
Programming and Software

In the previous chapter, we used a net force to develop a mathematical model to predict the
fall velocity of a parachutist. This model took the form of a differential equation,

dv

dt
= g − c

m
v

We also learned that a solution to this equation could be obtained by a simple numerical
approach called Euler’s method,

vi+1 = vi + dvi

dt
�t

Given an initial condition, this equation can be implemented repeatedly to compute the
velocity as a function of time. However, to obtain good accuracy, many small steps must be
taken. This would be extremely laborious and time-consuming to implement by hand.
However, with the aid of the computer, such calculations can be performed easily.

So our next task is to figure out how to do this. The present chapter will introduce you
to how the computer is used as a tool to obtain such solutions.

2.1 PACKAGES AND PROGRAMMING

Today, there are two types of software users. On one hand, there are those who take what
they are given. That is, they limit themselves to the capabilities found in the software’s
standard mode of operation. For example, it is a straightforward proposition to solve a sys-
tem of linear equations or to generate of plot of x-y values with either Excel or MATLAB
software. Because this usually involves a minimum of effort, most users tend to adopt this
“vanilla” mode of operation. In addition, since the designers of these packages anticipate
most typical user needs, many meaningful problems can be solved in this way.

But what happens when problems arise that are beyond the standard capability of the
tool? Unfortunately, throwing up your hands and saying, “Sorry boss, no can do!” is not
acceptable in most engineering circles. In such cases, you have two alternatives.

First, you can look for a different package and see if it is capable of solving the prob-
lem. That is one of the reasons we have chosen to cover both Excel and MATLAB in this
book. As you will see, neither one is all encompassing and each has different strengths.
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By being conversant with both, you will greatly increase the range of problems you can
address.

Second, you can grow and become a “power user” by learning to write Excel VBA1

macros or MATLAB M-files. And what are these? They are nothing more than computer
programs that allow you to extend the capabilities of these tools. Because engineers should
never be content to be tool limited, they will do whatever is necessary to solve their prob-
lems. A powerful way to do this is to learn to write programs in the Excel and MATLAB en-
vironments. Furthermore, the programming skills required for macros and M-files are the
same as those needed to effectively develop programs in languages like Fortran 90 or C.

The major goal of the present chapter is to show you how this can be done. However,
we do assume that you have been exposed to the rudiments of computer programming.
Therefore, our emphasis here is on facets of programming that directly affect its use in
engineering problem solving.

2.1.1 Computer Programs

Computer programs are merely a set of instructions that direct the computer to perform a
certain task. Since many individuals write programs for a broad range of applications, most
high-level computer languages, like Fortran 90 and C, have rich capabilities. Although
some engineers might need to tap the full range of these capabilities, most merely require
the ability to perform engineering-oriented numerical calculations.

Looked at from this perspective, we can narrow down the complexity to a few pro-
gramming topics. These are:

Simple information representation (constants, variables, and type declarations).
Advanced information representation (data structure, arrays, and records).
Mathematical formulas (assignment, priority rules, and intrinsic functions).
Input/output.
Logical representation (sequence, selection, and repetition).
Modular programming (functions and subroutines).

Because we assume that you have had some prior exposure to programming, we will
not spend time on the first four of these areas. At best, we offer them as a checklist that cov-
ers what you will need to know to implement the programs that follow.

However, we will devote some time to the last two topics. We emphasize logical rep-
resentation because it is the single area that most influences an algorithm’s coherence and
understandability. We include modular programming because it also contributes greatly to
a program’s organization. In addition, modules provide a means to archive useful algo-
rithms in a convenient format for subsequent applications.

2.2 STRUCTURED PROGRAMMING

In the early days of computer, programmers usually did not pay much attention to whether
their programs were clear and easy to understand. Today, it is recognized that there are
many benefits to writing organized, well-structured code. Aside from the obvious benefit
of making software much easier to share, it also helps generate much more efficient
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1VBA is the acronym for Visual Basic for Applications.
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program development. That is, well-structured algorithms are invariably easier to debug
and test, resulting in programs that take a shorter time to develop, test, and update.

Computer scientists have systematically studied the factors and procedures needed to
develop high-quality software of this kind. In essence, structured programming is a set of
rules that prescribe good style habits for the programmer. Although structured program-
ming is flexible enough to allow considerable creativity and personal expression, its rules
impose enough constraints to render the resulting codes far superior to unstructured ver-
sions. In particular, the finished product is more elegant and easier to understand.

A key idea behind structured programming is that any numerical algorithm can be
composed using the three fundamental control structures: sequence, selection, and repeti-
tion. By limiting ourselves to these structures, the resulting computer code will be clearer
and easier to follow.

In the following paragraphs, we will describe each of these structures. To keep this de-
scription generic, we will employ flowcharts and pseudocode. A flowchart is a visual or
graphical representation of an algorithm. The flowchart employs a series of blocks and ar-
rows, each of which represents a particular operation or step in the algorithm (Fig. 2.1).
The arrows represent the sequence in which the operations are implemented.

Not everyone involved with computer programming agrees that flowcharting is a pro-
ductive endeavor. In fact, some experienced programmers do not advocate flowcharts.
However, we feel that there are three good reasons for studying them. First, they are still
used for expressing and communicating algorithms. Second, even if they are not employed
routinely, there will be times when they will prove useful in planning, unraveling, or com-
municating the logic of your own or someone else’s program. Finally, and most important
for our purposes, they are excellent pedagogical tools. From a teaching perspective, they

2.2 STRUCTURED PROGRAMMING 27

SYMBOL NAME

Terminal

Flowlines

Process

Input/output

Decision

Junction

Off-page
connector

Count-controlled
loop

FUNCTION

Represents the beginning or end of a program.

Represents the flow of logic. The humps on the horizontal arrow indicate that
it passes over and does not connect with the vertical flowlines.

Represents calculations or data manipulations.

Represents inputs or outputs of data and information.

Represents a comparison, question, or decision that determines alternative
paths to be followed.

Represents the confluence of flowlines.

Represents a break that is continued on another page.

Used for loops which repeat a prespecified number of iterations.

FIGURE 2.1
Symbols used in flowcharts.
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are ideal vehicles for visualizing some of the fundamental control structures employed in
computer programming.

An alternative approach to express an algorithm that bridges the gap between flow-
charts and computer code is called pseudocode. This technique uses code-like statements
in place of the graphical symbols of the flowchart. We have adopted some style conven-
tions for the pseudocode in this book. Keywords such as IF, DO, INPUT, etc., are capital-
ized, whereas the conditions, processing steps, and tasks are in lowercase. Additionally, the
processing steps are indented. Thus the keywords form a “sandwich” around the steps to
visually define the extent of each control structure.

One advantage of pseudocode is that it is easier to develop a program with it than
with a flowchart. The pseudocode is also easier to modify and share with others. However,
because of their graphic form, flowcharts sometimes are better suited for visualizing com-
plex algorithms. In the present text, we will use flowcharts for pedagogical purposes.
Pseudocode will be our principal vehicle for communicating algorithms related to numeri-
cal methods.

2.2.1 Logical Representation

Sequence. The sequence structure expresses the trivial idea that unless you direct it oth-
erwise, the computer code is to be implemented one instruction at a time. As in Fig. 2.2, the
structure can be expressed generically as a flowchart or as pseudocode.

Selection. In contrast to the step-by-step sequence structure, selection provides a
means to split the program’s flow into branches based on the outcome of a logical condi-
tion. Figure 2.3 shows the two most fundamental ways for doing this.

The single-alternative decision, or IF/THEN structure (Fig. 2.3a), allows for a detour
in the program flow if a logical condition is true. If it is false, nothing happens and the pro-
gram moves directly to the next statement following the ENDIF. The double-alternative de-
cision, or IF/THEN/ELSE structure (Fig. 2.3b), behaves in the same manner for a true con-
dition. However, if the condition is false, the program implements the code between the
ELSE and the ENDIF.
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Instruction1

Instruction2

Instruction3

Instruction4

Instruction1
Instruction2
Instruction3
Instruction4

(a) Flowchart (b) Pseudocode

FIGURE 2.2
(a) Flowchart and
(b) pseudocode for the
sequence structure.
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Although the IF/THEN and the IF/THEN/ELSE constructs are sufficient to construct
any numerical algorithm, two other variants are commonly used. Suppose that the ELSE
clause of an IF/THEN/ELSE contains another IF/THEN. For such cases, the ELSE and the
IF can be combined in the IF/THEN/ELSEIF structure shown in Fig. 2.4a.

Notice how in Fig. 2.4a there is a chain or “cascade” of decisions. The first one is the
IF statement, and each successive decision is an ELSEIF statement. Going down the chain,
the first condition encountered that tests true will cause a branch to its corresponding code
block followed by an exit of the structure. At the end of the chain of conditions, if all the
conditions have tested false, an optional ELSE block can be included.

The CASE structure is a variant on this type of decision making (Fig. 2.4b). Rather
than testing individual conditions, the branching is based on the value of a single test
expression. Depending on its value, different blocks of code will be implemented. In
addition, an optional block can be implemented if the expression takes on none of the
prescribed values (CASE ELSE).

Repetition. Repetition provides a means to implement instructions repeatedly. The
resulting constructs, called loops, come in two “flavors” distinguished by how they are
terminated.
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(a) Single-alternative structure (IF/THEN)

(b) Double-alternative structure (IF/THEN/ELSE)

Flowchart Pseudocode

IF condition THEN
True block

ENDIF

True
Condition

?

True Block

IF condition THEN
True block

ELSE
False block

ENDIF

TrueFalse
Condition

?

True BlockFalse BlockFIGURE 2.3
Flowchart and pseudocode for
simple selection constructs.
(a) Single-alternative selection
(IF/THEN) and (b) double-
alternative selection
(IF/THEN/ELSE).
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The first and most fundamental type is called a decision loop because it terminates
based on the result of a logical condition. Figure 2.5 shows the most generic type of deci-
sion loop, the DOEXIT construct, also called a break loop. This structure repeats until a
logical condition is true.

It is not necessary to have two blocks in this structure. If the first block is not included,
the structure is sometimes called a pretest loop because the logical test is performed before
anything occurs. Alternatively, if the second block is omitted, it is called a posttest loop.
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(a) Multialternative structure (IF/THEN/ELSEIF)

(b) CASE structure (SELECT or SWITCH)

Flowchart Pseudocode

SELECT CASE Test Expression
CASE Value1

Block1
CASE Value2

Block2
CASE Value3

 Block3
CASE ELSE

 Block4
END SELECT

Value1 Value2 Value3 Else

Test
expression

Block1 Block2 Block3 Block4

IF condition1 THEN
Block1

ELSEIF condition2
Block2

ELSEIF condition3
Block3

ELSE
Block4

ENDIF

TrueFalse

True

True

Condition1
?

False

Condition3
?

False

Condition2
?

Block1

Block2

Block3Block4

FIGURE 2.4
Flowchart and pseudocode for supplementary selection or branching constructs. (a) Multiple-
alternative selection (IF/THEN/ELSEIF) and (b) CASE construct.
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Because both blocks are included, the general case in Fig. 2.5 is sometimes called a midtest
loop.

It should be noted that the DOEXIT loop was introduced in Fortran 90 in an effort to
simplify decision loops. This control construct is a standard part of the Excel VBA macro
language but is not standard in C or MATLAB, which use the so-called WHILE structure.
Because we believe that the DOEXIT is superior, we have adopted it as our decision loop
structure throughout this book. In order to ensure that our algorithms are directly imple-
mented in both MATLAB and Excel, we will show how the break loop can be simulated
with the WHILE structure later in this chapter (see Sec. 2.5).

The break loop in Fig. 2.5 is called a logical loop because it terminates on a logical
condition. In contrast, a count-controlled or DOFOR loop (Fig. 2.6) performs a specified
number of repetitions, or iterations.

The count-controlled loop works as follows. The index (represented as i in Fig. 2.6) is
a variable that is set at an initial value of start. The program then tests whether the index is
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False

True
Condition

?

DO
Block1
IF condition EXIT
Block2

ENDDO

Flowchart Pseudocode

Block1

Block2

i = startTrue

False

i > finish
? i = i + step

DOFOR i = start, finish, step
Block

ENDDO

Flowchart Pseudocode

BlockFIGURE 2.6
The count-controlled or DOFOR
construct.

FIGURE 2.5
The DOEXIT or break loop.
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2A negative step can be used. In such cases, the loop terminates when the index is less than the final value.

less than or equal to the final value, finish. If so, it executes the body of the loop, and then
cycles back to the DO statement. Every time the ENDDO statement is encountered, the
index is automatically increased by the step. Thus the index acts as a counter. Then, when
the index is greater than the final value ( finish), the computer automatically exits the loop
and transfers control to the line following the ENDDO statement. Note that for nearly all
computer languages, including those of Excel and MATLAB, if the step is omitted, the
computer assumes it is equal to 1.2

The numerical algorithms outlined in the following pages will be developed exclu-
sively from the structures outlined in Figs. 2.2 through 2.6. The following example
illustrates the basic approach by developing an algorithm to determine the roots for the
quadratic formula.

EXAMPLE 2.1 Algorithm for Roots of a Quadratic

Problem Statement. The roots of a quadratic equation

ax2 + bx + c = 0

can be determined with the quadratic formula,

x1

x2
= −b ±

√
|b2 − 4ac|
2a

(2.1)

Develop an algorithm that does the following:

Step 1: Prompts the user for the coefficients, a, b, and c.
Step 2: Implements the quadratic formula, guarding against all eventualities (for example, avoiding

division by zero and allowing for complex roots).
Step 3: Displays the solution, that is, the values for x.
Step 4: Allows the user the option to return to step 1 and repeat the process.

Solution. We will use a top-down approach to develop our algorithm. That is, we will
successively refine the algorithm rather than trying to work out all the details the first time
around.

To do this, let us assume for the present that the quadratic formula is foolproof
regardless of the values of the coefficients (obviously not true, but good enough for now).
A structured algorithm to implement the scheme is

DO
INPUT a, b, c
r1 �(�b �SQRT(b2 � 4ac))�(2a)
r2 �(�b �SQRT(b2 � 4ac))�(2a)
DISPLAY r1, r2
DISPLAY 'Try again? Answer yes or no'
INPUT response
IF response � 'no' EXIT

ENDDO
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A DOEXIT construct is used to implement the quadratic formula repeatedly as long
as the condition is false. The condition depends on the value of the character variable
response. If response is equal to ‘yes’ the calculation is implemented. If not, that is, re-
sponse = ‘no’ the loop terminates. Thus, the user controls termination by inputting a value
for response.

Now although the above algorithm works for certain cases, it is not foolproof. Depend-
ing on the values of the coefficients, the algorithm might not work. Here is what can happen:

If a = 0, an immediate problem arises because of division by zero. In fact, close
inspection of Eq. (2.1) indicates that two different cases can arise. That is, 

If b �= 0, the equation reduces to a linear equation with one real root, −c/b.
If b = 0, then no solution exists. That is, the problem is trivial.

If a �= 0, two possible cases occur depending on the value of the discriminant,
d = b2 − 4ac. That is,

If d ≥ 0, two real roots occur.
If d < 0, two complex roots occur.

Notice how we have used indentation to highlight the decisional structure that
underlies the mathematics. This structure then readily translates to a set of coupled
IF/THEN/ELSE structures that can be inserted in place of the shaded statements in the pre-
vious code to give the final algorithm:

DO
INPUT a, b, c
r1 � 0: r2 � 0: i1 � 0: i2 � 0
IF a � 0 THEN
IF b � 0 THEN

r1 � �c/b
ELSE

DISPLAY "Trivial solution"
ENDIF

ELSE
discr � b2 � 4 * a * c
IF discr � 0 THEN

r1 � (�b �Sqrt(discr))� (2 * a)
r2 � (�b � Sqrt(discr))� (2 * a)

ELSE
r1 � �b� (2 * a)
r2 � r1
i1 � Sqrt(Abs(discr))� (2 * a)
i2 � �il

ENDIF
ENDIF
DISPLAY r1, r2, i1, i2
DISPLAY 'Try again? Answer yes or no'
INPUT response
IF response �'no' EXIT

ENDDO
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The approach in the foregoing example can be employed to develop an algorithm for
the parachutist problem. Recall that, given an initial condition for time and velocity, the
problem involved iteratively solving the formula

vi+1 = vi + dvi

dt
�t (2.2)

Now also remember that if we desired to attain good accuracy, we would need to employ
small steps. Therefore, we would probably want to apply the formula repeatedly from the
initial time to the final time. Consequently, an algorithm to solve the problem would be
based on a loop.

For example, suppose that we started the computation at t = 0 and wanted to predict
the velocity at t = 4 s using a time step of �t = 0.5 s. We would, therefore, need to apply
Eq. (2.2) eight times, that is,

n = 4

0.5
= 8

where n = the number of iterations of the loop. Because this result is exact, that is, the ratio
is an integer, we can use a count-controlled loop as the basis for the algorithm. Here is an
example of the pseudocode:

g = 9.8
INPUT cd, m
INPUT ti, vi, tf, dt
t �ti
v �vi
n �(tf �ti) / dt
DOFOR i � 1 TO n
dvdt � g � (cd / m) * v
v �v � dvdt * dt
t �t � dt

ENDDO
DISPLAY v

Although this scheme is simple to program, it is not foolproof. In particular, it will
work only if the computation interval is evenly divisible by the time step.3 In order to cover
such cases, a decision loop can be substituted in place of the shaded area in the previous
pseudocode. The final result is

g �9.8
INPUT cd, m
INPUT ti, vi, tf, dt
t �ti
v �vi
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3This problem is compounded by the fact that computers use base-2 number representation for their internal math.
Consequently, some apparently evenly divisible numbers do not yield integers when the division is implemented
on a computer. We will cover this in Chap. 3.
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h � dt
DO
IF t � dt > tf THEN

h � tf � t
ENDIF
dvdt � g �(cd / m) * v
v �v � dvdt * h
t �t � h
IF t � tf EXIT

ENDDO
DISPLAY v

As soon as we enter the loop, we use an IF/THEN structure to test whether adding
t + dt will take us beyond the end of the interval. If it does not, which would usually be the
case at first, we do nothing. If it does, we would need to shorten the interval by setting the
variable step h to t f − t . By doing this, we guarantee that the next step falls exactly on t f .
After we implement this final step, the loop will terminate because the condition t ≥ t f
will test true.

Notice that before entering the loop, we assign the value of the time step, dt, to another
variable, h. We create this dummy variable so that our routine does not change the given
value of dt if and when we shorten the time step. We do this in anticipation that we might
need to use the original value of dt somewhere else in the event that this code is integrated
within a larger program.

It should be noted that the algorithm is still not foolproof. For example, the user could
have mistakenly entered a step size greater than the calculation interval, for example,
t f − ti = 5 and dt = 20. Thus, you might want to include error traps in your code to catch
such errors and to then allow the user to correct the mistake.

2.3 MODULAR PROGRAMMING

Imagine how difficult it would be to study a textbook that had no chapters, sections, or
paragraphs. Breaking complicated tasks or subjects into more manageable parts is one way
to make them easier to handle. In the same spirit, computer programs can be divided into
small subprograms, or modules, that can be developed and tested separately. This approach
is called modular programming.

The most important attribute of modules is that they be as independent and self-
contained as possible. In addition, they are typically designed to perform a specific, well-
defined function and have one entry and one exit point. As such, they are usually short
(generally 50 to 100 instructions in length) and highly focused.

In standard high-level languages such as Fortran 90 or C, the primary programming
element used to represent each module is the procedure. A procedure is a series of computer
instructions that together perform a given task. Two types of procedures are commonly
employed: functions and subroutines. The former usually returns a single result, whereas the
latter returns several.

In addition, it should be mentioned that much of the programming related to software
packages like Excel and MATLAB involves the development of subprograms. Hence,
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Excel macros and MATLAB functions are designed to receive some information, perform
a calculation, and return results. Thus, modular thinking is also consistent with how pro-
gramming is implemented in package environments.

Modular programming has a number of advantages. The use of small, self-contained
units makes the underlying logic easier to devise and to understand for both the developer
and the user. Development is facilitated because each module can be perfected in isolation.
In fact, for large projects, different programmers can work on individual parts. Modular de-
sign also increases the ease with which a program can be debugged and tested because errors
can be more easily isolated. Finally, program maintenance and modification are facilitated.
This is primarily due to the fact that new modules can be developed to perform additional
tasks and then easily incorporated into the already coherent and organized scheme.

While all these attributes are reason enough to use modules, the most important reason
related to numerical engineering problem solving is that they allow you to maintain your
own library of useful modules for later use in other programs. This will be the philosophy
of this book: All the algorithms will be presented as modules.

This approach is illustrated in Fig. 2.7 which shows a function developed to imple-
ment Euler’s method. Notice that this function application and the previous versions differ
in how they handle input/output. In the former versions, input and output directly come
from (via INPUT statements) and to (via DISPLAY statements) the user. In the function,
the inputs are passed into the FUNCTION via its argument list

Function Euler(dt, ti, tf, yi)

and the output is returned via the assignment statement

y = Euler(dt, ti, tf, yi)

In addition, recognize how generic the routine has become. There are no references to
the specifics of the parachutist problem. For example, rather than calling the dependent
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FUNCTION Euler(dt, ti, tf, yi)
t � ti
y � yi
h � dt
DO
IF t � dt �tf THEN

h � tf � t
ENDIF
dydt � dy(t, y)
y �y � dydt * h
t �t � h
IF t � tf EXIT

ENDDO
Euler � y
END

FIGURE 2.7
Pseudocode for a function that
solves a differential equation
using Euler’s method.
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variable v for velocity, the more generic label, y, is used within the function. Further, notice
that the derivative is not computed within the function by an explicit equation. Rather, another
function, dy, must be invoked to compute it. This acknowledges the fact that we might want
to use this function for many different problems beyond solving for the parachutist’s velocity.

2.4 EXCEL

Excel is the spreadsheet produced by Microsoft, Inc. Spreadsheets are a special type of
mathematical software that allow the user to enter and perform calculations on rows and
columns of data. As such, they are a computerized version of a large accounting worksheet
on which large interconnected calculations can be implemented and displayed. Because the
entire calculation is updated when any value on the sheet is changed, spreadsheets are ideal
for “what if?” sorts of analysis.

Excel has some built-in numerical capabilities including equation solving, curve fit-
ting, and optimization. It also includes VBA as a macro language that can be used to im-
plement numerical calculations. Finally, it has several visualization tools, such as graphs
and three-dimensional surface plots, that serve as valuable adjuncts for numerical analysis.
In the present section, we will show how these capabilities can be used to solve the para-
chutist problem.

To do this, let us first set up a simple spreadsheet. As shown below, the first step in-
volves entering labels and numbers into the spreadsheet cells.

Before we write a macro program to calculate the numerical value, we can make our
subsequent work easier by attaching names to the parameter values. To do this, select cells
A3:B5 (the easiest way to do this is by moving the mouse to A3, holding down the left
mouse button and dragging down to B5). Next, make the menu selection

Insert Name Create Left column OK

To verify that this has worked properly, select cell B3 and check that the label “m” appears
in the name box (located on the left side of the sheet just below the menu bars).

Move to cell C8 and enter the analytical solution (Eq. 1.9),

=9.8*m/cd*(1-exp(-cd/m*A8))

When this formula is entered, the value 0 should appear in cell C8. Then copy the formula
down to cell C9 to give a value of 16.405 m/s.

All the above is typical of the standard use of Excel. For example, at this point you
could change parameter values and see how the analytical solution changes.
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Now, we will illustrate how VBA macros can be used to extend the standard capabili-
ties. Figure 2.8 lists pseudocode alongside Excel VBA code for all the control structures
described in the previous section (Figs. 2.2 through 2.6). Notice how, although the details
differ, the structure of the pseudocode and the VBA code are identical.

We can now use some of the constructs from Fig. 2.8 to write a macro function to
numerically compute velocity. Open VBA by selecting4

Tools Macro Visual Basic Editor

Once inside the Visual Basic Editor (VBE), select

Insert Module

and a new code window will open up. The following VBA function can be developed
directly from the pseudocode in Fig. 2.7. Type it into the code window.

Option Explicit

Function Euler(dt, ti, tf, yi, m, cd)

Dim h As Single, t As Single, y As Single, dydt As Single
t = ti
y = yi
h = dt
Do
If t + dt > tf Then
h = tf – t

End If
dydt = dy(t, y, m, cd)
y = y + dydt * h
t = t + h
If t >= tf Then Exit Do

Loop
Euler = y
End Function

Compare this macro with the pseudocode from Fig. 2.7 and recognize how similar they
are. Also, see how we have expanded the function’s argument list to include the necessary
parameters for the parachutist velocity model. The resulting velocity, v, is then passed back
to the spreadsheet via the function name.

Also notice how we have included another function to compute the derivative. This
can be entered in the same module by typing it directly below the Euler function,

Function dy(t, v, m, cd)
Const g As Single = 9.8
dy = g – (cd / m) * v
End Function
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4The hot key combination Alt-F11 is even quicker!
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(a) Pseudocode

IF/THEN:
IF condition THEN
True block

ENDIF

IF/THEN/ELSE:
IF condition THEN
True block

ELSE
False block

ENDIF

IF/THEN/ELSEIF:
IF condition1 THEN
Block1

ELSEIF condition2
Block2

ELSEIF condition3
Block3

ELSE
Block4

ENDIF

CASE:
SELECT CASE Test Expression
CASE Value1
Block1

CASE Value2
Block2

CASE Value3
Block3

CASE ELSE
Block4

END SELECT

DOEXIT:
DO
Block1
IF condition EXIT
Block2

ENDIF

COUNT-CONTROLLED LOOP:
DOFOR i = start, finish, step
Block

ENDDO

(b) Excel VBA

If b <> 0 Then
r1 = –c / b

End If

If a < 0 Then
b = Sqr(Abs(a))

Else
b = Sqr(a)

End If

If class = 1 Then
x = x + 8

ElseIf class < 1 Then
x = x – 8

ElseIf class < 10 Then
x = x – 32

Else
x = x – 64

End If

Select Case a + b
Case Is < –50
x = –5

Case Is < 0
x = –5 – (a + b) / 10

Case Is < 50
x = (a + b) / 10

Case Else
x = 5

End Select

Do
i = i + 1
If i >= 10 Then Exit Do
j = i*x

Loop

For i = 1 To 10 Step 2
x = x + i

Next i

FIGURE 2.8
The fundamental control
structures in (a) pseudocode
and (b) Excel VBA.
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The final step is to return to the spreadsheet and invoke the function by entering the
following formula in cell B9

=Euler(dt,A8,A9,B8,m,cd)

The result of the numerical integration, 16.531, will appear in cell B9.
You should appreciate what has happened here. When you enter the function into the

spreadsheet cell, the parameters are passed into the VBA program where the calculation is
performed and the result is then passed back and displayed in the cell. In effect, the VBA
macro language allows you to use Excel as your input/output mechanism. All sorts of ben-
efits arise from this fact.

For example, now that you have set up the calculation, you can play with it. Suppose that
the jumper was much heavier, say, m = 100 kg (about 220 pounds). Enter 100 into cell B3
and the spreadsheet will update immediately to show a value of 17.438 in cell B9. Change
the mass back to 68.1 kg and the previous result, 16.531, automatically reappears in cell B9.

Now let us take the process one step further by filling in some additional numbers for
the time. Enter the numbers 4, 6, . . . 16 in cells A10 through A16. Then copy the formu-
las from cells B9:C9 down to rows 10 through 16. Notice how the VBA program calcu-
lates the numerical result correctly for each new row. (To verify this, change dt to 2 and
compare with the results previously computed by hand in Example 1.2.) An additional em-
bellishment would be to develop an x-y plot of the results using the Excel Chart Wizard.

The final spreadsheet is shown below. We now have created a pretty nice problem-
solving tool. You can perform sensitivity analyses by changing the values for each of
the parameters. As each new value is entered, the computation and the graph would be
automatically updated. It is this interactive nature that makes Excel so powerful. However,
recognize that the ability to solve this problem hinges on being able to write the macro
with VBA.
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It is the combination of the Excel environment with the VBA programming language
that truly opens up a world of possibilities for engineering problem solving. In the coming
chapters, we will illustrate how this is accomplished.

2.5 MATLAB

MATLAB is the flagship software product of The MathWorks, Inc., which was cofounded by
the numerical analysts Cleve Moler and John N. Little. As the name implies, MATLAB was
originally developed as a matrix laboratory. To this day, the major element of MATLAB is
still the matrix. Mathematical manipulations of matrices are very conveniently imple-
mented in an easy-to-use, interactive environment. To these matrix manipulations,
MATLAB has added a variety of numerical functions, symbolic computations, and visual-
ization tools. As a consequence, the present version represents a fairly comprehensive tech-
nical computing environment.

MATLAB has a variety of functions and operators that allow convenient implementa-
tion of many of the numerical methods developed in this book. These will be described in
detail in the individual chapters that follow. In addition, programs can be written as so-
called M-files that can be used to implement numerical calculations. Let us explore how
this is done.

First, you should recognize that normal MATLAB use is closely related to pro-
gramming. For example, suppose that we wanted to determine the analytical solution to the
parachutist problem. This could be done with the following series of MATLAB commands

>> g=9.8;
>> m=68.1;
>> cd=12.5;
>> tf=2;
>> v=g*m/cd*(1-exp(-cd/m*tf))

with the result being displayed as

v =
16.4050

Thus, the sequence of commands is just like the sequence of instructions in a typical pro-
gramming language.

Now what if you want to deviate from the sequential structure. Although there are
some neat ways to inject some nonsequential capabilities in the standard command mode,
the inclusion of decisions and loops is best done by creating a MATLAB document called
an M-file. To do this, make the menu selection

File New Mfile

and a new window will open with a heading “MATLAB Editor/Debugger.” In this window,
you can type and edit MATLAB programs. Type the following code there:

g=9.8;
m=68.1;
cd=12.5;
tf=2;
v=g*m/cd*(1-exp(-cd/m*tf))

2.5 MATLAB 41
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Notice how the commands are written in exactly the way as they would be written in
the front end of MATLAB. Save the program with the name: analpara. MATLAB will au-
tomatically attach the extension .m to denote it as an M-file: analpara.m.

To run the program, you must go back to the command mode. The most direct way to
do this is to click on the “MATLAB Command Window” button on the task bar (which
is usually at the bottom of the screen). 

The program can now be run by typing the name of the M-file, analpara, which should
look like

>> analpara

If you have done everything correctly, MATLAB should respond with the correct answer:

v =
16.4050

Now one problem with the foregoing is that it is set up to compute one case only. You
can make it more flexible by having the user input some of the variables. For example, sup-
pose that you wanted to assess the impact of mass on the velocity at 2 s. The M-file could
be rewritten as the following to accomplish this

g=9.8;
m=input('mass (kg):');
cd=12.5;
tf=2;
v=g*m/cd*(1-exp(-cd/m*tf))

Save this as analpara2.m. If you typed analpara2 while being in command mode, the
prompt would show

mass (kg):

The user could then enter a value like 100, and the result will be displayed as

v =
17.3420

Now it should be pretty clear how we can program a numerical solution with an M-
file. In order to do this, we must first understand how MATLAB handles logical and
looping structures. Figure 2.9 lists pseudocode alongside MATLAB code for all the con-
trol structures from the previous section. Although the structures of the pseudocode and
the MATLAB code are very similar, there are some slight differences that should be
noted.

In particular, look at how we have represented the DOEXIT structure. In place of
the DO, we use the statement WHILE(1). Because MATLAB interprets the number 1 as
corresponding to “true,” this statement will repeat infinitely in the same manner as the DO
statement. The loop is terminated with a break command. This command transfers control
to the statement following the end statement that terminates the loop.
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(a) Pseudocode

IF/THEN:
IF condition THEN
True block

ENDIF

IF/THEN/ELSE:
IF condition THEN
True block

ELSE
False block

ENDIF

IF/THEN/ELSEIF:
IF condition1 THEN
Block1

ELSEIF condition2
Block2

ELSEIF condition3
Block3

ELSE
Block4

ENDIF

CASE:
SELECT CASE Test Expression
CASE Value1
Block1

CASE Value2
Block2

CASE Value3
Block3

CASE ELSE
Block4

END SELECT

DOEXIT:
DO
Block1
IF condition EXIT
Block2

ENDIF

COUNT-CONTROLLED LOOP:
DOFOR i = start, finish, step
Block

ENDDO

(b) MATLAB

if b ~= 0
r1 = –c / b;

end

if a < 0
b = sqrt(abs(a));

else
b = sqrt(a);

end

if class == 1
x = x + 8;

elseif class < 1
x = x - 8;

elseif class < 10
x = x – 32;

else
x = x – 64;

end

switch a + b
case 1
x = –5;

case 2
x = –5 – (a + b) / 10;

case 3
x = (a + b) / 10;

otherwise
x = 5;

end

while (1)
i = i + 1;
if i >= 10, break, end
j = i*x;

end

for i = 1:2:10
x = x + i;

end

FIGURE 2.9
The fundamental control
structures in (a) pseudocode
and (b) the MATLAB
programming language.

cha1873X_ch02.qxd  3/14/05  18:19  Page 43



Also notice that the parameters of the count-controlled loop are ordered differently.
For the pseudocode, the loop parameters are specified as start, finish, step. For
MATLAB, the parameters are ordered as start:step:finish.

The following MATLAB M-file can now be developed directly from the pseudocode
in Fig. 2.7. Type it into the MATLAB Editor/Debugger:

g=9.8;
m=input('mass (kg):');
cd=12.5;
ti=0;
tf=2;
vi=0;
dt=0.1;
t = ti;
v = vi;
h = dt;
while (1)
if t + dt > tf
h = tf – t;

end
dvdt = g – (cd / m) * v;
v = v + dvdt * h;
t = t + h;
if t >= tf, break, end

end
disp('velocity (m/s):')
disp(v)

Save this file as numpara.m and return to the command mode and run it by entering:
numpara. The following output should result:

mass (kg): 100

velocity (m/s):
17.4381

As a final step in this development, let us take the above M-file and convert it into a
proper function. This can be done in the following M-file based on the pseudocode from
Fig. 2.7

function euler = f(dt,ti,tf,yi,m,cd)
t = ti;
y = yi;
h = dt;
while (1)
if t + dt > tf
h = tf – t;

end
dydt = dy(t, y, m, cd);
y = y + dydt * h;
t = t + h;
if t >= tf, break, end

end
euler = y;
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Save this file as euler.m and then create another M-file to compute the derivative,

function dy = f(t, v, m, cd)
g = 9.8;
dy = g – (cd / m) * v;

Save this file as dy.m and return to the command mode. In order to invoke the function and
see the result, you can type in the following commands

>> m=68.1;
>> cd=12.5;
>> ti=0;
>> tf=2.;
>> vi=0;
>> dt=0.1;
>> euler(dt,ti,tf,vi,m,cd)

When the last command is entered, the answer will be displayed as

ans =
16.5309

It is the combination of the MATLAB environment with the M-file programming
language that truly opens up a world of possibilities for engineering problem solving. In the
coming chapters we will illustrate how this is accomplished.

2.6 OTHER LANGUAGES AND LIBRARIES

In the previous sections, we showed how Excel and MATLAB function procedures for
Euler’s method could be developed from an algorithm expressed as pseudocode. You
should recognize that similar functions can be written in high-level languages like Fortran
90 and C++. For example, a Fortran 90 function for Euler’s method is

Function Euler(dt, ti, tf, yi, m, cd)

REAL dt, ti, tf, yi, m, cd
Real h, t, y, dydt

t = ti
y = yi
h = dt
Do
If (t + dt > tf) Then
h = tf – t

End If
dydt = dy(t, y, m, cd)
y = y + dydt * h
t = t + h
If (t >= tf) Exit

End Do
Euler = y
End Function
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For C, the result would look quite similar to the MATLAB function. The point is that
once a well-structured algorithm is developed in pseudocode form, it can be readily imple-
mented in a variety of programming environments.

In this book, our approach will be to provide you with well-structured procedures writ-
ten as pseudocode. This collection of algorithms then constitutes a numerical library that
can be accessed to perform specific numerical tasks in a range of software tools and pro-
gramming languages.

Beyond your own programs, you should be aware that commercial programming
libraries contain many useful numerical procedures. For example, the Numerical Recipe
library includes a large range of algorithms written in Fortran and C.5 These procedures are
described in both book (for example, Press et al. 1992) and electronic form.

For Fortran, the IMSL (International Mathematical and Statistical Library) provides over
700 procedures spanning all the numerical areas covered in this text. Because of the wide-
spread use of Fortran in engineering, we include IMSL applications throughout the book.

PROBLEMS
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2.1 Write pseudocode to implement the flowchart depicted in
Fig. P2.1. Make sure that proper indentation is included to make the
structure clear.

Figure P2.1

F

F

F

T

T

T

x = 7.5 x = 5

x = x – 5

x < 50

x < 5

x ≥ 10

2.2 Rewrite the following pseudocode using proper indentation

DO
i = i + 1
IF z > 50 EXIT
x = x + 5
IF x > 5 THEN
y = x
ELSE
y = 0
ENDIF
z = x + y
ENDDO

2.3 A value for the concentration of a pollutant in a lake is
recorded on each card in a set of index cards. A card marked “end
of data” is placed at the end of the set. Write an algorithm to deter-
mine the sum, the average, and the maximum of these values.
2.4 Write a structured flowchart for Prob. 2.3.
2.5 Develop, debug, and document a program to determine the
roots of a quadratic equation, ax2 + bx + c, in either a high-level
language or a macro language of your choice. Use a subroutine pro-
cedure to compute the roots (either real or complex). Perform test
runs for the cases (a) a = 1, b = 6, c = 2; (b) a = 0, b = −4,
c = 1.6; (c) a = 3, b = 2.5, c = 7.
2.6 The cosine function can be evaluated by the following infinite
series:

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · ·

5Numerical Recipe procedures are also available in book and electronic format for Pascal, MS BASIC, and
MATLAB. Information on all the Numerical Recipe products can be found at http://www.nr.com/.
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Write an algorithm to implement this formula so that it computes
and prints out the values of cos x as each term in the series is added.
In other words, compute and print in sequence the values for

cos x = 1

cos x = 1 − x2

2!

cos x = 1 − x2

2!
+ x4

4!

up to the order term n of your choosing. For each of the preceding,
compute and display the percent relative error as

% error = true − series approximation

true
× 100%

As a test case, employ the program to compute cos(1.25) for six
terms.
2.7 Write the algorithm for Prob. 2.6 as (a) a structured flowchart
and (b) pseudocode.
2.8 Develop, debug, and document a program for Prob. 2.6 in
either a high-level language or a macro language of your choice.
Employ the library function for the cosine in your computer to
determine the true value. Have the program print out the series
approximation and the error at each step. As a test case, employ the
program to compute cos(1.25) for up to and including the term
x10/10!. Interpret your results.
2.9 The following algorithm is designed to determine a grade for a
course that consists of quizzes, homework, and a final exam:

Step 1: Input course number and name.
Step 2: Input weighting factors for quizzes (WQ), homework

(WH), and the final exam (WF).
Step 3: Input quiz grades and determine an average quiz grade (AQ).
Step 4: Input homework grades and determine an average home-

work grade (AH).
Step 5: If this course has a final grade, continue to step 6. If not, go

to step 9.
Step 6: Input final exam grade (FE).
Step 7: Determine average grade AG according to 

AG = WQ × AQ + WH × AH + WF × FE

WQ + WH + WF
× 100%

Step 8: Go to step 10.
Step 9: Determine average grade AG according to

AG = WQ × AQ + WH × AH

WQ + WH
× 100%

Step 10: Print out course number, name, and average grade.
Step 11: Terminate computation.
(a) Write well-structured pseudocode to implement this algorithm.
(b) Write, debug, and document a structured computer program

based on this algorithm. Test it using the following data to

calculate a grade without the final exam and a grade with the
final exam: WQ = 35; WH = 30; WF = 35; quizzes = 98, 85,
90, 65, 99; homework = 95, 90, 87, 100, 92, 77; and final
exam = 92.

2.10 The “divide and average” method, an old-time method for ap-
proximating the square root of any positive number a can be for-
mulated as

x = x + a/x

2
(a) Write well-structured pseudocode to implement this algorithm

as depicted in Fig. P2.10. Use proper indentation so that the
structure is clear.

(b) Develop, debug, and document a program to implement this
equation in either a high-level language or a macro language of
your choice. Structure your code according to Fig. P2.10.

Figure P2.10

2.11 An amount of money P is invested in an account where inter-
est is compounded at the end of the period. The future worth F
yielded at an interest rate i after n periods may be determined from
the following formula:

F = P(1 + i)n

F

F

T

T

SquareRoot = 0

SquareRoot = x

y = (x + a/x)/2
e = |(y – x)/y|

x = y

tol = 10�5

x = a/2

a > 0

e < tol
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Write a program that will calculate the future worth of an invest-
ment for each year from 1 through n. The input to the function
should include the initial investment P, the interest rate i (as a dec-
imal), and the number of years n for which the future worth is to be
calculated. The output should consist of a table with headings and
columns for n and F. Run the program for P = $100,000,
i = 0.06, and n = 5 years.
2.12 Economic formulas are available to compute annual pay-
ments for loans. Suppose that you borrow an amount of money P
and agree to repay it in n annual payments at an interest rate of i.
The formula to compute the annual payment A is

A = P
i(1 + i)n

(1 + i)n − 1

Write a program to compute A. Test it with P = $55,000 and an in-
terest rate of 6.6% (i = 0.066). Compute results for n = 1, 2, 3, 4,
and 5 and display the results as a table with headings and columns
for n and A.
2.13 The average daily temperature for an area can be approxi-
mated by the following function,

T = Tmean + (Tpeak − Tmean) cos(ω(t − tpeak))

where Tmean = the average annual temperature, Tpeak = the peak
temperature, ω = the frequency of the annual variation
(= 2π/365), and tpeak = day of the peak temperature (∼= 205 d).
Develop a program that computes the average temperature between
two days of the year for a particular city. Test it for (a)
January–February (t = 0 to 59) in Miami, Florida (Tmean =
22.1◦C; Tpeak = 28.3◦C), and (b) July–August (t = 180 to 242) in
Boston, Massachusetts (Tmean = 10.7◦C; Tpeak = 22.9◦C).
2.14 Develop, debug, and test a program in either a high-level lan-
guage or a macro language of your choice to compute the velocity
of the falling parachutist as outlined in Example 1.2. Design the
program so that it allows the user to input values for the drag coef-
ficient and mass. Test the program by duplicating the results from
Example 1.2. Repeat the computation but employ step sizes of 1
and 0.5 s. Compare your results with the analytical solution ob-
tained previously in Example 1.1. Does a smaller step size make
the results better or worse? Explain your results.
2.15 The bubble sort is an inefficient, but easy-to-program, sorting
technique. The idea behind the sort is to move down through an
array comparing adjacent pairs and swapping the values if they are
out of order. For this method to sort the array completely, it may
need to pass through it many times. As the passes proceed for an
ascending-order sort, the smaller elements in the array appear to
rise toward the top like bubbles. Eventually, there will be a pass
through the array where no swaps are required. Then, the array is
sorted. After the first pass, the largest value in the array drops
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directly to the bottom. Consequently, the second pass only has to
proceed to the second-to-last value, and so on. Develop a program
to set up an array of 20 random numbers and sort them in ascend-
ing order with the bubble sort (Fig. P2.15).

Figure P2.15

2.16 Figure P2.16 shows a cylindrical tank with a conical base. If
the liquid level is quite low in the conical part, the volume is sim-
ply the conical volume of liquid. If the liquid level is midrange in
the cylindrical part, the total volume of liquid includes the filled
conical part and the partially filled cylindrical part. Write a well-
structured function procedure to compute the tank’s volume as a
function of given values of R and d. Use decisional control struc-
tures (like If/Then, ElseIf, Else, End If). Design the function so that
it returns the volume for all cases where the depth is less than 3R.
Return an error message (“Overtop”) if you overtop the tank, that
is, d > 3R. Test it with the following data:

R 1 1 1 1

d 0.5 1.2 3.0 3.1

TT

T

F

F

F

m = n – 1

switch = false

switch = truem = m – 1

i = 1

i = i + 1
i > m

swap
ai ai+1

start

end

ai > ai+1
Not

switch
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The difficulty arises for the other cases. The following table sum-
marizes the possibilities:

x y θ

<0 >0 tan−1(y/x) + π

<0 <0 tan−1(y/x) − π

<0 =0 π

=0 >0 π/2
=0 <0 −π/2
=0 =0 0

(a) Write a well-structured flowchart for a subroutine procedure to
calculate r and θ as a function of x and y. Express the final re-
sults for θ in degrees.

(b) Write a well-structured function procedure based on your flow-
chart. Test your program by using it to fill out the following table:

x y r θ

1 0
1 1
0 1

−1 1
−1 0
−1 −1

0 −1
1 −1
0 0

2.18 Develop a well-structured function procedure that is passed a
numeric grade from 0 to 100 and returns a letter grade according to
the scheme:

Letter Criteria

A 90 ≤ numeric grade ≤ 100
B 80 ≤ numeric grade < 90
C 70 ≤ numeric grade < 80
D 60 ≤ numeric grade < 70
F numeric grade < 60

2.19 Develop well-structured function procedures to determine
(a) the factorial; (b) the minimum value in a vector; and (c) the av-
erage of the values in a vector.
2.20 Develop well-structured programs to (a) determine the square
root of the sum of the squares of the elements of a two-dimensional
array (i.e., a matrix) and (b) normalize a matrix by dividing each
row by the maximum absolute value in the row so that the maxi-
mum element in each row is 1.

Figure P2.16

Figure P2.17

2.17 Two distances are required to specify the location of a point
relative to an origin in two-dimensional space (Fig. P2.17): 

• The horizontal and vertical distances (x, y) in Cartesian
coordinates

• The radius and angle (r, θ ) in radial coordinates.

It is relatively straightforward to compute Cartesian coordinates
(x, y) on the basis of polar coordinates (r, θ). The reverse process is
not so simple. The radius can be computed by the following formula:

r =
√

x2 + y2

If the coordinates lie within the first and fourth coordinates (i.e.,
x > 0), then a simple formula can be used to compute θ

θ = tan−1

(
y

x

)

III

III IV

�

r

x

y

2R

R

d
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