Chapter 18
questions

 1.
How does the use of complex data drive the need for object database technology?

 Ans: The need to store large amounts of complex data and integrate complex data with simple data drives the demand for object database technology.

2.
What problems are caused by mismatches between the types provided by a DBMS and a programming language?

Ans: A mismatch between the data types in a relational DBMS and the data types of a programming language makes software more complex and difficult to develop. There may be considerable coding to transform between the relational database representation and the programming language representation. In addition, a relational DBMS cannot perform elementary operations on complex data. Thus, a computer program must be written instead of using a query language.
 3.
Present an example application that uses both simple and complex data. Use a different application than discussed in Section 16.1.3.

Ans: Students' responses will vary. However, an example response might be: Law enforcement agencies require a collection of simple and complex data. Simple data include facts about criminal suspects, crimes, and locations. Complex data include digital maps, crime scene evidence using photographs and videos, and suspect drawings. Queries can combine simple data and complex data. For example, a query is useful to combine facts about crime scene with digital evidence.
 4.
Define encapsulation. How does encapsulation support the goal of data independence?

Ans: Encapsulation means objects can be accessed only through their interfaces. The caller has no knowledge of object variables method implementations. As long as the interfaces are the same, changes to the internal details can be made without changing the code that uses the objects.

 5.
How do object DBMS relax encapsulation? Why is encapsulation relaxed?

Ans: DBMSs allow the access of data inside of an object so that they can be referenced in a query. This practice is usually done by retrieval and update methods with the same names as the columns. DBMSs use security to control access to object features, not encapsulation as practiced in object-oriented programming. Security control is much more flexible than encapsulation for controlling access to object features.
 6.
Define inheritance. What are the benefits of inheritance?

Ans: Inheritance is the sharing of data and code among similar classes. This provides an improved organization of software and incremental reusability.
 7.
Define polymorphism. What are the benefits of polymorphism?

Ans: Polymorphism is the ability of a computing system to choose among multiple implementations of a method. This service supports fewer and more reusable methods. Because a method can have multiple implementations, the number of method names is reduced.

 8.
What is strong type checking? Why is strong type checking important?

Ans: Strong type checking is the ability to ensure that programming code contains no incompatibility errors. Because complex expressions can involve many methods and objects, strong type checking is an important kind of consistency check in object-oriented computing.

 9.
What is the difference between static and dynamic binding?

Ans: Static binding associates a message to a method implementation during compile time. Dynamic binding associates a message to a method implementation during execution time.

10.
Which implementation of object-oriented principles occurred first: object-oriented programming languages or object DBMS?

Ans: Object-oriented programming languages occurred first.

11.
Compare the emphasis in object-oriented programming languages to object DBMS.

Ans: Object-oriented programming languages emphasize software maintenance and code reusability. Object DBMSs emphasize complex data and efficient data access.

12.
Discuss the reasons that multiple object DBMS architectures have been developed.

Ans: Part of the variety is historical due to the slow initial development of the technology. Early approaches provided small extensions that left most of the object-oriented processing outside of a DBMS. As user interest increased and research and development matured, more complete approaches for object-oriented databases have emerged. The marketplace probably will support a variety of approaches because of the different requirements among customers.
13.
Discuss the benefits and limitations of storing large objects in the database. Why is external software needed when large objects are stored in a database?

Ans: The large object approach is simple to implement and universal. There are minimal changes to a DBMS. However, DBMS have no knowledge of the structure of the large object, so no optimization or filtering is possible. External software is needed to display and manipulate the large object.

14.
Discuss the benefits and the limitations of using specialized media servers.

Ans: Specialized media servers have better performance than the large object approach but sacrifice some flexibility because media servers are highly specialized for some specific kinds of complex data. Also, API access to media servers may be limited.
15.
Discuss the benefits and the limitations of using object database middleware. Why does object database middleware support the broadest range of complex data?

Ans: Object database middleware provides users a transparent way of working with mixed data. By using middleware to manage two data types, this approach is more flexible and can handle the broadest range of complex data. Object database middleware still suffers from performance problems with combining complex and simple data, because DBMS cannot optimize requests that simultaneously combine simple and complex data.

16.
Discuss the benefits and the limitations of using an object relational DBMS. What changes are made to the query processor of a relational DBMS to convert it into an object relational DBMS?

Ans: Object relational DBMS use table-driven code for user-defined types. Parser, optimizer, and display manager need to be changed. This approach provides good integration of complex data with the possibility of sacrificing reliability because of the modification needed.

17.
Discuss the benefits and the limitations of using an object-oriented DBMS. How does an object-oriented DBMS differ from an object-relational DBMS?

Ans: Some experts have argued that more fundamental changes to a DBMS are needed to support objects. Both the data model and the kernel must be changed to accommodate objects. This conviction has driven a number of start-up software companies to implement a new class of object DBMSs.
18.
What is the status of the ODMG standard and ODMG compliant DBMSs?

Ans: Commercially, the ODMG effort has been eclipsed by the object relational standards in SQL:2003. The ODMG group disbanded in 2001 and development of ODMG compliant DBMSs has faltered also.
19.
Which object DBMS architecture do you think will dominate in five years?

Ans: The object relational approach as specified in the SQL:2003 standard is beginning to dominate. All of the architectures fulfill a certain market niche. The simpler architectures (large objects and media servers) should become less popular over time. Because of the current dominance of relational databases, the object relational DBMS architecture will likely dominate the object-oriented architecture. The object database middleware architecture will likely co-exist with the other architectures to handle complex data stored outside of a database.

20.
What is a persistent object? What is the difference between a persistent object and a temporary object?

Ans: A persistent object is the object that exists after a program terminates, versus a temporary object which exists only as long as a program is running.

21.
Why are there two standard languages for object DBMSs?

Ans: Because there are two separate standard groups (ODMG and SQL).

22.
What are the components of a user-defined type in SQL:2003?

Ans: The components of a user-defined type are properties and methods.

23.
What are the differences between SQL:2003 methods, functions, and procedures?

Ans: SQL:2003 methods are somewhat limited in that they must return single values and only use input parameters. In addition, the first parameter of a method is implicitly an instance of the type in which it is associated. Functions and procedures in SQL:2003 do not have the restrictions of methods. Because functions and procedures are not associated with a specific type, SQL:2003 provides separate definition statements (CREATE FUNCTION and CREATE PROCEDURE). Procedures can use input, output, and input-output parameters whereas functions only use input parameters.
24.
How are SQL:2003 user-defined types used in table definitions and expressions?

Ans: SQL:2003 user-defined types are used for bundling data and procedures together. SQL:2003 user-defined types are defined with the CREATE TYPE statement.
25.
What is a row type? How are row types used in SQL:2003 table definitions?

Ans: A row type is a sequence of name/value pairs. One use of a row type is to collect related columns together so that they can be stored as a variable or passed as a parameter.

26.
Explain the encapsulation differences for user-defined types versus tables in SQL:2003.

Ans: The columns in a table are not encapsulated, but the data in user-defined type are encapsulated.

27.
What is a typed table?

Ans: A typed table is associated with a user-defined type. The columns are declared in the user-defined type. Constraints are defined in the typed table. Rows of typed tables are objects that have associated object identifiers.
28.
How do you define a subtable?

Ans: Subtables must be typed tables. To define a subtable, first define a user defined type for the subtable. The subtable’s type must be a subtype of the parent table’s type. After defining the subtable’s type, define the subtable using the UNDER keyword for the parent table.
29.
Discuss the relationship of subtable families and set inclusion.

Ans: Set inclusion determines the relationship of a table to its subtables. Every row in a subtable is also a row in each of its parent tables. Each row of a parent table corresponds to at most one row in direct subtables. This set inclusion relationship extends to an entire subtable family, including the root table and all subtables.
30.
What side effects occur when a row is inserted in a subtable?

Ans: When a row is inserted in a subtable, a corresponding row is inserted into each parent table. The insert cascades upward in the subtable family until it reaches the maximal table.

31.
What side effects occur when a subtable row is updated?

Ans: When a subtable row is updated, the column is also updated in all direct and indirect subtables that inherit the column.
32.
What side effects occur when a subtable row is deleted?

Ans: When a subtable row is deleted, every corresponding row in both parent and subtables are also deleted.
33.
What is the difference between a foreign key and a reference?

Ans: A reference is an object identifier. Object identifiers can be system generated or user generated. A traditional foreign key is similar to a user generated object identifier.
34.
When should you use a SELECT statement as part of an INSERT statement when adding objects to a typed table?
Ans: You should use a SELECT statement to obtain an object identifier for a reference column when the object identifiers of the referenced table are system generated. If object identifiers for a referenced table are user generated (such as primary key values), a SELECT statement may not be necessary.
35.
What is the difference in notation between combining tables that are linked by a foreign key versus a column with a reference type?

Ans: While the notation for a foreign key is the join operator, the notation for a column with a reference type is the dereference operator ().

36.
What is a path expression? When do you use a path expression?

Ans: A path expression is a SQL:2003 feature for data retrieval. A path expression is used when you want to manipulate columns with row types.

37. When do you need to use the dereference operator () in an expression?

Ans: You need to use the dereference operator () in an expression when you want to traverse a column of type REF.
38. What is the purpose of the ONLY keyword in a SQL:2003 SELECT statement?
Ans: You should use the ONLY keyword to test membership in a specific table without being a member of other subtables. The ONLY keyword restricts the scope to objects whose most specific type is associated with the table following the ONLY keyword.
39. Compare and contrast methods in SQL:2003 with methods in Oracle 10g.
Ans: Oracle 10g supports functions and procedures as methods compared to only method functions in SQL:2003. In addition, Oracle 10g supports order methods for direct object to object comparisons, map methods for indirect object comparisons, and static methods for global operations that do not need to reference the data of an object instance.
40. What are criteria for overriding a method in Oracle 10g?
Ans: In Oracle 10g, overriding methods have the same name and signature in the parent type and subtype. A signature consists of the method’s name and the number, types, and order of the parameters. If the two methods have a different signature, there is no overriding as both methods exist in the subtype.
41. What is the most significant limitation for object databases in Oracle 10g as compared to SQL:2003?
Ans: The omission of subtables is the most significant limitation in Oracle 10g. The alternatives to subtables (type substitutability and view hierarchies) do not seem entirely satisfactory.
42. Briefly discuss the importance of object features in Oracle 10g that are not part of SQL:2003.
Ans: Oracle provides two features, type substitutability and hierarchical views, that extend beyond the object features in SQL:2003. Type substitutability and hierarchical views can substitute for the lack of subtables although subtables seem preferable.
43. What is minimal conformance for SQL:2003?

Ans: Minimal conformance includes all core features in the SQL/Framework, SQL/Foundation, and Information Schemas documents.
44. What is enhanced conformance for SQL:2003?

Ans: Enhanced conformance can be claimed for the mandatory features in a part, the optional features in a part, and the features in a package.
45. Briefly discuss the state of conformance testing for SQL:2003.
Ans: Because of the lack of testing suites and independent certification, the conformance level of a specific DBMS is difficult to determine. Most vendors provide checklists of supported features, unsupported features, and features supported with proprietary extensions.
46. In SQL:2003, what is the difference between the ARRAY and MULTISET collection types?
Ans: SQL:2003 features the ARRAY and MULTISET collection types to support types with more than one value such as time series and geometric shapes. Arrays support bounded ordered collections, while multisets support unbounded, unordered collections.
47. What are the Oracle 10g counterparts of the SQL:2003 collection types?

Ans: Oracle 10g uses the VARRAY and NESTED TABLE collection types as counterparts of the SQL:2003 ARRAY and MULTISET types.
48. What is the role of nested tables in table design and database application development?

Ans: The role is not clear as design theory and practice are not fully established. Nested tables are useful at the application level especially for complex business rules involving stored procedures. Nested tables can be useful to reduce the type system mismatch between a DBMS and a programming language as discussed in Section 18.1.2. At the table design level, the usage of nested tables is not clear for business databases. Although some design theory exists for nested tables, the theory is not widely known or practiced.
49. What are common pre-built user-defined data types that are commercially available in enterprise DBMSs?

Ans: The common pre-built data types are spatial, text, XML, image, video, time series, and geodetic.
50. What is a package in the SQL:2003 standard?

Ans: A package is a collection of optional features for some application area or implementation environment.

PAGE
1
Chapter 18: End of Chapter Question Solutions

