Chapter 8 Bacterial Genetics

Summary Outline

8.1 Diversity in Bacteria: the properties of bacteria can change through **mutations**, changes in the chemical structure of DNA, or by changes in gene expression.

Gene mutation

- 8.2 **Spontaneous mutations** are changes in the nucleotide sequences in DNA, which occur without the addition of agents known to cause mutations.
 - 2. Base substitution usually occurs during DNA replication.
 - 3. Point mutations occur when only one base pair changes.
 - 4. **Frame shift mutations** involve the **addition** or **deletion** of nucleotides resulting in all genes downstream of a stop codon and in the same operon becoming nonfunctional.
 - 5. **Transposable elements (transposons)** have the ability to move to any other location in the genome.

8.3 Induced mutations

- A. Chemical **mutagens** alter hydrogen-bonding properties of purines and pyrimidines such that there is an increase in the frequency of mutations.
- 1. **Base analogs** with different hydrogen bonding properties can be incorporated into DNA in place of usual purines and pyrimidines.
 - 2. **Intercalating agents** are planar molecules, which insert into the double helix and push nucleotides apart resulting in a frameshift mutation.
- B. **Transposition**—An insertion mutation results when a transposon integrates into a recipient cell genome.
- C. Radiation
 - 1. **Ultraviolet irradiation** results in the formation of thymine dimers due to the formation of covalent bonds between adjacent thymine molecules on the same strand of DNA.
 - 2. **X-rays** cause single strand breaks, double strand breaks, and alterations to the DNA bases.

8.4 Repair of damaged DNA

A. Repair of errors in base incorporation—DNA polymerase has a proofreading function.

B. **Repair of thymine dimers**

- 1. In **light repair** a photoreactivating enzyme breaks the bonds of the thymine dimer, thereby restoring the original molecule.
- 2. In **excision or dark repair**, the damaged segment is excised by an endonuclease. A new strand is synthesized by DNA polymerase.
- C. **SOS repair** is a last ditch repair mechanism in which enzymes are induced by damaged DNA resulting in DNA polymerase bypassing the damaged part of the strand, but without proofreading the DNA product.

8.5 Mutations and their consequences

- A. Genes mutate **independently** of one another.
- B. Mutations provide a mechanism for **natural selection**.
- C. Mutations are expressed rapidly in bacteria because bacteria are haploid.

8.6 Mutant selection

- A. **Direct selection** involves inoculating cells on a medium on which the mutant but not the parent can grow.
- B. **Indirect selection** is required when the mutant being sought does not grow on a medium on which the parent grows.

- C. **Replica plating** involves the simultaneous transfer of all the colonies on one plate to another and the comparison of the growth of individual colonies on both plates.
- D. Penicillin enrichment will increase the proportion of auxotrophic mutants in the population.
- E. Conditional lethal mutations cannot be overcome by adding growth factors to the medium.
- F. The **Ames test** measures whether a suspected carcinogen increases the frequency of reversion; a positive test indicates the suspected carcinogen is a mutagen and therefore a likely carcinogen.

Mechanisms of gene transfer

- 8.7 **DNA-mediated transformation** involves the transfer of "naked" DNA.
 - A. Horizontal (lateral) gene transfer is the transfer of genes from one bacterium to another.
 - B. Vertical gene transfer is transfer of genes from the parent cell to daughter cells in DNA replication.
 - C. Natural competence is the ability of a cell to take up DNA
 - D. Artificial competence—Cells can be made artificially competent by electroporation, a process whereby the cells are treated with an electric current that makes holes in the cell envelope through which DNA can pass.
- 8.8 **Transduction** involves the transfer of bacterial DNA by a bacterial virus or bacteriophage.
- 8.9 **Conjugation** requires cell-to-cell contact by means of a sex pilus encoded on an F plasmid.
- 8.10 **Plasmids** are extrachromosomal pieces of DNA that code for nonessential information.
 - A. **R plasmids** code for antibiotic resistance
- 8.11 Genetic Transfer of Virulence Factors
 - A. Genes coding for virulence factors are transferred between bacteria by **transformation**, **transduction**, and **conjugation**.
 - B. Genes coding for virulence factors may be grouped together in **pathogenicity islands**.

8.12 Gene movement within the same bacterium—transposable elements

- A. Transfer of genes to unrelated bacteria
 - 1. Transposable elements often transfer antimicrobial-resistance genes from a chromosome to a plasmid.
 - 2. Plasmids can be transferred by conjugation to unrelated bacteria.
- B. Structure of transposons There are different types of transposons that differ in complexity.

8.13 Barriers to gene transfer

- A. Restriction of DNA -DNA entering unrelated bacteria is recognized as foreign and is degraded by a class of deoxyribonucleases.
- B. Modification enzymes methylate potential cleavage sites and prevent the DNA from being cleaved.
- 8.14 Importance of Gene Transfer to Bacteria **Gene transfer** allows bacteria to survive changing environments by providing cells with a set of new genes.