Chapter 15
questions

 1.
What does it mean to say that a transaction is a user-defined concept? Why is it important that transactions are user defined?

 Ans: For a DBMS, a transaction is a user-defined concept means that the transaction designer determines the database operations in a transaction, not the DBMS. For example, making an airline reservation may involve reservations for the departure and return. To the user, the combination of the departure and the return is a transaction, not the departure and the return separately. It is important that transactions are user- defined because a transaction can involve any number of reads and writes to a database. To provide the flexibility of user-defined transactions, a DBMS cannot restrict transactions to only a specified number of reads and writes to a database.

2.
List transactions with which you have interacted in the last week.

Ans: Students' responses will vary. However examples might be: Pay credit card bills online, withdraw money from ATM, make an airline reservation, buy a book online, and reserve a rental car.

 3.
Explain the purpose of the SQL statements START TRANSACTION, COMMIT, and ROLLBACK. How do these statements vary across DBMSs?
Ans: The START TRANSACTION and COMMIT statements define the statements in a transaction. Any other SQL statements between them are part of the transaction. The ROLLBACK statement causes all effects of a transaction to be removed. Some DBMSs use the keyword BEGIN instead of START. Some DBMSs such as Oracle do not use a statement to explicitly start a transaction. A new transaction begins with the next SQL statement following a COMMIT statement.
 4.
Briefly explain the meaning of the ACID properties. How do concurrency control and recovery management support the ACID properties?

Ans: The ACID properties are atomic, consistent, isolated, and durable.

· Atomic means that a transaction cannot be subdivided. The transaction is all or nothing.

· Consistent means that a transaction satisfies integrity constraints after completion.

· Isolated means that transactions do not interfere with each other except in allowable ways. A transaction should never overwrite changes made by another transaction. In addition, a transaction may be restricted from interfering in other ways such as not viewing the uncommitted changes made by other transactions.
· Durable means that any changes resulting from a transaction are permanent. No failure will erase any changes after a transaction terminates.
Concurrency control and recovery management ensure that transactions meet the ACID properties. Recovery management involves actions to deal with failures such as communication errors and software crashes. Concurrency control involves actions to control interference among multiple, simultaneous users of the database.

 5.
Briefly explain the meaning of transparency as it relates to computer processing. Why is transparency important for concurrency control and recovery management?

Ans: For a DBMS, transparency means that the inner details of transaction services are invisible. Transparency is important for concurrency control and recovery management because the services that ensure ACID transactions are difficult to implement.

 6.
What costs are associated with concurrency control and recovery management? In what role, database administrator or database programmer, would you assess these costs?

Ans: Concurrency and recovery, though invisible, involve overhead that may adversely impact performance or require additional resources to reach an acceptable level of performance. More computing resources such as memory, disk space, and parallel processing may be useful to improve performance. A database administrator or database programmer in the role of database designer would assess these costs.

 7.
What is the objective of concurrency control? How is the measure used in the objective related to waiting time?

Ans: The objective of concurrency control is to maximize transaction throughput while preventing interference among multiple users. Transaction throughput is measured as the number of transactions processed per time unit, typically transactions per minute. From a user’s perspective, transaction throughput is related to response time. Higher transaction throughput means lower response times.
 8.
What is a hot spot? How are hot spots related to interference problems?

Ans: A hot spot is common data that multiple users try to change. Without adequate concurrency control, users may interfere with each other on hot spots.

 9.
Discuss the consequences of each kind of interference problem. Which problem seems to be the most serious?

Ans: There are three consequences on interference.

1. Lost Update: a problem in which one user’s update overwrites another user’s update.

2. Uncommitted Dependency: a problem in which one transaction reads data written by another transaction before the other transaction commits. If the second transaction aborts, the first transaction is using data that no longer exists. An uncommitted dependency cannot cause a problem unless a rollback occurs.
3. Inconsistent Retrieval: This class of problems involves inconsistency among multiple retrievals of a subset of data. An incorrect summary occurs when a transaction calculating a summary function, reads some values before another transaction changes the values but reads other values after another transaction changes the values. The phantom read problem occurs when a transaction executes a query with record conditions. Then, another transaction inserts or modifies data that the query would retrieve. Finally, the original transaction executes the same query again. The second query execution retrieves different records than the first execution. The non repeatable read problem occurs when a transaction reads the same value more than one time. In between reading the data item, another transaction modifies the data item.
Lost update is the most serious interference problem because changes to a database are inadvertently lost.

10.
What is a lock? Briefly explain the differences between shared (S) and exclusive (X) locks?
Ans: Locks provide a way to prevent other users from accessing part of the database being used. Before accessing part of the database, a lock must be obtained. Other users must wait if trying to obtain a conflicting lock on the same part of the database. A shared (S) lock must be obtained before reading part of the database, while an exclusive (X) lock must be obtained before writing. Any number of users can hold a shared lock on the same part of the database. However, only one user can hold an exclusive lock.
11.
What operations are performed by the lock manager?
Ans: The concurrency control manager can perform two operations on lock records. The lock action adds a record to the lock table. Likewise, the unlock or release action deletes a record from the lock table.
12.
What is a deadlock and how are deadlocks handled?
Ans: A deadlock is a problem of mutual waiting. One transaction has a resource that another transaction needs, and a second transaction holds a resource that the first transaction needs. To control deadlocks, deadlocks can be detected or a time-out policy can be used. Deadlock detection involves resources to find transactions that are mutually waiting. A timeout is a simple approach but non deadlocked transactions may be affected. To resolve a deadlock, the concurrency control manager aborts (with a ROLLBACK statement) any transaction waiting for more than a specified time.
13.
What is locking granularity? What are the trade-offs of holding locks at a finer level versus a coarser level of granularity?

Ans: Locking granularity is the size of the database item locked. Holding locks at a finer level decreases waiting time, but increases overhead. Holding locks at a coarser level reduces overhead (number of locks held), but increases waiting time.

14.
What is an intent lock? Why are intent locks used on items of coarse granularity?

Ans: An intent lock is a lock on a large database item that indicates that the user intends to lock smaller items contained in the larger item. Intent locks are used on items of coarse granularity to alleviate blocking (waiting time) that would occur if shared or exclusive locks were held. In addition, intent locks allow efficient detection of conflicts among items of varying granularity.
15.
Why is the third condition of 2PL typically simplified so that locks are released at the end of a transaction?

Ans: The third condition of 2PL is typically simplified so that at least exclusive locks are released at the end of a transaction. Simplifying the definition of 2PL makes the protocol easier to enforce and prevents the uncommitted dependency problem. Holding locks until end of transaction obviates the difficult problem of predicting when a transaction may release locks. Holding write locks until end of transaction also prevents the uncommitted dependency problem because changes are not exposed to other transactions until permanent (after commit). However, releasing shard locks before end of transaction may lead to occurrences of the incorrect summary, the non repeatable read, and the phantom read problems.
16.
What is the appeal of optimistic concurrency control approaches? Why might optimistic concurrency control approaches not be used even if they provide better expected performance?

Ans: The appeal of optimistic concurrency control approaches is that transactions are permitted to access the database without acquiring locks. The performance of optimistic approaches depends on the frequency of conflicts. If conflicts increase, the performance of optimistic approaches decreases. Even if conflicts are rare, optimistic approaches can have more variability because the penalty for conflicts is larger in optimistic approaches. Pessimistic approaches resolve conflicts by waiting. Optimistic approaches resolve conflicts by rolling back and restarting. Restarting a transaction may delay a transaction more than waiting for a resource to be released.
17.
Explain the difference between volatile and nonvolatile storage.

Ans: Volatile storage loses its state when the power is disconnected. Nonvolatile storage does not lose its state when the power is disconnected.

18.
Explain the effects of local, system, and device failures on active and past transactions.

Ans: The effect of local failures can be distinguished in two kinds, program-detected failure and abnormal termination. Both kinds of failure affect one active transaction. The other two types of failure have more serious consequences but are not frequent. A system failure is an abnormal termination of the operating system. A system failure affects all active transactions. A device failure affects all active and past transactions stored on the device.
19.
Why is force writing the most fundamental tool of recovery management?

Ans: Force writing is the most fundamental tool of recovery management because it allows the recovery manager to reason when data are written to nonvolatile storage. Without the ability to control the timing of write operations to non-volatile storage, recovery is not possible. Force writing means that the DBMS, not the operating system, controls when data are written to nonvolatile storage.
20.
What kind of redundant data is stored in a log? Why is management of the log critical to recovery?
Ans: A typical log record contains a unique log sequence number (LSN), a transaction identifier, a database action, a time, a row identifier, a column name, and values (old and new). Management of the log is critical to recovery because a log can add considerable storage overhead. Because of this large size, many organizations have both an on-line log stored on disk and an archive log stored on magnetic tape. In addition to the size, the integrity of the log is crucial. Some DBMSs can maintain redundant logs to provide non-stop processing in case of a log failure.
21.
What is the checkpoint interval? What is the trade-off in determining the checkpoint interval?
Ans: The checkpoint interval is defined as the period between checkpoints. The interval can be expressed as a time (such as five minutes) or as a size parameter such as the number of committed transactions, the number of log pages, or the number of database pages. The checkpoint interval is a design parameter. A small interval reduces restart work but causes more overhead to record checkpoints. A large interval reduces checkpoint overhead but increases restart work.
22.
What processing occurs when a cache-consistent checkpoint occurs?

Ans: Recording a checkpoint may involve considerable disruption in transaction processing as all transaction activity ceases while a checkpoint occurs. No new transactions can begin and existing transactions cannot initiate new operations during a checkpoint. The length of the disruption depends on the type of checkpoint used. In a cache-consistent checkpoint, buffer pages (log pages and some dirty database pages) remaining in memory are written to disk and then the checkpoint record is written to the log. A page is dirty if it has been changed by a transaction.
23.
What is a fuzzy checkpoint? What are the advantages of a fuzzy checkpoint as compared to a cache-consistent checkpoint?

Ans: In a fuzzy checkpoint, the recovery manager only writes the buffer pages since the previous checkpoint. Most of these pages should have already been written to disk before the checkpoint. At restart time, the recovery manager uses the two most recent fuzzy checkpoint records in the log. Thus, fuzzy checkpoints involve less overhead than cache-consistent checkpoints but may require more restart work.
24.
What is an incremental checkpoint? How can the amount of restart work be controlled with incremental checkpoints?
Ans: In an incremental checkpoint, no database pages are written to disk. Instead, dirty database pages are periodically written to disk in ascending age order. At checkpoint time, the log position of the oldest dirty data page is recorded to provide a starting point for recovery. The amount of restart work can be controlled by the frequency of writing dirty data pages. overhead than cache-consistent checkpoints but may require more restart work.

25.
What restart work is necessary for a media failure?

Ans: The restart work for a media failure is the restoring from the most recent backup and applying the redo operator to all committed transactions.

26.
What restart work is necessary for local and system failures under the immediate update approach?

Ans: In restart work for local failure under the immediate update approach, all log records of the transaction are found. The undo operation is then applied to each log record of the transaction. In restart work for system failure under the immediate update approach, both undo and redo operations may be involved because all active users are affected. T2 transactions (started before the checkpoint and finished after the checkpoint) must be redone from the checkpoint because only database changes prior to the checkpoint are stable. T3 transactions (started after the checkpoint and finished after the checkpoint) must be redone entirely because database changes are not guaranteed to be stable even though some changes may be recorded on disk. T4 and T5 transactions (not committed at the failure time) must be undone entirely because some database changes after the checkpoint may be recorded on disk
27.
What restart work is necessary for local and system failures under the deferred update approach?

Ans: Local failures under the deferred update approach are handled without any restart work because no database changes occur until after a transaction commits; the transaction is aborted without any undo work. System failures require redo operations only. T4 and T5 transactions (not yet committed) do not require undo operations because no database changes are written to disk until after a transaction commits. T2 and T3 transactions (committed after the checkpoint) require redo operations because it is not known whether all database changes are stable. T2 transactions (started before the checkpoint) must be redone from the first log record rather than just from the checkpoint as in the immediate update approach.
28.
What is a transaction boundary? Why can an inappropriate choice for transaction boundary lead to poor performance?

Ans: A transaction boundary is an important decision of transaction design in which an application in which a collection of SOL statements is divided into one or more transactions. An inappropriate choice for transaction boundary may cause the transaction duration to be longer and keep other transactions waiting, which leads to poor performance.

29.
What criteria should be used in selecting a transaction boundary?

Ans: In selecting a transaction boundary, the criteria that should be used are not only the number of reads and writes to a database but also the time spent waiting for user responses. The choice of a transaction boundary should balance the duration of a transaction with the need to enforce integrity constraints during the execution of a transaction.

30.
Why must constraints such as the debit–credit constraint be enforced as part of a transaction rather than between transactions?

Ans: Because constraint checking must occur by the end of a transaction. If the SQL statement to post a debit and a credit are placed in the same transaction, the DBMS can enforce the accounting constraint at the end of a transaction. If they are placed in separate/between transactions, constraint checking cannot occur until after both transactions are committed.

31.
Explain the difference between system-independent and system-dependent hot spots. Why is it useful to identify hot spots?

Ans: System-independent hot spots are parts of a table that many users simultaneously may want to change. System-dependent hot spots depend on the DBMS. It is useful to identify hot spots so that a designer can understand how transaction boundaries can affect performance.

32.
Explain the three choices for transaction boundary of a hierarchical form.

Ans: When designing a hierarchical form, the database programmer has three choices for the transaction boundary: (1) the entire form, (2) the main form as one transaction and all subform lines as a second transaction, and (3) the main form as one transaction and each subform line as a separate transaction. The third choice is usually preferred because it provides transactions with the shortest duration. However, constraint checking may force the choice to (1) or (2).

33.
How can deadlock possibility be influenced by the choice of a transaction boundary?

Ans: If the transaction boundary choice includes multiple resources (enrollment seats, inventory items, flight seats), deadlocks can occur when transactions have mutual waiting among the hot spots. If the transaction boundary choice only includes a single resource, deadlocks will not occur. However, there may be other reasons that influence the transaction boundary choice besides deadlock possibility.
34.
What side effect can occur by moving user interaction outside a transaction boundary?

Ans: Normally user interaction should be placed outside of a transaction to reduce waiting times of concurrent users as locks will be held for less time. However, side effects may occur as a result of removing user interaction. With the user interaction outside of the transaction, a seat on the flight may not be available even though the user was just informed about the flight’s availability. A database analyst should monitor the occurrence of this side effect. If the side effect is rare, the interaction code should remain outside of the transaction. If the side effect occurs with a reasonable frequency, it may be preferable to retain the user interaction as part of the transaction.
35.
What is the purpose of the SQL isolation levels?

Ans: The isolation level specifies the degree to which a transaction is separated from the actions of other transactions. A transaction designer can balance concurrency control overhead with potential interference problems by specifying the appropriate isolation level.
36.
How do the isolation levels achieve more concurrent access?
Ans: The isolation levels vary according to the duration and type of locks held. The isolation levels are SERIALIZABLE (all locks held until EOT), REPEATABLE READ (short-term predicate locks), READ COMMITTED (no predicate locks, short-term shared locks), and READ UNCOMMITTED (no locks held).
37.
What isolation level can be dangerous and why?

Ans: Although SQL:1999 provides SERIALIZABLE as the default level, some DBMS vendors such as Oracle and Microsoft SQL Server use READ COMMITTED as the default level. READ COMMITTED can be a dangerous default level as it permits a variation of the lost update problem known as the scholar’s lost update.
38.
Provide an example of a constraint for which deferred enforcement may be appropriate.

Ans: Students' responses may vary. However, an example might be an enrollment transaction with constraints about co-requisites. The co-requisite constraints should be checked after all courses are selected, not after selecting each course in which to enroll.
39.
What SQL statements and clauses involve constraint timing specification?

Ans: SQL statements and clauses involve constraint timing specification are the SET CONSTRAINTS statement and the DEFERRABLE INITIALLY DEFERRED and DEFERRABLE INITIALLY IMMEDIATE clauses.
40.
What is the role of the DBA in specifying of constraint timing?

Ans: The DBA uses the constraint timing clause for constraints that may need deferred checking.

41.
What is the role of the transaction designer in specifying of constraint timing?

Ans: The transaction designer may specify whether deferrable constraints are deferred or immediately enforced using the SET CONSTRAINTS statement.

42.
What is the purpose of a save point?

Ans: SQL:2003 provides the SAVEPOINT statement to allow partial rollback of a transaction. Save points are useful in complex transactions that have tentative operations that a user can cancel.
43.
How can a save point be used in deadlock resolution?

Ans: Save points are also used internally by some enterprise DBMSs to resolve deadlocks. Instead of rolling back an entire transaction, the DBMS rolls back a transaction to its last save point. Implicit save points can be used by a DBMS after each SQL statement to reduce the amount of lost work.
44.
What is a workflow and how is it related to database transactions?

Ans: A workflow is a collection of related tasks structured to accomplish a business process. Workflow defines the order of transactions, the conditions for transactions, and the results of performing transactions.

45.
What are the differences between human-oriented and computer-oriented workflows?

Ans: In human-oriented workflows, humans provide most of the judgment to accomplish work. In computer-oriented workflow, the computer determines the processing of work.

46.
Provide an example of a workflow with high task complexity and another example with high task structure.

Ans: Students' responses may vary. However, an example might be: For high task complexity, the example may be the decision to grant a loan that involves complex reasoning using many variables. For high task structure, the example may be processing an insurance claim that may have conditions about denying the claim, litigating the claim, and investigating the claim.

47.
Discuss the enabling technologies for workflow management. What role does transaction management play in workflow management?

Ans: For workflow management, three enabling technologies are important:

· Distributed Object Management: Workflows can involve many types of data in remote locations.

· Workflow Specification and Implementation: Workflow involves identifying the tasks and specifying the relationships among tasks. Then the implementation may involve diverse hardware, software, and people.

· Customized Transaction Management: To more fully support workflow management, some industry leaders have proposed that transaction management should be customized according to workflow requirements.

48.
What are limitations of transaction management to support workflows?

Ans: Limitations of transaction management to support workflows are:

· Some transactions may involve subtasks, changing the notation of atomicity.

· Some workflows involve tasks with a long duration because of user interaction. Transaction management may not work well.

· Some transactions may be performed by legacy systems that do not support ACID properties.

· Some workflows may require transactions to be undone after they are complete.

49.
What is the relationship between incremental checkpoints and recovery processes?

Ans: Incremental checkpoints require the usage of the immediate update process because dirty database pages are periodically written to disk before a transaction commits.
50.
What level of involvement is necessary to utilize recovery and concurrency control services provided by a DBMS?

Ans: Recovery and concurrency control involve overhead that may require additional resources and careful monitoring to reach an acceptable level of performance. The DBA must be aware of the resource implications of these services. More computing resources such as memory, disk space, and parallel processing may be useful to improve performance. Performance monitoring is required to ensure adequate performance. The DBA should monitor key indicators of performance and change parameter settings to alleviate performance problems..
PAGE
1
Chapter 15: End of Chapter Question Solutions

