Chapter 8
questions

 1.
What is the difference between a physical record access and a logical record access?

 Ans: A physical record access is done by the DBMS in conjunction with the operating system. A logical record access is made by an application.

2.
Why is it difficult to know when a logical record access results in a physical record access?

Ans: Because of the uncertainty about the content of DBMS buffers, it is difficult to know when a logical record access results in a physical record access.

 3.
What is the objective of physical database design?

Ans: To minimize response time to access and change a database.

 4.
What computing resources are constraints rather than being part of the objective of physical database design?

Ans: Main memory and disk space are considered as constraints rather than resources to minimize.

 5.
What are the contents of table profiles?

Ans: The contents of table profiles are statistics for each table such as number of rows and physical records, number of unique column values, and distribution of the number of related rows.

 6.
What are the contents of application profiles?

 Ans: The contents of application profiles are statistics for each form, report, and query such as the tables accessed/updated and the frequency of access/update.
7.
Describe two ways to specify distributions of columns used in table and application profiles.

Ans: A simple way is to assume that the column values are uniformly distributed, which means that each value has an equal number of rows. A more detailed way is to use a histogram, where the x-axis represents column ranges and the y-axis represents the number of rows containing the range of values.
 8.
Why do most enterprise DBMSs use equal-height histograms to represent column distributions?

Ans: Traditional equal-width histograms do not work well with skewed data because the range of values can be so large that a large number of ranges are necessary. Thus, most DBMSs use equal-height histograms as shown in Figure 8.5. In an equal-height histogram, the ranges are determined so that each bar has about the same number of rows. Thus the width of the ranges varies, but the height is about the same. Most DBMSs use equal-height histograms because the maximum and expected estimation error can be controlled by increasing the number of ranges.
9.
What is a file structure?

Ans: A file organization on how records are stored.

10.
What is the difference between a primary and a secondary file structure?

Ans: A primary file structure stores all the data of a table. A secondary file or index stores only key values and pointers to the data rows. A secondary file provides an alternative path to the data.

11.
Describe the uses of sequential files for sequential search, range search, and key search.

Ans: Sequential search can be made by both unordered and ordered sequential files. Unordered sequential files cannot perform range search, but ordered sequential files can. For key search, unordered and ordered sequential files must examine on average half the physical records (linear).

12.
What is the purpose of a hash function?

Ans: To convert a key value into a physical record address.

13.
Describe the uses of hash files for sequential search, range search, and key search.

Ans: Hash files can be used for sequential search but there may be extra physical records. Hash files do not support range search. On key search, hash files examine a constant number of physical records assuming that the file is not too full.

14.
What is the difference between a static hash file and a dynamic hash file?

Ans: A static hash file needs periodic reorganization. In a dynamic hash file, reorganization is not necessary; however, the average number of physical record accesses to retrieve a record may be higher as compared to a static hash file that is not too full.

15.
Define the terms balanced, bushy, and block-oriented as they relate to Btree files.

Ans: Balanced: all leaf nodes reside on the same level of the tree.

Bushy: the number of branches from a node is large, perhaps 10 to 100 branches.

 Block-oriented: each node in a Btree is a block or physical record.

16.
Briefly explain the use of node splits and concatenations in the maintenance of Btree files.

Ans: Node splitting occurs on insertions. If the node is full, then the node is split into two nodes and a key value is moved to the root node. On delete, if the node is less than half full, nodes must be concatenated.

17.
What does it mean to say that Btrees have logarithmic search cost?

Ans: The cost in terms of physical record accesses to find a key is less than or equal to the height of a Btree. The height is calculated from a logarithmic formula, so Btrees have logarithmic search cost.
18.
What is the difference between a Btree and a B+tree?

Ans: In a B+tree, all keys are redundantly stored in the leaf nodes. While sequential search can be a problem with a Btree, a B+Tree provides improved performance on sequential and range search.

19.
What is bitmap? How does a DBMS use a bitmap?
Ans: A bitmap contains a string of bits (0 or 1 values) with one bit for each row of a table. A DBMS provides a mapping between bitmap positions and row identifiers.
20.
How does a DBMS use a bitmap?

Ans: A DBMS provides a mapping between bitmap positions and row identifiers.
21.
What are the components of a bitmap index record?

Ans: A record of a bitmap column index contains a column and a bitmap.

22.
What is the difference between a bitmap column index and a bitmap join index?

Ans: In a bitmap column index, the bitmap identifies rows of the table containing the indexed column. In a bitmap join index, the bitmap identifies the rows of a related table, not the table containing the indexed column. Thus, a bitmap join index represents a pre-computed join from a column in a parent table to the rows of a child table that join with rows of the parent table.

23.
When should bitmap indexes be used?

Ans: Bitmap indexes work well for stable columns with few values. Due to the requirement for stable columns, bitmap indexes are most common for data warehouse tables especially as join indexes.

24.
What is the difference between a primary and a secondary file structure?

Ans: File structures can store all the data of a table (primary file structure) or store only key data along with pointers to the data records (secondary file structure). A secondary file structure or index provides an alternative path to the data.
25.
What does it mean to say that an index matches a condition?

Ans: Determining whether an index can be used in a query is known as index matching. When a condition in a WHERE clause references an indexed column, the DBMS must determine if the index can be used. The complexity of a condition determines whether an index can be used.
26.
Why should composite indexes be used sparingly?

Ans: Because of the restrictive matching rules, composite indexes should be used with caution. It is usually a better idea to create indexes on the individual columns as most DBMSs can combine the results of multiple indexes when answering a query.
27.
What happens in the query transformation phase of database language translation?

Ans: The query transformation phase transforms a query into a simplified and standardized format, which is usually based on relational algebra.

28.
What is an access plan?

Ans: An access plan is a tree that encodes decisions about file structures to access individual tables, the order of joining tables, and the algorithm to join tables.

29.
What is a multiple index scan?

Ans: A multiple index scan involves the usage of more than one index to access a table. The row pointer lists or bitmaps resulting from each index scan are combined to access the table rows. For AND conditions, the lists or bitmaps should be intersected before accessing the table. For OR conditions, the lists or bitmaps should be combined using a union operation.
30.
How are access plans evaluated in query optimization?

Ans: Query optimization uses cost formulas that estimate the physical record accesses and CPU operations to execute access plans.

31.
Why does the uniform value assumption sometimes lead to poor access plans?

Ans: Because the uniform value assumption often chooses sequential file access rather than Btree access.

32.
What does it mean to bind a query?

Ans: To reduce optimization time, query binding is the process of associating a query with an access plan.

33.
What join algorithm can be used for all join opertations?

Ans: The nested loops algorithm can be used for all join operations.

34.
For what join algorithms does the optimization component must choose the outer and inner tables?

Ans: For the nested loops algorithm and the hybrid join algorithms, the optimization component must the inner and outer tables.

35.
What join algorithm can combine more than two tables at a time?

Ans: The star join algorithm can combine more than two tables at a time.

36.
When is the sort merge algorithm a good choice for combining tables?

Ans: Since the sort merge algorithm requires that both tables are sorted, it is a good choice when the sort cost is small or clustered indexes exist on the join columns.
37.
When is the hash join algorithm a good choice for combining tables?

Ans: The hash join algorithm is a good choice when the tables are not sorted or indexes does not exist.

38.
What is an optimizer hint? Why should hints be used cautiously?

Ans: A hint is a way to influence the choices made by the optimization component. For example, Oracle allows hints to choose the optimization goal, the file structure for a particular table, the join algorithm, and the join order. Hints should be used with great caution because a hint overrides the judgment of the optimizer.

39.
Identify a situation in which an optimizer hint should not be used.

Ans: In many cases, the database administrator can fix problems with table profile deficiencies and query coding style to improve performance rather than override the judgment of the optimizer. For example, if an optimizer uses a sequential table scan instead of an index scan because no column statistics are used, the database administrator should create statistics for the column.
40.
Identify a situation in which an optimizer hint may be appropriate.
Ans: If a DBMS does not maintain statistics on column combinations, a database designer may want to use hints to override the judgment of the DBMS when a joint condition in a WHERE clause generates few rows. Using a hint could force the optimization component to use multiple indexes when accessing a table rather than a sequential table scan.
41.
What is the difference between a clustering and a nonclustering index?

Ans: In a clustering index, the order of the data records is close to the index order. In a nonclustering index, the order of the data records is unrelated to the index order.

42.
When is a nonclustering index useful?

Ans: A nonclustering index is useful when less than 5 percent of the rows must satisfy a condition in the query. A nonclustering index also can be useful in a join if a small number of rows result in one table.

43.
When is a clustering index useful?

Ans: A clustered index is useful in the same situations as a nonclustering index except that the number of resulting rows can be larger. A clustering index also can be useful in a join because it avoids the need to sort.

44.
What is the relationship of index selection to query optimization?

Ans: A good index selection tool should use the query optimization component to derive cost estimates for each application under a given choice of indexes.

45.
What are the trade-offs in index selection?

Ans: The trade-offs in index selection involve retrieval versus update response times. Using an index improves retrieval speed but slows update performance.

46.
Why is index selection difficult?

Ans: Index selection is difficult for a variety of reasons:

· Application profiles are difficult to specify.

· Distribution of parameter values is sometimes needed.

· The behavior of the query optimization component must be known.

· The number of choices is large.

· Index choices can be interrelated.

47.
When should you use the index selection rules?

Ans: You should use index selection rules as a starting point for a more careful selection process and to avoid poor index choices.

48.
Why should you be careful about denormalization?

Ans: Because after denormalization combines tables, the new table may violate a normal form such as BCNF. Therefore, denormalization should always be done with extreme care because a normalized design has important advantages.

49.
Identify two situations when denormalization may be useful.

Ans: First, denormalization may be useful when a repeating group stored in a childe table is always accessed with its associated parent table. Second, if queries often need to combine the separated tables in a generalization hierarchy, then denormalization is reasonable.

50.
What is RAID storage?

Ans: RAID storage is a collection of disks (a disk array) that operates as a single disk. RAID storage supports parallel read and write operation with high reliability.

51.
For what kinds of applications can RAID storage improve performance?

Ans: RAID storage provides parallel processing for retrievals and updates to improve database performance.

52.
What is striping in relation to RAID storage?

Ans: RAID uses striping to allocate physical records to different disks.

53.
What techniques are used in RAID storage to improve reliability?

Ans: Reliability is an important issue because the mean time between failures (a measure of disk drive reliability) decreases as the number of disk drives increases. To combat reliability concerns, RAID architectures incorporate redundancy using mirrored disks, error-correcting codes, and spare disks.
54.
What are the advantages and disadvantages of RAID-1 versus RAID-5?

Ans: In RAID-1, read operations from separate queries can access a disk array in parallel to improve performance across queries. However, RAID-1 involves the most storage overhead. RAID-5 uses storage space more efficiently than RAID-1 but can involve slower write times because of the error-correcting pages.

55.
What is a Storage Area Network (SAN)?

Ans: A SAN is a specialized high-speed network that connects storage devices and servers. The goal of SAN technology is to integrate different types of storage subsystems into a single system and to eliminate the potential bottleneck of a single server controlling storage devices.
56.
What is the relationship between a SAN and RAID storage?

Ans: A SAN and RAID storage are complementary. Large organizations typically use a SAN to support different RAID storage systems as well as archival storage.
57.
What are trade-offs in storing derived data?

Ans: Storing derived data involves trade-offs between query and update operations. For query purposes, storing derived data can add computing capacity by reducing the need to retrieve data needed to calculate the derived data. However, updates to the underlying data require additional updates to the derived data.

58.
What processing environments also involve physical database design decisions?

Ans: Transaction processing, data warehousing, and distributed database processing environments also involve physical database design decisions.
59.
What are some DBMS-specific concerns for performance improvement?

Ans: Fragmentation is an important concern in database storage as it is with any disk storage. Most DBMSs provide guidelines and tools to monitor and control fragmentation. In addition, most DBMSs have options for file structures that can improve performance. You must carefully study the specific DBMS to understand these options.
60.
What is an implicit type conversion? Why may implicit type conversions cause poor query performance?

Ans: An implicit type conversion occurs if the data type of a column and the associated constant value do not match. The conversion eliminates the possibility of using an index because the DBMS must use a function to convert the column value.
61.
Why do unnecessary joins cause poor query performance?

Ans: The execution speed of a query is primarily determined by the number of join operations so eliminating unnecessary join operations may significantly decrease execution time.
62.
Why should row conditions in the HAVING clause be moved to the WHERE clause?

Ans: Conditions involving simple comparisons of columns in the GROUP BY clause belong in the WHERE clause, not the HAVING clause. Moving these conditions to the WHERE clause will eliminate rows sooner, thus providing faster execution
PAGE
1
Chapter 8: End of Chapter Question Solutions

