page
14
10/17/2005
Answers to Chapter 15 Problems

Answers to Chapter 15 Problems

1. Here is pseudo code for some transactions in which you may be familiar.

	START TRANSACTION
display greeting

get course offering request

select offering record

if seats remain in the course offering then

update seatsremain of offering record

insert enrollment record

send message to billing department

else inform student that the offering is full

end if

on error: ROLLBACK

COMMIT

Pseudo Code for a Course Offering Registration

	START TRANSACTION
display greeting

get event request and credit card data

select event record

if no credit verification then

 inform customer of credit problem

else if seats remain then

update seatsremain of event record

insert billing record

send message to the credit card company

send message to mail tickets

else inform customer that event is full

end if

on error: ROLLBACK

COMMIT

Pseudo Code for a Concert Ticket Purchase

2. The seats remaining field of the course offering table is a hot spot in the course registration transaction. The seats remaining field in the event table is a hot spot in the ticket purchase transaction.

3. The following timeline shows a lost update problem for the seats remaining field.

	Transaction A
	Time
	Transaction B

	Read SR (10)
	t1
	

	
	t2
	Read SR (10)

	if SR > 0 then SR = SR -1
	t3
	

	
	t4
	if SR > 0 then SR = SR -1

	Write SR (9)
	t5
	

	
	t6
	Write SR (9)

4. The following timeline shows an uncommitted dependency problem for the seats remaining field.

	Transaction A
	Time
	Transaction B

	Read SR (10)
	t1
	

	SR = SR - 1
	t2
	

	Write SR (9)
	t3
	

	
	t4
	Read SR (9)

	Rollback
	t5
	

5. The following timeline shows a non repeatable read problem for the seats remaining field.

	Transaction A
	Time
	Transaction B

	Read SR (10)
	t1
	

	
	t2
	Read SR

	
	t3
	SR = SR - 1

	
	t4
	Write SR (9)

	Read SR (9)
	t5
	

6. Deadlock is not a problem for either transaction if both transactions obtain locks in the same order: first on the row to update and then on the row to insert. If the transactions do not obtain locks in the same order, a deadlock might occur if the concurrency control manager locks the entire page instead of a record.

7.1 The three choices for transaction boundary are (i) the entire form as one transaction, (ii) the main form and subform as separate transactions, and (iii) the main form as one transaction and each line of the subform as separate transactions.

7.2 Choice (iii) is usually preferred because it provides transactions with the shortest duration. However choice (iii) does not permit checking the constraint that an entry is fully allocated to categories. Therefore, choice (i) is the only choice that supports this important constraint.

7.3 Balance and last check number are system independent hot spots in the account table. Each transaction changes the balance of a checking account. If many users access the same account, the balance will be locked by every user. The last check number is updated when paying by check. If there are many checking transactions, the last check number must be updated frequently.

7.4 The next available pages in the entry and entryline tables are system-dependent hot spots if page locks are used. For example, each subform line inserts a new row in the entryline table. If records locks are not used, the entire page is locked preventing other users from inserting new rows. This is true even if the new rows are for transactions of different accounts.

7.5

	User 1
	Time
	User 2

	Read balance (500)
	t1
	

	
	t2
	Read balance (500)

	Update balance = balance - 100 (400)
	t3
	

	
	t4
	Update balance = balance - 200 (300)

7.6

	User 1
	Time
	User 2

	Update balance to 250
	t1
	

	
	t2
	Read balance (250)

	Rollback
	t3
	

	
	t4
	Update balance = balance - 100 (150)

7.7 A deadlock involves mutual waiting. There should not be a deadlock problem with the account table because a transaction affects only 1 row. Users may wait to obtain an exclusive lock on a row of the table but mutual waiting should not occur. Likewise, a deadlock should not occur with page locking of the entryline table because a user must obtain a lock on the next page before proceeding. Because two users cannot simultaneously obtain a lock on the next page, they will not wait on each other. The deadlock analysis does not depend on whether the locks on all subform rows are held until EOT. Assuming that locks are obtained in the same order by every transaction, there should not be a deadlock from mutual waiting over entryline and entry page locks.

If the category table has a balance field that is updated for every transaction line, a deadlock is possible. For example, one transaction may acquire a lock on auto expenses category and another transaction on auto gasoline expenses. If these transactions then need locks on the categories held by the other transaction, a deadlock occurs.

8.1 The three choices for transaction boundary are (i) the entire form as 1 transaction, (ii) the main form and subform as separate transactions, and (iii) the main form as one transaction and each line of the subform as separate transactions.

8.2 Choice (iii) is usually preferred because it provides transactions with the shortest duration. Choice (iii) is preferred here because there are no critical constraints connecting the main form to the subform or all subform lines together.

8.3 The field itemqoh is a system independent hot spot in popular rows of the item table. This is a hot spot no matter where the transaction boundary is set.

8.4 The next available pages in the bill and charge tables are system dependent hot spots if page locks are used. For example, each subform line inserts a new row in the charge table. If records locks are not used, the entire page is locked preventing other users from inserting new rows. This is true even if the new rows are for transactions of different bills.

9.1 The entire form should be a transaction because a reservation is not feasible unless all flights are confirmed. Customers do not normally accept a reservation unless all flights in the reservation are acceptable.

9.2 The field remseats is a system independent hot spot in popular rows of the flightdate table. This is a hot spot no matter where the transaction boundary is set.

9.3 The next available pages in the reservation and reserveflight tables are system dependent hot spots if page locks are used. For example, each subform line inserts a new row in the reserveflight table. If records locks are not used, the entire page is locked preventing other users from inserting new rows. This is true even if the new rows are for transactions of different bills.

9.4 There is a possibility of deadlocks with popular rows of the flightdate table because most transactions involve more than one flight. In the timeline below, SR1 and SR2 represent the seats remaining field in two rows of the flightdate table. However, deadlocks will be rare if the legs in a reservation are locked trip order. For example, if a reservation includes legs from Denver to Chicago and Chicago to New York, there will not be deadlocks with other transactions requesting the same two legs in the same order. There could be a deadlock with more than two transactions involving reservations of multiple intersecting legs but this situation should be rare.
	Transaction A
	Time
	Transaction B

	XLock SR1
	t1
	

	
	t2
	XLock SR2

	XLock SR2 (wait)
	t3
	

	
	t4
	XLock SR1 (wait)

10.1 If transaction T3 is aborted after the checkpoint, there is no restart work if the recovery manager uses the deferred update approach. Database writes are not permanent until after the commit.

10.2 If transaction T3 is aborted after the checkpoint, the recovery manager uses undo operations if the immediate update approach is used. The recovery manager applies the undo operator to all log records for transaction T3. The undo operations are applied in reverse order beginning with the most recent (last written) log record.

10.3 After a system failure, the recovery manager uses redo operations if the deferred update approach is used. The recovery manager takes the following actions:

· No action for T1 and T4 because they committed before the most recent checkpoint.

· No action for T6, T8, and T9 because they did not commit before the system failure. No database writes are permanent because the deferred update approach is used.

· Redo log records starting from the oldest log record: T2, T3, T5, T7

· Restart transactions that did not commit before failure: T6, T8, T9

10.4 After a system failure, the recovery manager uses undo and redo operations if the immediate update approach is used. The recovery manager takes the following actions:

· No action: T1 and T4 because they committed before the most recent checkpoint.

· Undo log records starting from most recent log record backwards: T6, T8, and T9 because they did not commit before the system failure. Some database writes may be permanent because the immediate update approach is used.

· Redo log records starting from the oldest log record after the checkpoint: T2, T3, T5, T7

· Restart transactions that did not commit before failure: T6, T8, T9

10.5 After a media failure, the recovery manager takes the following actions:

· Use the most recent backup to restore the database.

· Redo log records for all transactions committed after backup: T1, T2, T3, T4, T5, T7. For each transaction, redo forward starting with the oldest log record.

· Restart uncommitted transactions: T6, T8, T9

[image: image1.wmf]time

T1

T5

T6

T2

T3

checkpoint

failure

backup

T4

T7

T8

T9

11.

The debit-credit benchmark is one of the oldest benchmarks for transaction processing. The history of the debit-credit benchmark is presented by Kim Stanley, the Chief Operating Officer of the Transaction Processing Council (TPC), in the article “History and Overview of the TPC” (http://www.tpc.org/articles/tpc.overview.history.1.html). Some important points from this article about the debit-credit benchmark and its limitations are listed below:

· The debit-credit benchmark was originally designed by IBM to test the performance of Automated Teller Machines. The benchmark was originally known as TP1.

· The TP1 benchmark measured batch-processing performance of a system handling ATM transactions. The benchmark was flawed because it ignored network and user interaction, thus inflating benchmark results. The benchmark process was flawed because it did not have proper supervision to ensure consistent and repeatable results across vendors. In addition, there was no auditing to ensure compliance with benchmark standards.

· The TP1 benchmark evolved into two benchmarks that were controlled by the TPC. TPC-A measures online performance of ATM transactions including network and user interaction time. TPC-B measures batch performance of ATM transactions ignoring network and user interaction times.

· TPC-A and TPC-B, although better defined and controlled by the TPC, have been superseded by other benchmarks. ATM transactions are not representative of more complex transactions that are common today. New benchmarks include TPC-C, an order entry benchmark, TPC-H, an ad-hoc decision support benchmark, TPC-W, an electronic commerce benchmark, and TPC-R, a repetitive decision support benchmark, are the current benchmarks supported by the TPC.

The TPC publishes current performance results on its website (www.tpc.org). In May 2002, there are results for the four supported benchmarks (TPC-C, TPC-W, TPC-R, and TPC-H). To understand the results, you should study the benchmark specification and the performance measures used. For TPC-C, two measures are used: the number of transactions processed per minute (tpmC) and the total system cost divided by tpmC (Price/tpmC). In May 2002, the best result is Microsoft SQL Server 2000 Enterprise Edition running under Windows 2000 Advanced Server with COM+ as a teleprocessing monitor using a HP ProLiant DL760-900-256P server. The tpmC number is 709,220 and the Price/tpmC number is 14.96 US$.

To see possible hot spots, you need to understand the logical database design, the transaction statements, and the details of the database management system. You should especially look for popular records in a table that are updated by many simultaneous users such as the seats remaining field in popular flight records, the quantity on hand of popular inventory records, and current balance of popular accounts. You should also consider the usage of page locking on insert operations. Page locking can result in congestion on insert operations because the next available page is being locked by all transactions that perform an insert operation on a specified table. Index records and pages can also be the source of system hot spots. To see system hot spots, it may be necessary to monitor resource usage during transaction processing to detect waiting for a particular resource.

12. Here is a redesigned ATM transaction. There should not be any adverse side effects from removing the user interaction from the transaction. It is unlikely that another transaction will modify the account balance after the balance is displayed. The account balance would have to be modified by another user with access to the account. There is a possibility that a spouse could change the account balance but given that the modification would need to occur in a short time window, the possibility seems remote.
	Display greeting

Get account number, pin, type, and amount

SELECT account number, type, and balance

If balance is sufficient then

START TRANSACTION

UPDATE account by posting debit

UPDATE account by posting credit

INSERT history record

Display final message and issue cash

Else

Write error message

End If

On Error: ROLLBACK
COMMIT XE "ROLLBACK" XE "END TRANSACTION" XE "COMMIT"

13. Here is a redesigned order entry transaction. For popular products, the redesigned transaction may have adverse side effects. It is possible that product availability may change between the time that availability is displayed and the time when the user orders the product. If this occurs, a user may find backordering is necessary even though the product was listed as available. The benefit of removing user interaction is more transaction throughput due to less waiting on locks.
 XE "BEGIN TRANSACTION"
Display greeting

Get order request

SELECT product record

If product is available then

START TRANSACTION
UPDATE QOH of product record

INSERT order record

Send message to shipping department

End If

On Error: ROLLBACK XE "ROLLBACK"

COMMIT XE "END TRANSACTION"
14. The READ COMMITTED level has the obvious advantage of releasing shared locks before EOT. Releasing locks will provide more transaction throughput. The drawback is possible lost update problems. The READ COMMITTED isolation level violates 2PL because locks may be acquired after releasing locks. The lost update problem that the READ COMMITTED level permits is limited to the scholar’s lost update. In this pattern, a database item is read and then later written. In between, the shared lock is released allowing another user the opportunity to see the value. Another transaction performs the same sequence of actions.
The sequence events to cause a scholar’s lost update may be considered remote by the DBMS vendors while the potential increases in transaction throughput may be significant. The DBMS vendors have likely considered pros and cons carefully so their default choice (READ COMMITTED) should be rational. However, it is interesting that the vendors do not provide any cautionary notes about the READ COMMITTED isolation level. Most DBAs would not be aware that lost updates are possible (although not likely) using the READ COMMITTED isolation level.
15. Here is a trace of the recovery steps for the immediate update approach.
	Step Number
	LSN
	Actions

	1
	25
	Undo; Add 4 to the uncommitted list

	2
	24
	Undo

	3
	23
	Add 3 to the committed list.

	4
	22
	Undo

	5
	21
	Add 2 to the committed list.

	6
	20
	No action

	7
	19
	Undo

	8
	18
	No action

	9
	17
	No action

	10
	16
	Remove 4 from the uncommitted list

	11
	
	Roll forward phase begins

	12
	21
	Remove 2 from committed list.

	13
	23
	Remove 3 from the committed list; stop because the committed list is empty

16. Here is a trace of the recovery steps for the deferred update approach.
	Step Number
	LSN
	Actions

	1
	25,24
	No action because transaction 4 is not complete.

	2
	23
	Add 3 to the committed and incomplete lists.

	3
	22
	No action because transaction 4 is not complete.

	4
	21
	Add 2 to the committed and incomplete lists.

	5
	20
	Note that START records have not been found for 2 and 3.

	6
	19
	No action because transaction 4 is not complete.

	7
	18,17
	No action; redo during the roll forward phase

	8
	16
	No action because transaction 4 is not complete.

	9
	15,14
	No action; redo during the roll forward phase

	10
	13
	No action because transaction 1 committed before most recent checkpoint.

	11
	12,11
	No action; redo during the roll forward phase

	12
	10,9,8
	No action because transaction 1 committed before most recent checkpoint.

	13
	7
	Remove 3 from the incomplete list.

	14
	6,5
	No action; redo during the roll forward phase

	14
	4
	No action because transaction 1 committed before most recent checkpoint.

	15
	3
	Remove 2 from the incomplete list; begin the roll forward phase

	16
	5,6
	Redo

	17
	11,12
	Redo

	18
	14,15
	Redo

	19
	17,18
	Redo

	20
	21
	Remove 2 from the committed list

	22
	23
	Remove 3 from the committed list; end the roll forward phase

17. Incorrect summary problem. The repeatable read isolation level prevents. Here is a revised timeline showing the effect of the repeatable read isolation level on the original timeline. In the repeatable read isolation level, short term read locks are used. Transaction A must wait at time 5 because transaction B holds an exclusive lock. Transaction A cannot continue so transaction B is resumed to completion and then releases all locks.
	Transaction A
	Time
	Transaction B

	
	T1
	XLock QOH2

	
	T2
	UPDATE QOH2 = QOH2 – 5 (20)

	SLock QOH2 (Wait)
	T3
	

	
	T4
	XLock QOH1

	
	T5
	UPDATE QOH1 = QOH1 – 5 (13)

	
	T6
	Commit (Release locks)

	SLock QOH2
	T7
	

	Read QOH2 (20)
	T8
	

	Sum = Sum + QOH2
	T9
	

	SLock QOH1
	T10
	

	Read QOH1 (15)
	T11
	

	Sum = Sum + QOH1
	T12
	

18. Uncommitted dependency problem. The read committed isolation level prevents it. Here is a revised timeline showing the effect of the read committed isolation level on the original timeline. The exclusive lock on QOH1 prevents transaction A from seeing its uncommitted value until locks are released as part of the rollback operation.
	Transaction A
	Time
	Transaction B

	
	T1
	SLock QOH1

	
	T2
	Read QOH1 (55)

	
	T3
	QOH1 = QOH1 – 10

	
	T4
	XLock QOH1

	
	T5
	Write QOH1 (45)

	SLock QOH1 (Wait)
	T6
	

	
	T7
	SLock QOH2

	
	T8
	Read QOH2 (15)

	
	T9
	QOH2 = QOH2 – 5

	
	T10
	XLock QOH2

	
	T11
	Write QOH2 (10)

	
	T12
	Rollback (locks released)

	SLock QOH1
	T13
	

	Read QOH1 (55)
	T14
	

	SLock QOH2
	T15
	

	Read QOH2 (15)
	T16
	

19. Scholar’s lost update problem. If an X lock is used as shown at time 1 in the first timeline, the read committed level prevents the lost update. However, if an S lock is used as in the second timeline, serializable is the only isolation level that prevents the lost update. If a shared lock is obtained and then later converted to an exclusive lock, a deadlock will occur as the second timeline shows. In the second timeline, one transaction needs to restart with a rollback operation. Since transaction A started after transaction B, transaction A would be the likely candidate for restart.
	Transaction A
	Time
	Transaction B

	
	T1
	XLock QOH1

	
	T2
	Read QOH1 (10)

	
	T3
	If QOH1 > 10 then QOH1 = QOH1 + 30

	XLock QOH1 (Wait)
	T4
	

	
	T5
	Write QOH1 (40)

	
	T6
	Commit (release locks)

	XLock QOH1
	T7
	

	Read QOH1 (30)
	T8
	

	QOH1 = QOH1 – 3
	T9
	

	Write QOH1 (37)
	T10
	

	Transaction A
	Time
	Transaction B

	
	T1
	SLock QOH1

	
	T2
	Read QOH1 (10)

	
	T3
	If QOH1 > 10 then QOH1 = QOH1 + 30

	SLock QOH1
	T4
	

	Read QOH1 (10)
	T5
	

	
	T6
	XLock QOH1 (Wait)

	XLock QOH1 (Wait)
	T7
	

20. Lost update that is not a scholar’s lost update. The read committed isolation level prevents it. Here is a revised timeline showing the effect of the read committed isolation level on the original timeline. In the timeline, an X lock is obtained at time 1 because the transaction will change the value. If a shared lock is obtained and then later converted to an exclusive lock, a deadlock will occur as the second timeline shows. In the second timeline, one transaction needs to restart with a rollback operation. Since transaction B started after transaction A, transaction B would be the likely candidate for restart.
	Transaction A
	Time
	Transaction B

	XLock QOH
	T1
	

	Read QOH (10)
	T2
	

	QOH = QOH + 30
	T3
	

	
	T4
	XLock QOH (Wait)

	Write SR (40)
	T5
	

	Commit (locks released)
	T6
	

	
	T7
	XLock QOH

	
	T8
	Read QOH (40)

	
	T9
	QOH = QOH – 10

	
	T10
	Write QOH (30)

	
	T11
	Commit

	Transaction A
	Time
	Transaction B

	SLock QOH
	T1
	

	Read QOH (10)
	T2
	

	QOH = QOH + 30
	T3
	

	
	T4
	SLock QOH

	
	T5
	Read QOH (10)

	
	T6
	QOH = QOH – 10

	XLock QOH (wait)
	T7
	

	
	T8
	XLock QOH (wait)

_942524561.vsd

