PAGE
19
10/16/2005
Answers to Chapter 9 Problems

Answers to Chapter 9 Problems

1. The Access and Oracle solutions use different date formats.

Access SQL:

SELECT CustNo, CustFirstName, CustLastName, CustCity

 FROM Customer

 WHERE CustBal > 150 AND CustNo IN

 (SELECT CustNo

 FROM OrderTbl

 WHERE OrdDate BETWEEN #2/1/2007# AND #2/28/2007#)

Oracle SQL:

SELECT CustNo, CustFirstName, CustLastName, CustCity

 FROM Customer

 WHERE CustBal > 150 AND CustNo IN

 (SELECT CustNo

 FROM OrderTbl

 WHERE OrdDate BETWEEN '1-Feb-2007' AND '28-Feb-2007');
2. The nested query references the outer query in the condition involving the CustNo columns.

Access SQL:

SELECT CustNo, CustFirstName, CustLastName, CustCity

 FROM Customer

 WHERE CustBal > 150 AND EXISTS

 (SELECT CustNo

 FROM OrderTbl

 WHERE OrdDate BETWEEN #2/1/2007# AND #2/28/2007#

 AND Customer.CustNo = OrderTbl.CustNo)

Oracle SQL:

SELECT CustNo, CustFirstName, CustLastName, CustCity

 FROM Customer

 WHERE CustBal > 150 AND EXISTS

 (SELECT CustNo

 FROM OrderTbl

 WHERE OrdDate BETWEEN '1-Feb-2007' AND '28-Feb-2007'

 AND Customer.CustNo = OrderTbl.CustNo);
3. Type I nested queries work for this problem because the result table contains columns from only one table.

Access SQL:

SELECT ProdNo, ProdName, ProdPrice

 FROM Product

 WHERE ProdPrice > 150 AND ProdNo IN

 (SELECT ProdNo

 FROM OrdLine

 WHERE OrdNo IN

 (SELECT OrdNo

 FROM OrderTbl

 WHERE OrdDate = #1/23/2007#))

Oracle SQL:

SELECT ProdNo, ProdName, ProdPrice

 FROM Product

 WHERE ProdPrice > 150 AND ProdNo IN

 (SELECT ProdNo

 FROM OrdLine

 WHERE OrdNo IN

 (SELECT OrdNo

 FROM OrderTbl

 WHERE OrdDate = '23-Jan-2007'));
4. Type I nested queries work for this problem because the result table contains columns from only one table.

Access SQL:

SELECT ProdNo, ProdName, ProdPrice

 FROM Product

 WHERE ProdPrice > 150 AND ProdNo IN

 (SELECT ProdNo

 FROM OrdLine

 WHERE OrdNo IN

 (SELECT OrderTbl.OrdNo

 FROM OrderTbl, Customer

 WHERE OrdDate BETWEEN #1/1/2007# AND #1/31/2007#

 AND OrderTbl.CustNo = Customer.CustNo AND CustBal > 400))

Oracle SQL:

SELECT ProdNo, ProdName, ProdPrice

 FROM Product

 WHERE ProdPrice > 150 AND ProdNo IN

 (SELECT ProdNo

 FROM OrdLine

 WHERE OrdNo IN

 (SELECT OrderTbl.OrdNo

 FROM OrderTbl, Customer

 WHERE OrdDate BETWEEN '1-Jan-2007' AND '31-Jan-2007'

 AND OrderTbl.CustNo = Customer.CustNo AND CustBal > 400)) ;
5. The Oracle 8i solution uses the (+) notation in the WHERE clause instead of the SQL:2003 LEFT JOIN keywords in the FROM clause. The “(+)” notation is placed by the null table (Employee). In contrast, the LEFT JOIN means preserve rows of the table on the left.

Access SQL

SELECT OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName

 FROM OrderTbl LEFT JOIN Employee ON OrderTbl.EmpNo = Employee.EmpNo

 WHERE OrdDate = #1/23/2007#

Oracle 9i, 10g SQL

SELECT OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName

 FROM OrderTbl LEFT JOIN Employee ON OrderTbl.EmpNo = Employee.EmpNo

 WHERE OrdDate = '23-Jan-2007';
Oracle 8i SQL

SELECT OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName

 FROM OrderTbl, Employee

 WHERE OrdDate = '23-Jan-2007' AND OrderTbl.EmpNo = Employee.EmpNo (+);
6.

Access SQL

SELECT OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName,

 Customer.CustNo, CustFirstName, CustLastName

 FROM (OrderTbl LEFT JOIN Employee ON OrderTbl.EmpNo = Employee.EmpNo)

 INNER JOIN Customer ON Customer.CustNo = OrderTbl.CustNo

 WHERE OrdDate = #1/23/2007#

Oracle 9i, 10g SQL

SELECT OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName,

 Customer.CustNo, CustFirstName, CustLastName

 FROM (OrderTbl LEFT JOIN Employee ON OrderTbl.EmpNo = Employee.EmpNo)

 INNER JOIN Customer ON Customer.CustNo = OrderTbl.CustNo

 WHERE OrdDate = '23-Jan-2007';
Oracle 8i SQL

SELECT OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName,

 Customer.CustNo, CustFirstName, CustLastName

 FROM OrderTbl, Employee, Customer

 WHERE OrdDate = '23-Jan-2007' AND OrderTbl.EmpNo = Employee.EmpNo (+)

 AND Customer.CustNo = OrderTbl.CustNo;
7. This problem requires a full outer join as shown in the SQL:2003 solution. Since neither Access nor Oracle 8i supports the full outer join, two one-sided outer joins and a union are required. In the Access solution, the columns in the FROM clause must be qualified with the table name. Otherwise, Access will not execute the statement.

SQL:2003 and Oracle 9i, 10g:
SELECT *

 FROM Customer FULL JOIN Employee

 ON Customer.CustFirstName = Employee.EmpFirstName

 AND Customer.CustLastName = Employee.EmpLastName;
Access SQL:

SELECT Customer.*, Employee.*

 FROM Customer LEFT JOIN Employee

 ON Customer.CustFirstName = Employee.EmpFirstName

 AND Customer.CustLastName = Employee.EmpLastName

 UNION

SELECT Customer.*, Employee.*

 FROM Customer RIGHT JOIN Employee

 ON Customer.CustFirstName = Employee.EmpFirstName

 AND Customer.CustLastName = Employee.EmpLastName

Oracle 8i SQL:

SELECT Customer.*, Employee.*

 FROM Customer, Employee

 WHERE Customer.CustFirstName = Employee.EmpFirstName (+)

 AND Customer.CustLastName = Employee.EmpLastName (+)

 UNION

SELECT Customer.*, Employee.*

 FROM Customer, Employee

 WHERE Customer.CustFirstName (+) = Employee.EmpFirstName

 AND Customer.CustLastName (+) = Employee.EmpLastName;
8. In the Access solution, the LEFT JOIN must be nested inside the INNER JOIN operations. Access does not support inner joins nested inside one-sided outer joins (LEFT or RIGHT) joins.

Access SQL:

SELECT OrderTbl.OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName,

 Customer.CustNo, CustFirstName, CustLastName, OrdLine.Qty,

 Product.ProdNo, ProdName

FROM (((OrderTbl LEFT JOIN Employee ON OrderTbl.EmpNo = Employee.EmpNo)

 INNER JOIN Customer ON Customer.CustNo = OrderTbl.CustNo)

 INNER JOIN OrdLine ON OrderTbl.OrdNo = OrdLine.OrdNo)

 INNER JOIN Product ON OrdLine.ProdNo = Product.ProdNo

WHERE OrdDate BETWEEN #1/1/2007# AND #1/31/2007#

 AND ProdName LIKE '*Ink Jet*'

Oracle 9i, 10g SQL:

SELECT OrderTbl.OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName,

 Customer.CustNo, CustFirstName, CustLastName, OrdLine.Qty,

 Product.ProdNo, ProdName

FROM (((OrderTbl LEFT JOIN Employee ON OrderTbl.EmpNo = Employee.EmpNo)

 INNER JOIN Customer ON Customer.CustNo = OrderTbl.CustNo)

 INNER JOIN OrdLine ON OrderTbl.OrdNo = OrdLine.OrdNo)

 INNER JOIN Product ON OrdLine.ProdNo = Product.ProdNo

WHERE OrdDate BETWEEN '1-Jan-2007' AND '31-Jan-2007'

 AND ProdName LIKE '%Ink Jet%';
Oracle 8i SQL:

SELECT OrderTbl.OrdNo, OrdDate, Employee.EmpNo, EmpFirstName, EmpLastName,

 Customer.CustNo, CustFirstName, CustLastName, OrdLine.Qty,

 Product.ProdNo, ProdName

 FROM OrderTbl, Customer, Employee, OrdLine, Product

 WHERE OrderTbl.EmpNo = Employee.EmpNo (+)

 AND Customer.CustNo = OrderTbl.CustNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND OrdDate BETWEEN '1-Jan-2007' AND '31-Jan-2007'

 AND ProdName LIKE '%Ink Jet%';
9.

Access SQL:

SELECT Customer.CustNo, CustFirstName, CustLastName

 FROM Customer

 WHERE CustState = 'CO' AND NOT EXISTS

 (SELECT *

 FROM OrderTbl

 WHERE OrdDate BETWEEN #2/1/2007# AND #2/28/2007#

 AND OrderTbl.CustNo = Customer.CustNo)

Oracle SQL:

SELECT Customer.CustNo, CustFirstName, CustLastName

 FROM Customer

 WHERE CustState = 'CO' AND NOT EXISTS

 (SELECT *

 FROM OrderTbl

 WHERE OrdDate BETWEEN '1-Feb-2007' AND '28-Feb-2007'

 AND OrderTbl.CustNo = Customer.CustNo);
10.

Access SQL:

SELECT Customer.CustNo, CustFirstName, CustLastName

 FROM Customer

 WHERE CustState = 'CO' AND CustNo NOT IN

 (SELECT CustNo

 FROM OrderTbl

 WHERE OrdDate BETWEEN #2/1/2007# AND #2/28/2007#)

Oracle SQL:

SELECT Customer.CustNo, CustFirstName, CustLastName

 FROM Customer

 WHERE CustState = 'CO' AND CustNo NOT IN

 (SELECT CustNo

 FROM OrderTbl

 WHERE OrdDate BETWEEN '1-Feb-2007' AND '28-Feb-2007')

11. The first part of the solution retrieves all Colorado customers. The second part retrieves Colorado customers with orders in February 2007. The MINUS keyword retrieves the customers in the first set that do not appear in the second set. Note that this solution does not execute in Access.

SELECT Customer.CustNo, CustFirstName, CustLastName

 FROM Customer

 WHERE CustState = 'CO'

MINUS

SELECT Customer.CustNo, CustFirstName, CustLastName

 FROM Customer

 WHERE CustState = 'CO' AND CustNo IN

 (SELECT CustNo

 FROM OrderTbl

 WHERE OrdDate BETWEEN '1-Feb-2007' AND '28-Feb-2007');
12. This problem cannot be formulated using a one-sided outer join and an IS NULL condition because it involves another condition (OrdDate in February 2007) on OrderTbl.
13.

 Access SQL:

SELECT EmpNo, EmpLastName, EmpFirstName

FROM Employee

WHERE EmpPhone LIKE '(720)*' AND NOT EXISTS

 (SELECT * FROM OrderTbl WHERE Employee.EmpNo = OrderTbl.EmpNo)
 Oracle SQL:

SELECT EmpNo, EmpLastName, EmpFirstName

FROM Employee

WHERE EmpPhone LIKE '(720)%' AND NOT EXISTS

 (SELECT * FROM OrderTbl WHERE Employee.EmpNo = OrderTbl.EmpNo)
14. The condition “EmpNo IS NOT NULL” is needed in the nested query to eliminate the null value in the result of the nested query. Otherwise, the result contains no rows because an employee number compared to null returns null, not false.
Access SQL:

SELECT EmpNo, EmpLastName, EmpFirstName

FROM Employee

WHERE EmpPhone LIKE '(720)*' AND EmpNo NOT IN

(SELECT EmpNo FROM OrderTbl WHERE EmpNo IS NOT NULL)
Oracle SQL:

SELECT EmpNo, EmpLastName, EmpFirstName

FROM Employee

WHERE EmpPhone LIKE '(720)%' AND EmpNo NOT IN

(SELECT EmpNo FROM OrderTbl WHERE EmpNo IS NOT NULL)

15.

Access SQL:

SELECT Employee.EmpNo, EmpLastName, EmpFirstName

FROM Employee LEFT JOIN OrderTbl ON Employee.EmpNo = OrderTbl.EmpNo

WHERE EmpPhone LIKE '(720)*' AND OrderTbl.EmpNo IS NULL

Oracle SQL:

SELECT Employee.EmpNo, EmpLastName, EmpFirstName

FROM Employee LEFT JOIN OrderTbl ON Employee.EmpNo = OrderTbl.EmpNo

WHERE EmpPhone LIKE '(720)%' AND OrderTbl.EmpNo IS NULL
16. The first part of the solution retrieves all employees in the “(720)” area code. The second part retrieves employees in the “(720)” area code who have taken orders. The MINUS keyword retrieves the employees in the first set who do not appear in the second set. Note that this solution does not execute in Access.

SELECT EmpNO, EmpFirstName, EmpLastName

 FROM Employee
 WHERE EmpPhone LIKE '(720)%'
MINUS

SELECT EmpNO, EmpFirstName, EmpLastName

 FROM Employee

 WHERE EmpPhone LIKE '(720)%' AND EmpNo NOT IN

 (SELECT EmpNo

 FROM OrderTbl);

17. This problem involves a difference operation. The conceptualization of the problem involves subtracting the set of orders containing more than one “ink jet” product from the set of orders containing any (1 or more) “ink jet” products. Using a Type II nested query connected by the NOT EXISTS operator is one way to perform difference operations in SQL.

Access SQL:

SELECT OrderTbl.OrdNo, Orddate

 FROM OrderTbl, OrdLine, Product

 WHERE OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND ProdName LIKE '*Ink Jet*' AND NOT EXISTS

 (SELECT *

 FROM OrdLine OL1, Product P1

 WHERE OL1.ProdNo = P1.ProdNo AND ProdName LIKE '*Ink Jet*'

 AND OL1.OrdNo = OrderTbl.OrdNo AND OL1.ProdNo <> Product.ProdNo)

Oracle SQL:

SELECT OrderTbl.OrdNo, Orddate

 FROM OrderTbl, OrdLine, Product

 WHERE OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND ProdName LIKE '%Ink Jet%' AND NOT EXISTS

 (SELECT *

 FROM OrdLine OL1, Product P1

 WHERE OL1.ProdNo = P1.ProdNo AND ProdName LIKE '%Ink Jet%'

 AND OL1.OrdNo = OrderTbl.OrdNo AND OL1.ProdNo <> Product.ProdNo)

18. This problem involves a difference operation. The conceptualization of the problem involves subtracting the set of customers who have ordered at least one “Connex” product from the set of customers who have ordered products from Connex plus any other manufacturer. Using a Type II nested query connected by the NOT EXISTS operator is one way to perform difference operations in SQL.

SELECT DISTINCT Customer.CustNo, CustFirstName, CustLastName

 FROM Customer, OrderTbl, OrdLine, Product

 WHERE OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND Customer.CustNo = OrderTbl.CustNo

 AND ProdMfg = 'Connex' AND NOT EXISTS

 (SELECT *

 FROM OrderTbl O1, OrdLine OL1, Product P1

 WHERE OL1.ProdNo = P1.ProdNo AND ProdMfg <> 'Connex'

 AND OL1.OrdNo = O1.OrdNo AND O1.CustNo = Customer.CustNo)

19. This problem requires a division operation because the problem statement involves orders containing every “Ink Jet” product, not just any “Ink Jet” product. The COUNT method is used for the division operation.

Access SQL:

SELECT OrderTbl.OrdNo, OrdDate

 FROM OrderTbl, OrdLine, Product

 WHERE OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND ProdName LIKE '*Ink Jet*'

 GROUP BY OrderTbl.OrdNo, OrdDate

 HAVING COUNT(*) =

 (SELECT COUNT(*)

 FROM Product

 WHERE ProdName LIKE '*Ink Jet*')

Oracle SQL:

SELECT OrderTbl.OrdNo, OrdDate

 FROM OrderTbl, OrdLine, Product

 WHERE OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND ProdName LIKE '%Ink Jet%'

 GROUP BY OrderTbl.OrdNo, OrdDate

 HAVING COUNT(*) =

 (SELECT COUNT(*)

 FROM Product

 WHERE ProdName LIKE '%Ink Jet%')

20. This problem requires a division operation because the problem statement involves products contained in every January 7 to 9, 2007 order. The COUNT method is used for the division operation.

Access SQL:

SELECT Product.ProdNo, ProdName

 FROM OrderTbl, OrdLine, Product

 WHERE OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND OrdDate BETWEEN #1/7/2007# AND #1/9/2007#

 GROUP BY Product.ProdNo, ProdName

 HAVING COUNT(*) =

 (SELECT COUNT(*)

 FROM OrderTbl

 WHERE OrdDate BETWEEN #1/7/2007# AND #1/9/2007#)

Oracle SQL:

SELECT Product.ProdNo, ProdName

 FROM OrderTbl, OrdLine, Product

 WHERE OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND OrdDate BETWEEN '7-Jan-2007' AND '9-Jan-2007'

 GROUP BY Product.ProdNo, ProdName

 HAVING COUNT(*) =

 (SELECT COUNT(*)

 FROM OrderTbl

 WHERE OrdDate BETWEEN '7-Jan-2007' AND '9-Jan-2007');
21. This problem requires a division operation because of the placement of the word “every” in the problem statement. The COUNT method is used for the division operation. The DISTINCT keyword is needed inside COUNT because a customer can order the same product across orders.
Oracle SQL:

SELECT Customer.CustNo, CustFirstName, CustLastName

 FROM Customer, OrderTbl, OrdLine, Product

 WHERE ProdMfg = 'ColorMeg, Inc.'

 AND OrdDate BETWEEN '1-Jan-2007' AND '31-Jan-2007'

 AND Customer.CustNo = OrderTbl.CustNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND Product.ProdNo = OrdLine.ProdNo

 GROUP BY Customer.CustNo, CustFirstName, CustLastName

 HAVING COUNT(DISTINCT Product.ProdNo) =

 (SELECT COUNT(*)

 FROM Product

 WHERE ProdMfg = 'ColorMeg, Inc.');
In Microsoft Access, you need to use a SELECT statement in the FROM clause to compensate for the lack of the DISTINCT keyword inside the COUNT function.
SELECT CustNo, CustFirstName, CustLastName

 FROM
 (SELECT DISTINCT Customer.CustNo, CustFirstName, CustLastName, Product.ProdNo

 FROM Customer, OrderTbl, OrdLine, Product

 WHERE ProdMfg = 'ColorMeg, Inc.'

 AND OrdDate BETWEEN #1/1/2007# AND #1/31/2007#

 AND Customer.CustNo = OrderTbl.CustNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND Product.ProdNo = OrdLine.ProdNo)

 GROUP BY CustNo, CustFirstName, CustLastName

 HAVING COUNT(*) =

 (SELECT COUNT(*)

 FROM Product

 WHERE ProdMfg = 'ColorMeg, Inc.')

22.

Access SQL:

DELETE FROM OrderTbl

 WHERE OrdDate BETWEEN #1/1/2007# AND #1/31/2007#

 AND CustNo IN

 (SELECT CustNo

 FROM Customer

 WHERE CustFirstName = 'Betty' AND CustLastName = 'Wise')

Oracle SQL:

DELETE FROM OrderTbl

 WHERE OrdDate BETWEEN '1-Jan-2007' AND '31-Jan-2007'

 AND CustNo IN

 (SELECT CustNo

 FROM Customer

 WHERE CustFirstName = 'Betty' AND CustLastName = 'Wise')

23. The solution requires two Type I nested queries to test conditions on the Customer and Employee tables.

Access SQL:

DELETE FROM OrderTbl

 WHERE OrdDate BETWEEN #1/1/2007# AND #1/31/2007#

 AND EmpNo IN

 (SELECT EmpNo

 FROM Employee

 WHERE EmpFirstName = 'Landi' AND EmpLastName = 'Santos')

 AND CustNo IN

 (SELECT CustNo

 FROM Customer

 WHERE CustState = 'CO')

Oracle SQL:

DELETE FROM OrderTbl

 WHERE OrdDate BETWEEN '1-Jan-2007' AND '31-Jan-2007'

 AND EmpNo IN

 (SELECT EmpNo

 FROM Employee

 WHERE EmpFirstName = 'Landi' AND EmpLastName = 'Santos')

 AND CustNo IN

 (SELECT CustNo

 FROM Customer

 WHERE CustState = 'CO')

24. The OR conditions include orders in which any part of the shipping address differs from the customer’s address.

SELECT OrderTbl.OrdNo, OrdDate, CustStreet, CustCity, CustState, CustZip,

 OrdStreet, OrdCity, OrdState, OrdZip

 FROM OrderTbl, Customer

 WHERE OrderTbl.CustNo = Customer.CustNo

 AND (OrdStreet <> CustStreet OR OrdCity <> CustCity

 OR OrdState <> CustState OR OrdZip <> CustZip)

25. This problem requires a division operator because of the placement of the word “every” in the problem statement. In the Oracle formulation, the COUNT function requires the DISTINCT keyword because the same customer can place more than one order in the time period. Access requires a nested query in the FROM clause because it does not support the DISTINCT keyword inside the COUNT function.

Oracle SQL:

SELECT Employee.EmpNo, EmpFirstName, EmpLastName

 FROM OrderTbl, Employee, Customer

 WHERE OrderTbl.CustNo = Customer.CustNo

 AND OrderTbl.EmpNo = Employee.EmpNo

 AND OrdDate BETWEEN '1-Jan-2007' AND '31-Jan-2007'

 GROUP BY Employee.EmpNo, EmpFirstName, EmpLastName

 HAVING COUNT(DISTINCT Customer.CustNo) =

 (SELECT COUNT(*)

 FROM Customer

 WHERE CustCity = 'Denver');
Access SQL:

SELECT EmpNo, EmpFirstName, EmpLastName

 FROM
 (SELECT DISTINCT Employee.EmpNo, EmpFirstName,

 EmpLastName, Customer.CustNo

 FROM OrderTbl, Employee, Customer

 WHERE OrderTbl.CustNo = Customer.CustNo

 AND OrderTbl.EmpNo = Employee.EmpNo

 AND OrdDate BETWEEN #1/1/2007# AND #1/31/2007#)

 GROUP BY EmpNo, EmpFirstName, EmpLastName

 HAVING COUNT(*) =

 (SELECT COUNT(*)

 FROM Customer

 WHERE CustCity = 'Denver')

26. This problem requires a nested query in the FROM clause because nested aggregates are involved.
SELECT CustNo, CustLastName, AVG(OrdAmt) AS AvgOrdAmt
 FROM
 (SELECT Customer.CustNo, CustLastName, OrderTbl.OrdNo,
 SUM(Qty*ProdPrice) AS OrdAmt
 FROM OrderTbl, Customer, OrdLine, Product
 WHERE OrderTbl.CustNo = Customer.CustNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo
 AND OrdLine.ProdNo = Product.ProdNo
 AND CustState = 'CO'

 GROUP BY Customer.CustNo, CustLastName, OrderTbl.OrdNo)

 GROUP BY CustNo, CustLastName

27. In Access, this problem requires two levels of nested queries in the FROM clause because Access does not support the DISTINCT keyword inside the COUNT function. The Access SQL formulation is difficult to formulate and resource intensive to execute.
Access SQL:

SELECT T1.CustNo, CustLastName, AvgOrdAmt, COUNT(*) AS NumOrders

 FROM

 (SELECT CustNo, CustLastName, AVG(OrdAmt) AS AvgOrdAmt

 FROM

 (SELECT Customer.CustNo, CustLastName, OrderTbl.OrdNo,

 SUM(Qty*ProdPrice) AS OrdAmt

 FROM OrderTbl, Customer, OrdLine, Product

 WHERE OrderTbl.CustNo = Customer.CustNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo
 AND CustState = 'CO'

 GROUP BY Customer.CustNo, CustLastName, OrderTbl.OrdNo)

 GROUP BY CustNo, CustLastName) T1, OrderTbl
 WHERE OrderTbl.CustNo = T1.CustNo

 GROUP BY T1.CustNo, CustLastName, AvgOrdAmt
Oracle SQL:

SELECT CustNo, CustLastName, AVG(OrdAmt) AS AvgOrdAmt,
 COUNT(DISTINCT OrdNo) AS NumOrders

 FROM

 (SELECT Customer.CustNo, CustLastName, OrderTbl.OrdNo,

 SUM(Qty*ProdPrice) AS OrdAmt

 FROM OrderTbl, Customer, OrdLine, Product

 WHERE OrderTbl.CustNo = Customer.CustNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND OrdLine.ProdNo = Product.ProdNo

 AND CustState = 'CO'

 GROUP BY Customer.CustNo, CustLastName, OrderTbl.OrdNo)

 GROUP BY CustNo, CustLastName;
28. The Access SQL formulation requires a nested query in the FROM clause because Access does not support the DISTINCT keyword inside the COUNT function.

Access SQL:

SELECT CustNo, CustLastName, COUNT(*) AS NumProducts
 FROM

 (SELECT DISTINCT Customer.CustNo, CustLastName, ProdNo
 FROM OrderTbl, Customer, OrdLine

 WHERE OrderTbl.CustNo = Customer.CustNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND CustState = 'CO')
 GROUP BY CustNo, CustLastName

Oracle SQL:

SELECT OrderTbl.CustNo, CustLastName, COUNT(DISTINCT ProdNo) AS NumProducts

 FROM OrderTbl, Customer, OrdLine

 WHERE OrderTbl.CustNo = Customer.CustNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND CustState = 'CO'
 GROUP BY OrderTbl.CustNo, CustLastName;
29. In Access, this problem requires two levels of nested queries in the FROM clause because Access does not support the DISTINCT keyword inside the COUNT function. The Access SQL formulation is difficult to formulate and resource intensive to execute.

Access SQL:

SELECT T1.EmpNo, EmpLastName, NumProdsPerOrder, COUNT(*) AS NumOrders
 FROM

 (SELECT EmpNo, EmpLastName, AVG(NumProducts) AS NumProdsPerOrder

 FROM

 (SELECT Employee.EmpNo, EmpLastName, OrderTbl.OrdNo,

 COUNT(*) AS NumProducts
 FROM OrderTbl, Employee, OrdLine

 WHERE OrderTbl.EmpNo = Employee.EmpNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND EmpCommRate < 0.04

 GROUP BY Employee.EmpNo, EmpLastName, OrderTbl.OrdNo)
 GROUP BY Employee.EmpNo, EmpLastName) T1, OrderTbl
 WHERE T1.EmpNo = OrderTbl.EmpNo
 GROUP BY T1.EmpNo, EmpLastName, NumProdsPerOrder

Oracle SQL:

SELECT EmpNo, EmpLastName,

 COUNT(DISTINCT OrdNo) AS NumOrders,
 AVG(NumProducts) AS AvgProdsPerOrder

 FROM

 (SELECT Employee.EmpNo, EmpLastName, OrderTbl.OrdNo,

 COUNT(*) AS NumProducts
 FROM OrderTbl, Employee, OrdLine

 WHERE OrderTbl.EmpNo = Employee.EmpNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND EmpCommRate < 0.04

 GROUP BY Employee.EmpNo, EmpLastName, OrderTbl.OrdNo)

 GROUP BY EmpNo, EmpLastName;

30. The Access SQL formulation requires a nested query in the FROM clause because Access does not support the DISTINCT keyword inside the COUNT function.

Access SQL:

SELECT Product.ProdNo, ProdName, COUNT(*) AS NumCustomers
 FROM

 (SELECT DISTINCT Product.ProdNo, ProdName, CustNo

 FROM OrderTbl, Product, OrdLine

 WHERE OrdLine.ProdNo = Product.ProdNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND ProdMfg = 'Connex')

 GROUP BY Product.ProdNo, ProdName
Oracle SQL:

SELECT Product.ProdNo, ProdName, COUNT(DISTINCT CustNo) AS NumCustomers

 FROM OrderTbl, Product, OrdLine

 WHERE OrdLine.ProdNo = Product.ProdNo

 AND OrderTbl.OrdNo = OrdLine.OrdNo

 AND ProdMfg = 'Connex'

 GROUP BY Product.ProdNo, ProdName;

Part 2: Null Value Problems

1. The result table follows the SELECT statement. Note that the rows with null values are not in the result.

SELECT *

 FROM Product

 WHERE ProdNextShipDate = #1/22/2007#

	ProdNo
	ProdName
	ProdMfg
	ProdQOH
	ProdPrice
	ProdNextShipDate

	P1114590
	R3000 Color Laser Printer
	Connex
	5
	$699.00
	01/22/2007

	P1556678
	CVP Ink Jet Color Printer
	Connex
	8
	$99.00
	01/22/2007

	P3455443
	Color Ink Jet Cartridge
	Connex
	24
	$38.00
	01/22/2007

2. The result table follows the SELECT statement. Note that rows with null values are still excluded because of the AND connector.

SELECT *

 FROM Product

 WHERE ProdNextShipDate = #1/22/2007# AND ProdPrice < 100

	ProdNo
	ProdName
	ProdMfg
	ProdQOH
	ProdPrice
	ProdNextShipDate

	P1556678
	CVP Ink Jet Color Printer
	Connex
	8
	$99.00
	01/22/2007

	P3455443
	Color Ink Jet Cartridge
	Connex
	24
	$38.00
	01/22/2007

3. The result table follows the SELECT statement. Note that rows with null values are included because of the OR connector.

SELECT *

 FROM Product

 WHERE ProdNextShipDate = #1/22/2007# OR ProdPrice < 100

	ProdNo
	ProdName
	ProdMfg
	ProdQOH
	ProdPrice
	ProdNextShipDate

	P1114590
	R3000 Color Laser Printer
	Connex
	5
	$699.00
	01/22/2007

	P1412138
	10 Foot Printer Cable
	Ethlite
	100
	$12.00
	

	P1445671
	8-Outlet Surge Protector
	Intersafe
	33
	$14.99
	

	P1556678
	CVP Ink Jet Color Printer
	Connex
	8
	$99.00
	01/22/2007

	P3455443
	Color Ink Jet Cartridge
	Connex
	24
	$38.00
	01/22/2007

	P6677900
	Black Ink Jet Cartridge
	Connex
	44
	$25.69
	

	P9995676
	Battery Back-up System
	Cybercx
	12
	$89.00
	02/01/2007

4. The result table follows the SELECT statement. Note that the null dates are not counted in the second result column (NumShipDates).

SELECT COUNT(*) AS NumRows,

 COUNT(ProdNextShipDate) AS NumShipDates

 FROM Product

	NumRows
	NumShipDates

	10
	7

5. The result table follows the SELECT statement. The null date is represented as a single group. The order of null values (before or after non-null values) depends on the product. In Access, the null row comes first. In Oracle, the null row comes last.
SELECT ProdNextShipDate, COUNT(*) AS NumRows

 FROM Product

 GROUP BY ProdNextShipDate

	ProdNextShipDate
	NumRows

	
	3

	01/22/2007
	3

	01/29/2007
	1

	02/01/2007
	1

	02/20/2007
	2

6. The result table follows the SELECT statement. Note that the null dates are grouped with each product manufacturer.

SELECT ProdMfg, ProdNextShipDate, COUNT(*) AS NumRows

 FROM Product

 GROUP BY ProdMfg, ProdNextShipDate

	ProdMfg
	ProdNextShipDate
	NumRows

	ColorMeg, Inc.
	02/20/2007
	2

	Connex
	
	1

	Connex
	01/22/2007
	3

	Cybercx
	02/01/2007
	1

	Ethlite
	
	1

	Intersafe
	
	1

	UV Components
	01/29/2007
	1

7. The result table follows the SELECT statement. Notice that the null ship dates group together. The order of null values (before or after non-null values) depends on the product. In Access and Oracle 9i, 10g, the null row comes first.
SELECT ProdNextShipDate, ProdMfg, COUNT(*) AS NumRows

 FROM Product

 GROUP BY ProdNextShipDate, ProdMfg

	ProdNextShipDate
	ProdMfg
	NumRows

	
	Connex
	1

	
	Ethlite
	1

	
	Intersafe
	1

	01/22/2007
	Connex
	3

	01/29/2007
	UV Components
	1

	02/01/2007
	Cybercx
	1

	02/20/2007
	ColorMeg, Inc.
	2

8. The result table follows the SELECT statement.
SELECT EmpFirstName, EmpLastName

 FROM Employee

 WHERE EmpCommRate > 0.02

	EmpFirstName
	EmpLastName

	Amy
	Tang

	Colin
	White

	Thomas
	Johnson

9. The result table follows the SELECT statement. In Access, the null row comes first. In Oracle, the null row comes last.
SELECT SupEmpNo, AvG(EmpCommRate) AS AvgCommRate

 FROM Employee

 GROUP BY SupEmpNo

	SupEmpNo
	AvgCommRate

	
	5.00000007450581E-02

	E8843211
	1.99999995529652E-02

	E9884325
	3.99999991059303E-02

10. The result table follows the SELECT statement. The row of the employee without a superior (employee number E9884325) does not appear in the result because that row does not join with another row.
SELECT Emp.SupEmpNo, Sup.EmpFirstName, Sup.EmpLastName,

 AvG(Emp.EmpCommRate) AS AvgCommRate

FROM Employee Emp, Employee Sup

WHERE Emp.SupEmpNo = Sup.EmpNo

 GROUP BY Emp.SupEmpNo, Sup.EmpFirstName, Sup.EmpLastName

	SupEmpNo
	EmpFirstName
	EmpLastName
	AvgCommRate

	E8843211
	Amy
	Tang
	1.99999995529652E-02

	E9884325
	Thomas
	Johnson
	3.99999991059303E-02

11. The condition “EmpNo IS NOT NULL” is needed in the nested query to eliminate the null value in the result of the nested query. Otherwise, the result contains no rows because an employee number compared to null returns null, not false. The clause is needed if OrderTbl.EmpNo contains null values.
SELECT EmpNo, EmpLastName, EmpFirstName

FROM Employee

WHERE EmpNo NOT IN

(SELECT EmpNo FROM OrderTbl WHERE EmpNo IS NOT NULL)
SELECT EmpNo, EmpLastName, EmpFirstName

FROM Employee

WHERE EmpNo NOT IN

(SELECT EmpNo FROM OrderTbl)
