� �y� for all real numbers x and y.

e)
⌈ x

2

⌉
=

⌊
x + 1

2

⌋
for all real numbers x .

70. Prove or disprove each of these statements about the floor
and ceiling functions.

a) � �x� � = �x� for all real numbers x .
b) �x + y� = �x� + �y� for all real numbers x and y.
c) � �x/2� /2� = �x/4� for all real numbers x .
d) �√�x� � = �√x � for all positive real numbers x .
e) �x� + �y� + �x + y� ≤ �2x� + �2y� for all real

numbers x and y.

71. Prove that if x is a positive real number, then

a) �√�x� � = �√x �.
b) �√�x� � = �√x �.

72. Let x be a real number. Show that �3x� = �x� +
�x + 1

3
� + �x + 2

3
�.

A program designed to evaluate a function may not produce
the correct value of the function for all elements in the domain
of this function. For example, a program may not produce a
correct value because evaluating the function may lead to an
infinite loop or an overflow. Similarly, in abstract mathemat-
ics, we often want to discuss functions that are defined only for
a subset of the real numbers, such as 1/x ,

√
x , and arcsin (x).

Also, we may want to use such notions as the “youngest child”
function, which is undefined for a couple having no children,
or the “time of sunrise,” which is undefined for some days
above the Arctic Circle.

To study such situations, we use the concept of a partial
function. A partial function f from a set A to a set B is an
assignment to each element a in a subset of A, called the do-
main of definition of f , of a unique element b in B. The sets
A and B are called the domain and codomain of f , respec-
tively. We say that f is undefined for elements in A that are
not in the domain of definition of f . We write f : A → B to
denote that f is a partial function from A to B. (This is the
same notation as is used for functions. The context in which
the notation is used determines whether f is a partial function
or a total function.) When the domain of definition of f equals
A, we say that f is a total function.

73. For each of these partial functions, determine its domain,
codomain, domain of definition, and the set of values for
which it is undefined. Also, determine whether it is a total
function.

a) f : Z → R, f (n) = 1/n
b) f : Z → Z, f (n) = �n/2�
c) f : Z × Z → Q, f (m, n) = m/n
d) f : Z × Z → Z, f (m, n) = mn
e) f : Z × Z → Z, f (m, n) = m − n if m > n

74. a) Show that a partial function from A to B can be viewed
as a function f ∗ from A to B ∪ {u}, where u is not an
element of B and

f ∗(a) =
⎧⎨
⎩

f (a) if a belongs to the domain
of definition of f

u if f is undefined at a.

b) Using the construction in (a), find the function f ∗ cor-
responding to each partial function in Exercise 73.

75. a) Show that if a set S has cardinality m, where m is a
positive integer, then there is a one-to-one correspon-
dence between S and the set {1, 2, . . . , m}.

b) Show that if S and T are two sets each with m ele-
ments, where m is a positive integer, then there is a
one-to-one correspondence between S and T .

76.∗ Show that a set S is infinite if and only if there is a proper
subset A of S such that there is a one-to-one correspon-
dence between A and S.

77.∗ Show that the polynomial function f : Z+ × Z+ → Z+
with f (m, n) = (m + n − 2)(m + n − 1)/2 + m is one-
to-one and onto.

78.∗ Show that when you substitute (3n + 1)2 for each occur-
rence of n and (3m + 1)2 for each occurrence of m in the
right-hand side of the formula for the function f (m, n)
in Exercise 77, you obtain a one-to-one polynomial func-
tion Z × Z → Z. It is an open question whether there is
a one-to-one polynomial function Q × Q → Q.

2.4 Sequences and Summations

Introduction

Sequences are ordered lists of elements. Sequences are used in discrete mathematics in many
ways. They can be used to represent solutions to certain counting problems, as we will see in
Chapter 7. They are also an important data structure in computer science. This section contains
a review of the notation used to represent sequences and sums of terms of sequences.

When the elements of an infinite set can be listed, the set is called countable. We will
conclude this section with a discussion of both countable and uncountable sets. We will prove
that the set of rational numbers is countable, but the set of real numbers is not.
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Sequences

A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3, 5, 8 is
a sequence with five terms and 1, 3, 9, 27, 81 , . . . , 30, . . . is an infinite sequence.

DEFINITION 1 A sequence is a function from a subset of the set of integers (usually either the set {0, 1, 2, . . .}
or the set {1, 2, 3, . . .}) to a set S. We use the notation an to denote the image of the integer
n. We call an a term of the sequence.

We use the notation {an} to describe the sequence. (Note that an represents an individual
term of the sequence {an}. Also note that the notation {an} for a sequence conflicts with the
notation for a set. However, the context in which we use this notation will always make it clear
when we are dealing with sets and when we are dealing with sequences. Note that although we
have used the letter a in the notation for a sequence, other letters or expressions may be used
depending on the sequence under consideration. That is, the choice of the letter a is arbitrary.)

We describe sequences by listing the terms of the sequence in order of increasing subscripts.

EXAMPLE 1 Consider the sequence {an}, where

an = 1

n
.

The list of the terms of this sequence, beginning with a1, namely,

a1, a2, a3, a4, . . . ,

starts with

1,
1

2
,

1

3
,

1

4
, . . . . ▲

DEFINITION 2 A geometric progression is a sequence of the form

a, ar, ar2, . . . , arn, . . .

where the initial term a and the common ratio r are real numbers.

Remark: A geometric progression is a discrete analogue of the exponential function f (x) = ar x .

EXAMPLE 2 The sequences {bn} with bn = (−1)n , {cn} with cn = 2 · 5n , and {dn} with dn = 6 · (1/3)n are
geometric progressions with initial term and common ratio equal to 1 and −1; 2 and 5; and 6
and 1/3, respectively, if we start at n = 0. The list of terms b0, b1, b2, b3, b4, . . . begins with

1, −1, 1, −1, 1, . . . ;
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the list of terms c0, c1, c2, c3, c4, . . . begins with

2, 10, 50, 250, 1250, . . . ;

and the list of terms d0, d1, d2, d3, d4, . . . begins with

6, 2,
2

3
,

2

9
,

2

27
, . . . . ▲

DEFINITION 3 An arithmetic progression is a sequence of the form

a, a + d, a + 2d, . . . , a + nd, . . .

where the initial term a and the common difference d are real numbers.

Remark: An arithmetic progression is a discrete analogue of the linear function f (x) = dx + a.

EXAMPLE 3 The sequences {sn} with sn = −1 + 4n and {tn} with tn = 7 − 3n are both arithmetic progres-
sions with initial terms and common differences equal to −1 and 4, and 7 and −3, respectively,
if we start at n = 0. The list of terms s0, s1, s2, s3, . . . begins with

−1, 3, 7, 11, . . . ,

and the list of terms t0, t1, t2, t3, . . . begins with

7, 4, 1, −2, . . . . ▲

Sequences of the form a1, a2, . . . , an are often used in computer science. These finite
sequences are also called strings. This string is also denoted by a1a2 . . . an . (Recall that bit
strings, which are finite sequences of bits, were introduced in Section 1.1.) The length of the
string S is the number of terms in this string. The empty string, denoted by λ, is the string that
has no terms. The empty string has length zero.

EXAMPLE 4 The string abcd is a string of length four. ▲

Special Integer Sequences

A common problem in discrete mathematics is finding a formula or a general rule for constructing
the terms of a sequence. Sometimes only a few terms of a sequence solving a problem are
known; the goal is to identify the sequence. Even though the initial terms of a sequence do not
determine the entire sequence (after all, there are infinitely many different sequences that start
with any finite set of initial terms), knowing the first few terms may help you make an educated
conjecture about the identity of your sequence. Once you have made this conjecture, you can
try to verify that you have the correct sequence.

When trying to deduce a possible formula or rule for the terms of a sequence from the initial
terms, try to find a pattern in these terms. You might also see whether you can determine how
a term might have been produced from those preceding it. There are many questions you could
ask, but some of the more useful are:

� Are there runs of the same value? That is, does the same value occur many times in a
row?

� Are terms obtained from previous terms by adding the same amount or an amount that
depends on the position in the sequence?

� Are terms obtained from previous terms by multiplying by a particular amount?
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� Are terms obtained by combining previous terms in a certain way?

� Are there cycles among the terms?

EXAMPLE 5 Find formulae for the sequences with the following first five terms: (a) 1, 1/2, 1/4, 1/8, 1/16
(b) 1, 3, 5, 7, 9 (c) 1, −1, 1, −1, 1.

Solution: (a) We recognize that the denominators are powers of 2. The sequence with an = 1/2n ,
n = 0, 1, 2, . . . is a possible match. This proposed sequence is a geometric progression with
a = 1 and r = 1/2.

(b) We note that each term is obtained by adding 2 to the previous term. The se-
quence with an = 2n + 1, n = 0, 1, 2, . . . is a possible match. This proposed sequence is an
arithmetic progression with a = 1 and d = 2.

(c) The terms alternate between 1 and −1. The sequence with an = (−1)n , n = 0, 1,
2 . . . is a possible match. This proposed sequence is a geometric progression with a = 1 and
r = −1. ▲

Examples 6 and 7 illustrate how we can analyze sequences to find how the terms are
constructed.

EXAMPLE 6 How can we produce the terms of a sequence if the first 10 terms are 1, 2, 2, 3, 3, 3, 4,
4, 4, 4?

Solution: Note that the integer 1 appears once, the integer 2 appears twice, the integer 3 appears
three times, and the integer 4 appears four times. A reasonable rule for generating this sequence
is that the integer n appears exactly n times, so the next five terms of the sequence would all
be 5, the following six terms would all be 6, and so on. The sequence generated this way is a
possible match. ▲

EXAMPLE 7 How can we produce the terms of a sequence if the first 10 terms are 5, 11, 17, 23, 29, 35, 41,
47, 53, 59?

Solution: Note that each of the first 10 terms of this sequence after the first is obtained by adding
6 to the previous term. (We could see this by noticing that the difference between consecutive
terms is 6.) Consequently, the nth term could be produced by starting with 5 and adding 6 a
total of n − 1 times; that is, a reasonable guess is that the nth term is 5 + 6(n − 1) = 6n − 1.
(This is an arithmetic progression with a = 5 and d = 6.) ▲

Another useful technique for finding a rule for generating the terms of a sequence is to
compare the terms of a sequence of interest with the terms of a well-known integer sequence,
such as terms of an arithmetic progression, terms of a geometric progression, perfect squares,
perfect cubes, and so on. The first 10 terms of some sequences you may want to keep in mind
are displayed in Table 1.

EXAMPLE 8 Conjecture a simple formula for an if the first 10 terms of the sequence {an} are 1, 7, 25, 79,
241, 727, 2185, 6559, 19681, 59047.

Solution: To attack this problem, we begin by looking at the difference of consecutive terms,
but we do not see a pattern. When we form the ratio of consecutive terms to see whether each
term is a multiple of the previous term, we find that this ratio, although not a constant, is close
to 3. So it is reasonable to suspect that the terms of this sequence are generated by a formula
involving 3n. Comparing these terms with the corresponding terms of the sequence {3n}, we
notice that the nth term is 2 less than the corresponding power of 3. We see that an = 3n − 2
for 1 ≤ n ≤ 10 and conjecture that this formula holds for all n. ▲
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TABLE 1 Some Useful Sequences.

nth Term First 10 Terms

n2 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

n3 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, . . .

n4 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .

2n 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

3n 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .

n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, . . .

We will see throughout this text that integer sequences appear in a wide range of contexts
in discrete mathematics. Sequences we have or will encounter include the sequence of prime
numbers (Chapter 3), the number of ways to order n discrete objects (Chapter 5), the number
of moves required to solve the famous Tower of Hanoi puzzle with n disks (Chapter 7), and the
number of rabbits on an island after n months (Chapter 7).

Integer sequences appear in an amazingly wide range of subject areas besides discrete
mathematics, including biology, engineering, chemistry, and physics, as well as in puzzles.
An amazing database of over 100,000 different integer sequences can be found in the On-
Line Encyclopedia of Integer Sequences. This database was originated by Neil Sloane in the
1960s. The last printed version of this database was published in 1995 ([SIPI95]); the current
encyclopedia would occupy more than 150 volumes of the size of the 1995 book. New sequences
are added regularly to this database. There is also a program accessible via the Web that you
can use to find sequences from the encyclopedia that match initial terms you provide.

Summations

Next, we introduce summation notation. We begin by describing the notation used to express
the sum of the terms

am, am+1, . . . , an

from the sequence {an}. We use the notation

n∑
j= m

a j ,
∑n

j= m a j , or
∑

1≤ j≤n a j

to represent

am + am+1 + · · · + an.

Here, the variable j is called the index of summation, and the choice of the letter j as the
variable is arbitrary; that is, we could have used any other letter, such as i or k. Or, in notation,

n∑
j=m

a j =
n∑

i=m

ai =
n∑

k=m

ak .

Here, the index of summation runs through all integers starting with its lower limit m and
ending with its upper limit n. A large uppercase Greek letter sigma,

∑
, is used to denote

summation.
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The usual laws for arithmetic apply to summations. For example, when a and b are
real numbers, we have

∑n
j=1(ax j + by j ) = a

∑n
y=1 x j + b

∑n
j=1 y j , where x1, x2, . . . , xn and

y1, y2, . . . , yn are real numbers. (We do not present a formal proof of this identity here. Such a
proof can be constructed using mathematical induction, a proof method we introduce in Chap-
ter 4. The proof also uses the commutative and associative laws for addition and the distributive
law of multiplication over addition.)

We give some examples of summation notation.

EXAMPLE 9 Express the sum of the first 100 terms of the sequence {an}, where an = 1/n for n = 1, 2, 3, . . . .

Solution: The lower limit for the index of summation is 1, and the upper limit is 100. We write
this sum as

100∑
j=1

1

j
.

▲

EXAMPLE 10 What is the value of
∑5

j=1 j2?

Solution: We have

5∑
j=1

j2 = 12 + 22 + 32 + 42 + 52

= 1 + 4 + 9 + 16 + 25

= 55. ▲

EXAMPLE 11 What is the value of
∑8

k = 4(−1)k?

Solution: We have

8∑
k = 4

(−1)k = (−1)4 + (−1)5 + (−1)6 + (−1)7 + (−1)8

= 1 + (−1) + 1 + (−1) + 1

= 1. ▲
NEIL SLOANE (BORN 1939) Neil Sloane studied mathematics and electrical engineering at the Uni-
versity of Melbourne on a scholarship from the Australian state telephone company. He mastered many
telephone-related jobs, such as erecting telephone poles, in his summer work. After graduating, he de-
signed minimal-cost telephone networks in Australia. In 1962 he came to the United States and studied
electrical engineering at Cornell University. His Ph.D. thesis was on what are now called neural networks.
He took a job at Bell Labs in 1969, working in many areas, including network design, coding theory,
and sphere packing. He now works for AT&T Labs, moving there from Bell Labs when AT&T split up
in 1996. One of his favorite problems is the kissing problem (a name he coined), which asks how many
spheres can be arranged in n dimensions so that they all touch a central sphere of the same size. (In two

dimensions the answer is 6, because 6 pennies can be placed so that they touch a central penny. In three dimensions, 12 billiard
balls can be placed so that they touch a central billiard ball. Two billiard balls that just touch are said to “kiss,” giving rise to the
terminology “kissing problem” and “kissing number.”) Sloane, together with Andrew Odlyzko, showed that in 8 and 24 dimensions,
the optimal kissing numbers are, respectively, 240 and 196,560. The kissing number is known in dimensions 1, 2, 3, 8, and 24,
but not in any other dimensions. Sloane’s books include Sphere Packings, Lattices and Groups, 3d ed., with John Conway; The
Theory of Error-Correcting Codes with Jessie MacWilliams; The Encyclopedia of Integer Sequences with Simon Plouffe; and The
Rock-Climbing Guide to New Jersey Crags with Paul Nick. The last book demonstrates his interest in rock climbing; it includes
more than 50 climbing sites in New Jersey.
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Sometimes it is useful to shift the index of summation in a sum. This is often done when
two sums need to be added but their indices of summation do not match. When shifting an index
of summation, it is important to make the appropriate changes in the corresponding summand.
This is illustrated by Example 12.

EXAMPLE 12 Suppose we have the sum

5∑
j=1

j2

but want the index of summation to run between 0 and 4 rather than from 1 to 5. To do this,
we let k = j − 1. Then the new summation index runs from 0 to 4, and the term j2 becomes
(k + 1)2. Hence,

5∑
j=1

j2 =
4∑

k = 0

(k + 1)2.

It is easily checked that both sums are 1 + 4 + 9 + 16 + 25 = 55. ▲

Sums of terms of geometric progressions commonly arise (such sums are called geometric
series). Theorem 1 gives us a formula for the sum of terms of a geometric progression.

THEOREM 1 If a and r are real numbers and r �= 0, then

n∑
j=0

ar j =

⎧⎪⎨
⎪⎩

arn+1 − a

r − 1
if r �= 1

(n + 1)a if r = 1.

Proof: Let

S =
n∑

j=0

ar j .

To compute S, first multiply both sides of the equality by r and then manipulate the resulting
sum as follows:

r S = r
n∑

j=0

ar j
substituting summation formula for S

=
n∑

j=0

ar j+1
by the distributive property

=
n+1∑
k =1

ark
shifting the index of summation, with k = j + 1

=
(

n∑
k =0

ark

)
+ (arn+1 − a) removing k = n + 1 term and adding k = 0 term

= S + (arn+1 − a) substituting S for summation formula
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From these equalities, we see that

r S = S + (arn+1 − a).

Solving for S shows that if r �= 1, then

S = arn+1 − a

r − 1
.

If r = 1, then clearly the sum equals (n + 1)a.

EXAMPLE 13 Double summations arise in many contexts (as in the analysis of nested loops in computer
programs). An example of a double summation is

4∑
i=1

3∑
j=1

i j.

To evaluate the double sum, first expand the inner summation and then continue by computing
the outer summation:

4∑
i=1

3∑
j=1

i j =
4∑

i=1

(i + 2i + 3i)

=
4∑

i=1

6i

= 6 + 12 + 18 + 24 = 60.

▲

We can also use summation notation to add all values of a function, or terms of an indexed
set, where the index of summation runs over all values in a set. That is, we write∑

s ∈ S

f (s)

to represent the sum of the values f (s), for all members s of S.

EXAMPLE 14 What is the value of
∑

s ∈ {0,2,4} s?

Solution: Because
∑

s ∈ {0,2,4} s represents the sum of the values of s for all the members of the
set {0, 2, 4}, it follows that∑

s ∈ {0,2,4}
s = 0 + 2 + 4 = 6. ▲

Certain sums arise repeatedly throughout discrete mathematics. Having a collection of
formulae for such sums can be useful; Table 2 provides a small table of formulae for commonly
occurring sums.

We derived the first formula in this table in Theorem 1. The next three formulae give us
the sum of the first n positive integers, the sum of their squares, and the sum of their cubes.
These three formulae can be derived in many different ways (for example, see Exercises 21 and
22 at the end of this section). Also note that each of these formulae, once known, can easily be
proved using mathematical induction, the subject of Section 4.1. The last two formulae in the
table involve infinite series and will be discussed shortly.

Example 15 illustrates how the formulae in Table 2 can be useful.
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TABLE 2 Some Useful Summation
Formulae.

Sum Closed Form

n∑
k = 0

ark (r �= 0) arn+1 − a
r − 1

, r �= 1

n∑
k = 1

k n(n + 1)

2

n∑
k = 1

k2 n(n + 1)(2n + 1)

6

n∑
k = 1

k3 n2(n + 1)2

4

∞∑
k = 0

xk, |x | < 1
1

1 − x

∞∑
k = 1

, kxk−1, |x | < 1
1

(1 − x)2

EXAMPLE 15 Find
∑100

k = 50k2.

Solution: First note that because
∑100

k = 1k2 = ∑49
k = 1k2 + ∑100

k = 50k2, we have

100∑
k = 50

k2 =
100∑

k = 1

k2 −
49∑

k = 1

k2.

Using the formula
∑n

k = 1k2 = n(n + 1)(2n + 1)/6 from Table 2, we see that

100∑
k = 50

k2 = 100 · 101 · 201

6
− 49 · 50 · 99

6
= 338,350 − 40,425 = 297,925.

▲

SOME INFINITE SERIES Although most of the summations in this book are finite sums,
infinite series are important in some parts of discrete mathematics. Infinite series are usually
studied in a course in calculus and even the definition of these series requires the use of calculus,
but sometimes they arise in discrete mathematics, because discrete mathematics deals with infi-
nite collections of discrete elements. In particular, in our future studies in discrete mathematics,
we will find the closed forms for the infinite series in Examples 16 and 17 to be quite useful.

EXAMPLE 16 (Requires calculus) Let x be a real number with |x | < 1. Find
∑∞

n = 0 xn .

Solution: By Theorem 1 with a = 1 and r = x we see that
∑k

n = 0 xn = xk+1−1
x−1

. Because |x | < 1,

xk+1 approaches 0 as k approaches infinity. It follows that

∞∑
n = 0

xn = lim
k→∞

xk+1 − 1

x − 1
= −1

x − 1
= 1

1 − x
. ▲

We can produce new summation formulae by differentiating or integrating existing
formulae.
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EXAMPLE 17 (Requires calculus) Differentiating both sides of the equation

∞∑
k = 0

xk = 1

1 − x
,

from Example 16 we find that

∞∑
k = 1

kxk−1 = 1

(1 − x)2
.

(This differentiation is valid for |x | < 1 by a theorem about infinite series.) ▲

Cardinality

In Section 2.1 we defined the cardinality of a finite set to be the number of elements in the set.
That is, the cardinality of a finite set tells us when two finite sets are the same size, or when one
is bigger than the other. Can we extend this notion to an infinite set? Recall from Exercise 75 in
Section 2.3 that there is a one-to-one correspondence between any two finite sets with the same
number of elements. This observation lets us extend the concept of cardinality to all sets, both
finite and infinite, with Definition 4.

DEFINITION 4 The sets A and B have the same cardinality if and only if there is a one-to-one correspondence
from A to B.

We will now split infinite sets into two groups, those with the same cardinality as the set of
natural numbers and those with different cardinality.

DEFINITION 5 A set that is either finite or has the same cardinality as the set of positive integers is called
countable. A set that is not countable is called uncountable. When an infinite set S is countable,
we denote the cardinality of S by ℵ0 (where ℵ is aleph, the first letter of the Hebrew alphabet).
We write |S| = ℵ0 and say that S has cardinality “aleph null.”

We now give examples of countable and uncountable sets.

EXAMPLE 18 Show that the set of odd positive integers is a countable set.

Solution: To show that the set of odd positive integers is countable, we will exhibit a one-to-one
correspondence between this set and the set of positive integers. Consider the function

f (n) = 2n − 1

from Z+ to the set of odd positive integers. We show that f is a one-to-one correspondence by
showing that it is both one-to-one and onto. To see that it is one-to-one, suppose that f (n) =
f (m). Then 2n − 1 = 2m − 1, so n = m. To see that it is onto, suppose that t is an odd positive
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FIGURE 2 The Positive Rational Numbers Are
Countable.

integer. Then t is 1 less than an even integer 2k, where k is a natural number. Hence t = 2k − 1 =
f (k). We display this one-to-one correspondence in Figure 1. ▲

An infinite set is countable if and only if it is possible to list the elements of the set in a
sequence (indexed by the positive integers). The reason for this is that a one-to-one correspon-
dence f from the set of positive integers to a set S can be expressed in terms of a sequence
a1, a2, . . . , an, . . . , where a1 = f (1), a2 = f (2), . . . , an = f (n), . . . . For instance, the set of
odd integers can be listed in a sequence a1, a2, . . . , an, . . . , where an = 2n − 1.

We can show that the set of all integers is countable by listing its members.

EXAMPLE 19 Show that the set of all integers is countable.

Solution: We can list all integers in a sequence by starting with 0 and alternating between
positive and negative integers: 0, 1, −1, 2, −2, . . . . Alternately, we could find a one-to-one
correspondence between the set of positive integers and the set of all integers. We leave it to the
reader to show that the function f (n) = n/2 when n is even and f (n) = −(n − 1)/2 when n is
odd is such a function. Consequently, the set of all integers is countable. ▲

It is not surprising that the set of odd integers and the set of all integers are both countable
sets. Many people are amazed to learn that the set of rational numbers is countable, as Example
20 demonstrates.

EXAMPLE 20 Show that the set of positive rational numbers is countable.

Solution: It may seem surprising that the set of positive rational numbers is countable, but we
will show how we can list the positive rational numbers as a sequence r1, r2, . . . , rn, . . . . First,
note that every positive rational number is the quotient p/q of two positive integers. We can
arrange the positive rational numbers by listing those with denominator q = 1 in the first row,
those with denominator q = 2 in the second row, and so on, as displayed in Figure 2.

The key to listing the rational numbers in a sequence is to first list the positive ratio-
nal numbers p/q with p + q = 2, followed by those with p + q = 3, followed by those with
p + q = 4, and so on, following the path shown in Figure 2. Whenever we encounter a num-
ber p/q that is already listed, we do not list it again. For example, when we come to 2/2 = 1
we do not list it because we have already listed 1/1 = 1. The initial terms in the list of posi-
tive rational numbers we have constructed are 1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, 5, and so on.
These numbers are shown circled; the uncircled numbers in the list are those we leave out
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because they are already listed. Because all positive rational numbers are listed once, as the
reader can verify, we have shown that the set of positive rational numbers is countable. ▲

We have seen that the set of rational numbers is a countable set. Do we have a promising
candidate for an uncountable set? The first place we might look is the set of real numbers. In
Example 21 we use an important proof method, introduced in 1879 by Georg Cantor and known
as the Cantor diagonalization argument, to prove that the set of real numbers is not countable.
This proof method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 21 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set of real
numbers is countable and arrive at a contradiction. Then, the subset of all real numbers that
fall between 0 and 1 would also be countable (because any subset of a countable set is also
countable; see Exercise 36 at the end of the section). Under this assumption, the real numbers
between 0 and 1 can be listed in some order, say, r1, r2, r3, . . . . Let the decimal representation
of these real numbers be

r1 = 0.d11d12d13d14 . . .

r2 = 0.d21d22d23d24 . . .

r3 = 0.d31d32d33d34 . . .

r4 = 0.d41d42d43d44 . . .

...

where di j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (For example, if r1 = 0.23794102 . . . , we have d11 = 2,
d12 = 3, d13 = 7, and so on.) Then, form a new real number with decimal expansion r =
0.d1d2d3d4 . . . , where the decimal digits are determined by the following rule:

di =
{

4 if dii �= 4

5 if dii = 4.

(As an example, suppose that r1 = 0.23794102 . . . , r2 = 0.44590138 . . . , r3 =
0.09118764 . . . , r4 = 0.80553900 . . . , and so on. Then we have r = 0.d1d2d3d4 . . . =
0.4544 . . . , where d1 = 4 because d11 �= 4, d2 = 5 because d22 = 4, d3 = 4 because d33 �= 4,
d4 = 4 because d44 �= 4, and so on.)

Every real number has a unique decimal expansion (when the possibility that the expansion
has a tail end that consists entirely of the digit 9 is excluded). Then, the real number r is not
equal to any of r1, r2, . . . because the decimal expansion of r differs from the decimal expansion
of ri in the i th place to the right of the decimal point, for each i .

Because there is a real number r between 0 and 1 that is not in the list, the assumption that all
the real numbers between 0 and 1 could be listed must be false. Therefore, all the real numbers
between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1 is uncountable.
Any set with an uncountable subset is uncountable (see Exercise 37 at the end of this section).
Hence, the set of real numbers is uncountable. ▲

Exercises

1. Find these terms of the sequence {an}, where an = 2 ·
(−3)n + 5n .

a) a0 b) a1 c) a4 d) a5

2. What is the term a8 of the sequence {an} if an equals

a) 2n−1? b) 7?
c) 1 + (−1)n? d) −(−2)n?
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3. What are the terms a0, a1, a2, and a3 of the sequence {an},
where an equals

a) 2n + 1? b) (n + 1)n+1?
c) �n/2�? d) �n/2� + �n/2�?

4. What are the terms a0, a1, a2, and a3 of the sequence {an},
where an equals

a) (−2)n? b) 3?
c) 7 + 4n? d) 2n + (−2)n?

5. List the first 10 terms of each of these sequences.

a) the sequence that begins with 2 and in which
each successive term is 3 more than the preceding
term

b) the sequence that lists each positive integer three
times, in increasing order

c) the sequence that lists the odd positive integers in in-
creasing order, listing each odd integer twice

d) the sequence whose nth term is n! − 2n

e) the sequence that begins with 3, where each succeed-
ing term is twice the preceding term

f) the sequence whose first two terms are 1 and each
succeeding term is the sum of the two preceding terms
(This is the famous Fibonacci sequence, which we will
study later in this text.)

g) the sequence whose nth term is the number of bits
in the binary expansion of the number n (defined in
Section 3.6)

h) the sequence where the nth term is the number of let-
ters in the English word for the index n

6. List the first 10 terms of each of these sequences.

a) the sequence obtained by starting with 10 and obtain-
ing each term by subtracting 3 from the previous term

b) the sequence whose nth term is the sum of the first n
positive integers

c) the sequence whose nth term is 3n − 2n

d) the sequence whose nth term is �√n�
e) the sequence whose first two terms are 1 and 2 and

each succeeding term is the sum of the two previous
terms

f) the sequence whose nth term is the largest integer
whose binary expansion (defined in Section 3.6) has
n bits (Write your answer in decimal notation.)

g) the sequence whose terms are constructed sequentially
as follows: start with 1, then add 1, then multiply by
1, then add 2, then multiply by 2, and so on

h) the sequence whose nth term is the largest integer k
such that k! ≤ n

7. Find at least three different sequences beginning with the
terms 1, 2, 4 whose terms are generated by a simple for-
mula or rule.

8. Find at least three different sequences beginning with the
terms 3, 5, 7 whose terms are generated by a simple for-
mula or rule.

9. For each of these lists of integers, provide a simple formula
or rule that generates the terms of an integer sequence that
begins with the given list. Assuming that your formula

or rule is correct, determine the next three terms of the
sequence.

a) 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, . . .

b) 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, . . .

c) 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, . . .

d) 3, 6, 12, 24, 48, 96, 192, . . .

e) 15, 8, 1, −6, −13, −20, −27, . . .

f) 3, 5, 8, 12, 17, 23, 30, 38, 47, . . .

g) 2, 16, 54, 128, 250, 432, 686, . . .

h) 2, 3, 7, 25, 121, 721, 5041, 40321, . . .

10. For each of these lists of integers, provide a simple formula
or rule that generates the terms of an integer sequence that
begins with the given list. Assuming that your formula
or rule is correct, determine the next three terms of the
sequence.

a) 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, . . .

b) 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, . . .

c) 1, 10, 11, 100, 101, 110, 111, 1000, 1001,
1010, 1011, . . .

d) 1, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, . . .

e) 0, 2, 8, 26, 80,242,728,2186,6560,19682, . . .

f) 1, 3, 15, 105, 945, 10395, 135135, 2027025,
34459425, . . .

g) 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, . . .

h) 2, 4, 16, 256, 65536, 4294967296, . . .

11.∗∗ Show that if an denotes the nth positive integer that is not
a perfect square, then an = n + {√n}, where {x} denotes
the integer closest to the real number x .

12.∗ Let an be the nth term of the sequence 1, 2, 2, 3, 3, 3, 4,
4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, . . . , constructed by
including the integer k exactly k times. Show that an =
�√2n + 1

2
�.

13. What are the values of these sums?

a)
5∑

k = 1

(k + 1) b)
4∑

j = 0

(−2) j

c)
10∑

i = 1

3 d)
8∑

j = 0

(2 j+1 − 2 j )

14. What are the values of these sums, where S = {1, 3,

5, 7}?
a)

∑
j ∈ S

j b)
∑
j ∈ S

j2

c)
∑
j ∈ S

(1/j) d)
∑
j ∈ S

1

15. What is the value of each of these sums of terms of a
geometric progression?

a)
8∑

j = 0

3 · 2 j b)
8∑

j = 1

2 j

c)
8∑

j = 2

(−3) j d)
8∑

j = 0

2 · (−3) j

16. Find the value of each of these sums.

a)
8∑

j = 0

(1 + (−1) j ) b)
8∑

j = 0

(3 j − 2 j )
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c)
8∑

j = 0

(2 · 3 j + 3 · 2 j ) d)
8∑

j = 0

(2 j+1 − 2 j )

17. Compute each of these double sums.

a)
2∑

i = 1

3∑
j = 1

(i + j) b)
2∑

i = 0

3∑
j = 0

(2i + 3 j)

c)
3∑

i = 1

2∑
j = 0

i d)
2∑

i = 0

3∑
j = 1

i j

18. Compute each of these double sums.

a)
3∑

i = 1

2∑
j = 1

(i − j) b)
3∑

i = 0

2∑
j = 0

(3i + 2 j)

c)
3∑

i = 1

2∑
j = 0

j d)
2∑

i = 0

3∑
j = 0

i2 j3

19. Show that
∑n

j = 1(a j − a j−1) = an − a0, where
a0, a1, . . . , an is a sequence of real numbers. This type of
sum is called telescoping.

20. Use the identity 1/(k(k + 1)) = 1/k − 1/(k + 1) and Ex-
ercise 19 to compute

∑n
k = 1 1/(k(k + 1)).

21. Sum both sides of the identity k2 − (k − 1)2 = 2k − 1
from k = 1 to k = n and use Exercise 19 to find

a) a formula for
∑n

k = 1(2k − 1) (the sum of the first n
odd natural numbers).

b) a formula for
∑n

k = 1 k.

22.∗ Use the technique given in Exercise 19, together with the
result of Exercise 21b, to derive the formula for

∑n
k = 1 k2

given in Table 2. (Hint: Take ak = k3 in the telescoping
sum in Exercise 19.)

23. Find
∑200

k = 100k. (Use Table 2.)

24. Find
∑200

k = 99k3. (Use Table 2.)

25.∗ Find a formula for
∑m

k = 0�
√

k�, when m is a positive
integer.

26.∗ Find a formula for
∑m

k = 0 � 3
√

k�, when m is a positive
integer.

There is also a special notation for products. The product of
am, am+1, . . . , an is represented by

n∏
j = m

a j .

27. What are the values of the following products?

a)
∏10

i = 0 i b)
∏8

i = 5 i
c)

∏100
i = 1(−1)i d)

∏10
i = 1 2

Recall that the value of the factorial function at a posi-
tive integer n, denoted by n!, is the product of the posi-
tive integers from 1 to n, inclusive. Also, we specify that
0! = 1.

28. Express n! using product notation.

29. Find
∑4

j = 0 j!.

30. Find
∏4

j = 0 j!.

31. Determine whether each of these sets is countable or un-
countable. For those that are countable, exhibit a one-to-
one correspondence between the set of natural numbers
and that set.

a) the negative integers
b) the even integers
c) the real numbers between 0 and 1

2
d) integers that are multiples of 7

32. Determine whether each of these sets is countable or un-
countable. For those that are countable, exhibit a one-to-
one correspondence between the set of natural numbers
and that set.

a) the integers greater than 10
b) the odd negative integers
c) the real numbers between 0 and 2
d) integers that are multiples of 10

33. Determine whether each of these sets is countable or un-
countable. For those that are countable, exhibit a one-to-
one correspondence between the set of natural numbers
and that set.

a) all bit strings not containing the bit 0
b) all positive rational numbers that cannot be written

with denominators less than 4
c) the real numbers not containing 0 in their decimal

representation
d) the real numbers containing only a finite number of 1s

in their decimal representation

34. Determine whether each of these sets is countable or un-
countable. For those that are countable, exhibit a one-to-
one correspondence between the set of natural numbers
and that set.

a) integers not divisible by 3
b) integers divisible by 5 but not by 7
c) the real numbers with decimal representations con-

sisting of all 1s
d) the real numbers with decimal representations of all

1s or 9s

35. If A is an uncountable set and B is a countable set, must
A − B be uncountable?

36. Show that a subset of a countable set is also countable.

37. Show that if A and B are sets, A is uncountable, and
A ⊆ B, then B is uncountable.

38. Show that if A and B are sets with the same cardinality,
then the power set of A and the power set of B have the
same cardinality.

39. Show that if A and B are sets with the same cardinal-
ity and C and D are sets with the same cardinality, then
A × C and B × D have the same cardinality.

40. Show that the union of two countable sets is countable.

41.∗∗ Show that the union of a countable number of countable
sets is countable.
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42. Show that the set Z+ × Z+ is countable.

43.∗ Show that the set of all finite bit strings is countable.

44.∗ Show that the set of real numbers that are solutions of
quadratic equations ax2 + bx + c = 0, where a, b, and c
are integers, is countable.

45.∗ Show that the set of all computer programs in a partic-
ular programming language is countable. [Hint: A com-
puter program written in a programming language can be
thought of as a string of symbols from a finite alphabet.]

46.∗ Show that the set of functions from the positive inte-
gers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable.
[Hint: First set up a one-to-one correspondence between

the set of real numbers between 0 and 1 and a subset of
these functions. Do this by associating to the real number
0.d1d2 . . . dn . . . the function f with f (n) = dn .]

47.∗ We say that a function is computable if there is a com-
puter program that finds the values of this function. Use
Exercises 45 and 46 to show that there are functions that
are not computable.

48.∗ Show that if S is a set, then there does not exist an onto
function f from S to P(S), the power set of S. [Hint:
Suppose such a function f existed. Let T = {s ∈ S | s �∈
f (s)} and show that no element s can exist for which
f (s) = T .]

Key Terms and Results

TERMS

set: a collection of distinct objects

axiom: a basic assumption of a theory

paradox: a logical inconsistency

element, member of a set: an object in a set

∅ (empty set, null set): the set with no members

universal set: the set containing all objects under consideration

Venn diagram: a graphical representation of a set or sets

S = T (set equality): S and T have the same elements

S ⊆ T (S is a subset of T ): every element of S is also an
element of T

S ⊂ T (S is a proper subset of T ): S is a subset of T and
S �= T

finite set: a set with n elements, where n is a nonnegative
integer

infinite set: a set that is not finite

|S| (the cardinality of S): the number of elements in S
P(S) (the power set of S): the set of all subsets of S
A ∪ B (the union of A and B): the set containing those ele-

ments that are in at least one of A and B
A ∩ B (the intersection of A and B): the set containing those

elements that are in both A and B.
A − B (the difference of A and B): the set containing those

elements that are in A but not in B
A (the complement of A): the set of elements in the universal

set that are not in A
A ⊕ B (the symmetric difference of A and B): the set con-

taining those elements in exactly one of A and B
membership table: a table displaying the membership of ele-

ments in sets

function from A to B : an assignment of exactly one element
of B to each element of A

domain of f : the set A, where f is a function from A to B
codomain of f : the set B, where f is a function from A to B
b is the image of a under f : b = f (a)
a is a pre-image of b under f : f (a) = b

range of f : the set of images of f
onto function, surjection: a function from A to B such that

every element of B is the image of some element in A
one-to-one function, injection: a function such that the im-

ages of elements in its domain are all different
one-to-one correspondence, bijection: a function that is both

one-to-one and onto
inverse of f : the function that reverses the correspondence

given by f (when f is a bijection)
f ◦ g (composition of f and g): the function that assigns

f (g(x)) to x

x� (floor function): the largest integer not exceeding x
�x
 (ceiling function): the smallest integer greater than or

equal to x
sequence: a function with domain that is a subset of the set of

integers
geometric progression: a sequence of the form a, ar , ar2, . . . ,

where a and r are real numbers
arithmetic progression: a sequence of the form a, a + d ,

a + 2d, . . . , where a and d are real numbers
string: a finite sequence
empty string: a string of length zero∑n

i = 1 ai : the sum a1 + a2 + · · · + an∏n
i = 1 ai : the product a1a2 · · · an

countable set: a set that either is finite or can be placed in
one-to-one correspondence with the set of positive integers

uncountable set: a set that is not countable
Cantor diagonalization argument: a proof technique that

can be used to show that the set of real numbers is
uncountable

RESULTS

The set identities given in Table 1 in Section 2.2
The summation formulae in Table 2 in Section 2.4
The set of rational numbers is countable.
The set of real numbers is uncountable.
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Review Questions

1. Explain what it means for one set to be a subset of another
set. How do you prove that one set is a subset of another
set?

2. What is the empty set? Show that the empty set is a subset
of every set.

3. a) Define |S|, the cardinality of the set S.
b) Give a formula for |A ∪ B|, where A and B are sets.

4. a) Define the power set of a set S.
b) When is the empty set in the power set of a set S?
c) How many elements does the power set of a set S with

n elements have?

5. a) Define the union, intersection, difference, and sym-
metric difference of two sets.

b) What are the union, intersection, difference, and sym-
metric difference of the set of positive integers and the
set of odd integers?

6. a) Explain what it means for two sets to be equal.
b) Describe as many of the ways as you can to show that

two sets are equal.
c) Show in at least two different ways that the sets

A − (B ∩ C) and (A − B) ∪ (A − C) are equal.

7. Explain the relationship between logical equivalences and
set identities.

8. a) Define the domain, codomain, and the range of a
function.

b) Let f (n) be the function from the set of integers to
the set of integers such that f (n) = n2 + 1. What are
the domain, codomain, and range of this function?

9. a) Define what it means for a function from the set of
positive integers to the set of positive integers to be
one-to-one.

b) Define what it means for a function from the set of
positive integers to the set of positive integers to be
onto.

c) Give an example of a function from the set of posi-
tive integers to the set of positive integers that is both
one-to-one and onto.

d) Give an example of a function from the set of positive
integers to the set of positive integers that is one-to-one
but not onto.

e) Give an example of a function from the set of posi-
tive integers to the set of positive integers that is not
one-to-one but is onto.

f) Give an example of a function from the set of positive
integers to the set of positive integers that is neither
one-to-one nor onto.

10. a) Define the inverse of a function.

b) When does a function have an inverse?

c) Does the function f (n) = 10 − n from the set of inte-
gers to the set of integers have an inverse? If so, what
is it?

11. a) Define the floor and ceiling functions from the set of
real numbers to the set of integers.

b) For which real numbers x is it true that �x� = �x�?

12. Conjecture a formula for the terms of the sequence that
begins 8, 14, 32, 86, 248 and find the next three terms of
your sequence.

13. What is the sum of the terms of the geometric progression
a + ar + · · · + arn when r �= 1?

14. Show that the set of odd integers is countable.

15. Give an example of an uncountable set.

Supplementary Exercises

1. Let A be the set of English words that contain the letter
x , and let B be the set of English words that contain the
letter q . Express each of these sets as a combination of A
and B.

a) The set of English words that do not contain the letter
x .

b) The set of English words that contain both an x and a
q.

c) The set of English words that contain an x but not a q.
d) The set of English words that do not contain either an

x or a q .
e) The set of English words that contain an x or a q, but

not both.

2. Show that if A is a subset of B, then the power set of A is
a subset of the power set of B.

3. Suppose that A and B are sets such that the power set of
A is a subset of the power set of B. Does it follow that A
is a subset of B?

4. Let E denote the set of even integers and O denote the
set of odd integers. As usual, let Z denote the set of all
integers. Determine each of these sets.

a) E ∪ O b) E ∩ O c) Z − E d) Z − O

5. Show that if A and B are sets, then A − (A − B) =
A ∩ B.

6. Let A and B be sets. Show that A ⊆ B if and only if
A ∩ B = A.

7. Let A, B, and C be sets. Show that (A − B) − C is not
necessarily equal to A − (B − C).

8. Suppose that A, B, and C are sets. Prove or disprove that
(A − B) − C = (A − C) − B.

9. Suppose that A, B, C , and D are sets. Prove or disprove
that (A − B) − (C − D) = (A − C) − (B − D).

10. Show that if A and B are finite sets, then |A ∩ B| ≤
|A ∪ B|. Determine when this relationship is an equality.
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11. Let A and B be sets in a finite universal set U . List the
following in order of increasing size.

a) |A|, |A ∪ B|, |A ∩ B|, |U |, |∅|
b) |A − B|, |A ⊕ B|, |A| + |B|, |A ∪ B|, |∅|

12. Let A and B be subsets of the finite universal set U . Show
that |A ∩ B| = |U | − |A| − |B| + |A ∩ B|.

13. Let f and g be functions from {1, 2, 3, 4} to {a, b, c, d}
and from {a, b, c, d} to {1, 2, 3, 4}, respectively, such
that f (1) = d, f (2) = c, f (3) = a, and f (4) = b, and
g(a) = 2, g(b) = 1, g(c) = 3, and g(d) = 2.

a) Is f one-to-one? Is g one-to-one?
b) Is f onto? Is g onto?
c) Does either f or g have an inverse? If so, find this

inverse.

14. Let f be a one-to-one function from the set A to the set
B. Let S and T be subsets of A. Show that f (S ∩ T ) =
f (S) ∩ f (T ).

15. Give an example to show that the equality in Exercise 14
may not hold if f is not one-to-one.

Suppose that f is a function from A to B. We define the func-
tion S f from P(A) to P(B) by the rule S f (X ) = f (X ) for
each subset X of A. Similarly, we define the function S f −1

from P(B) to P(A) by the rule S f −1 (Y ) = f −1(Y ) for each
subset Y of B. Here, we are using Definition 4, and the defi-
nition of the inverse image of a set found in the preamble to
Exercise 38, both in Section 2.3.

16.∗ a) Prove that if f is a one-to-one function from A to B,
then S f is a one-to-one function from P(A) to P(B).

b) Prove that if f is an onto function from A to B, then
S f is an onto function from P(A) to P(B).

c) Prove that if f is an onto function from A to B, then
S f −1 is a one-to-one function from P(B) to P(A).

d) Prove that if f is a one-to-one function from A to B,
then S f −1 is an onto function from P(B) to P(A).

e) Use parts (a) through (d) to conclude that if f is a
one-to-one correspondence from A to B, then S f is
a one-to-one correspondence from P(A) to P(B) and
S f −1 is a one-to-one correspondence from P(B) to
P(A).

17. Prove that if f and g are functions from A to B and
S f = Sg (using the definition in the preamble to Exercise
16), then f (x) = g(x) for all x ∈ A.

18. Show that if n is an integer, then n = �n/2� + �n/2�.

19. For which real numbers x and y is it true that
�x + y� = �x� + �y�?

20. For which real numbers x and y is it true that
�x + y� = �x� + �y�?

21. For which real numbers x and y is it true that
�x + y� = �x� + �y�?

22. Prove that �n/2��n/2� = �n2/4� for all integers n.

23. Prove that if m is an integer, then �x� + �m − x� =
m − 1, unless x is an integer, in which case, it equals m.

24. Prove that if x is a real number, then ��x/2�/2� = �x/4�.

25. Prove that if n is an odd integer, then �n2/4� =
(n2 + 3)/4.

26. Prove that if m and n are positive integers and x is a real
number, then

⌊�x� + n

m

⌋
=

⌊
x + n

m

⌋
.

27.∗ Prove that if m is a positive integer and x is a real number,
then

�mx� = �x� +
⌊

x + 1

m

⌋
+

⌊
x + 2

m

⌋
+ · · ·

+
⌊

x + m − 1

m

⌋
.

28.∗ We define the Ulam numbers by setting u1 = 1 and
u2 = 2. Furthermore, after determining whether the in-
tegers less than n are Ulam numbers, we set n equal to
the next Ulam number if it can be written uniquely as the
sum of two different Ulam numbers. Note that u3 = 3,
u4 = 4, u5 = 6, and u6 = 8.

a) Find the first 20 Ulam numbers.
b) Prove that there are infinitely many Ulam numbers.

29. Determine the value of
∏100

k=1
k+1

k . (The notation used here
for products is defined in the preamble to Exercise 27 in
Section 2.4.)

30.∗ Determine a rule for generating the terms of the sequence
that begins 1, 3, 4, 8, 15, 27, 50, 92, . . . , and find the next
four terms of the sequence.

31.∗ Determine a rule for generating the terms of the se-
quence that begins 2, 3, 3, 5, 10, 13, 39, 43, 172, 177,

885, 891, . . . , and find the next four terms of the
sequence.

32.∗ Prove that if A and B are countable sets, then A × B is
also a countable set.

Computer Projects

Write programs with the specified input and output.

1. Given subsets A and B of a set with n elements,
use bit strings to find A, A ∪ B, A ∩ B, A − B, and
A ⊕ B.

2. Given multisets A and B from the same universal set, find
A ∪ B, A ∩ B, A − B, and A + B (see preamble to Exer-
cise 59 of Section 2.2).
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3. Given fuzzy sets A and B, find A, A ∪ B, and A ∩ B (see
preamble to Exercise 61 of Section 2.2).

4. Given a function f from {1, 2, . . . , n} to the set of integers,
determine whether f is one-to-one.

5. Given a function f from {1, 2, . . . , n} to itself, determine
whether f is onto.

6. Given a bijection f from the set {1, 2, . . . , n} to itself,
find f −1.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Given two finite sets, list all elements in the Cartesian prod-
uct of these two sets.

2. Given a finite set, list all elements of its power set.

3. Calculate the number of one-to-one functions from a set S
to a set T , where S and T are finite sets of various sizes. Can
you determine a formula for the number of such functions?
(We will find such a formula in Chapter 5.)

4. Calculate the number of onto functions from a set S to a
set T , where S and T are finite sets of various sizes. Can

you determine a formula for the number of such functions?
(We will find such a formula in Chapter 7.)

5.∗ Develop a collection of different rules for generating the
terms of a sequence and a program for randomly select-
ing one of these rules and the particular sequence gen-
erated using these rules. Make this part of an interactive
program that prompts for the next term of the sequence
and determine whether the response is the intended next
term.

Writing Projects

Respond to these with essays using outside sources.

1. Discuss how an axiomatic set theory can be developed
to avoid Russell’s paradox. (See Exercise 38 of Sec-
tion 2.1.)

2. Research where the concept of a function first arose, and
describe how this concept was first used.

3. Explain the different ways in which the Encyclopedia of
Integer Sequences has been found useful. Also, describe
a few of the more unusual sequences in this encyclopedia
and how they arise.

4. Define the recently invented EKG sequence and describe
some of its properties and open questions about it.

5. Look up the definition of a transcendental number. Explain
how to show that such numbers exist and how such num-
bers can be constructed. Which famous numbers can be
shown to be transcendental and for which famous numbers
is it still unknown whether they are transcendental?

6. Discuss infinite cardinal numbers and the continuum
hypothesis.


