12/22/2004
Assignment 3 (Materialized Views)
Page 7

Assignment 3
Creating and Manipulating Materialized Views
 Due: 3/9/2005 (10%)

Assignment 3 provides experience creating and manipulating materialized views in Oracle. You will use several new SQL statements along with variations of the GROUP BY clause for data warehouse queries. Sections 1 and 2 are background for the tasks described in Sections 3 through 5.
1. Inventory Transaction Cycles

Inventory that is bought, sold, consumed, and produced is the heart of any manufacturing and/or distribution company.  Inventory transactions are frequent and commonplace.  The volume and significance of these transactions make them ideally suited for OLAP via a data warehouse.
Because inventory management is a common and important yet difficult activity in many organizations, ERP vendors have developed Enterprise Resource Management (ERP) software to provide software support. Typically, ERP software provides modules related to Manufacturing, Distribution/Logistics, Financials, and HR/Payroll.  At the heart of the Manufacturing and Distribution/Logistics modules is inventory.  The work order, sales, and purchase life cycles affect the perpetual inventory balance as shown in Figure 1. In addition, inventory transactions including adjustments, transfers, issues, and reclassifications affect the perpetual inventory balance.

[image: image1.emf]Work Order Header

Work Order

Generation

Issue/Scrap Parts

Time Reporting

Work Order Completions

Manufacturing Accounting

Sales Order Entry

Pick List Generation

Shipment

Sales Update

Purchase Order Entry

Purchase Order Transfer

Purchase Order Receipt

Create Voucher

Perpetual

Inventory

Master DB

Work Order

Life Cycle

Sales

Life Cycle

Purchasing

Life Cycle

Inventory

Transactions

Inventory Adjustments

Inventory Transfers

Simple Issues

Inventory

Reclassifications

Perpetual Inventory

Transactions


Figure 1: Life Cycles Affecting the Perpetual Inventory Balance
2. Snowflake Schema Description
To support reporting about inventory management, Figure 2 shows a snowflake schema for the perpetual inventory balance. The snowflake schema provides a template that can be customized to individual organizations. Dimension entity types such as Addr_Cat_Code1 allow an organization to customize the design to specific requirements. The fact entity type, Inventory_Fact, contains several measures along with relationships to associated dimension entity types. Several dimension entity types are related directly to the Inventory_Fact entity type. Other dimension entity types such as Item_Cat_Code1 are indirectly related to the Inventory_Fact entity type. 
[image: image2.wmf]Addr_Code1

Addr_Code2

Inventory_Facility

Inventory_Transaction

Item_Code1

Item_Code2

Owning_Company

Part_Number_

Related_Address_Book

Summary_by_Day

defines

addr_cat_code1

AddrCatCodeKey

AddrCatCodeId

AddrCatDesc

addr_cat_code2

AddrCatCodeKey

AddrCatCodeId

AddrCatDesc

branch_plant_dim

BranchPlantKey

BPName

BranchPlantId

CarryingCost

CompanyKey

CostMethod

company_dim

CompanyKey

CompanyId

CompanyName

CurrencyCode

CurrencyDesc

cust_vendor_dim

CustVendorKey

AddrBookId

AddrCatCode1

AddrCatCode2

Address

City

Country

Name

PrimZip

State

Zip

date_dim

DateKey

CalDay

CalMonth

CalQuarter

CalYear

DateJulian

DayofWeek

FicalYear

FiscalPeriod

inventory_fact

InventoryKey

BranchPlantKey

CustVendorKey

DateKey

ExtCost

ItemMasterKey

Quantity

TransTypeKey

UnitCost

item_cat_code1

ItemCatCodeKey

ItemCatCodeId

ItemCatDesc

item_cat_code2

ItemCatCodeKey

ItemCatCodeId

ItemCatDesc

item_master_dim

ItemMasterKey

ItemCatCode1

ItemCatCode2

ItemDesc

SecondItemId

ShortItemId

ThirdItemId

UOM

trans_type_dim

TranTypeKey

TransDescription

TransTypeCodeId

zip_codes

ZipKey

ZipCity

ZipConcec

ZipState

ZipWeight

ZipZip


Figure 2: Generic Snowflake Schema for the Perpetual Inventory Balance

The ERD representation of the snowflake schema is converted to a table design using the normal conversion rules. In the conversion process, 1-M relationships convert to foreign keys in the child tables. Appendix A contains a data dictionary for the table design while Appendix B contains the CREATE TABLE statements. Denormalization is always a good option to consider for a snowflake schema implementation. However, the snowflake schema design reflected in Appendices A and B is normalized.
To populate your tables, you can access my tables on the COBCU2 server. You can use the INSERT … SELECT statement to populate your tables using the data in my tables. Because you have SELECT access to my tables, you can use my tables instead of your tables for the assignment details in sections 4 and 5 if you wish. You can access my tables by using my user name (mmannino) as a prefix to the table names of the inventory data warehouse. For example to reference the inventory fact table, you should use “mmannino.Inventory_Fact”. For CREATE DIMENSION statements in section 3, you need to reference your own tables. Thus you will need to create the inventory data warehouse tables but you do not need to populate them.
3. Create Dimensions
Write Oracle CREATE DIMENSION statements to create the dimensions of the snowflake schema tables as specified in the following lists. In writing the CREATE DIMENSION statements, you should use the JOIN KEY clause if the dimension hierarchy contains levels from more than one table. You should use the DETERMINES clause to provide dimension constraints. To assist in my grading, please include DROP DIMENSION statements before your CREATE DIMENSION statements.
· Create a dimension for customer vendor data. The dimension should include levels for the customer vendor key, the vendor city, the vendor state, the vendor zip, the vendor country, the address category code key of the first address code, and the address category code key of the second address code. Define hierarchies to show the relationships between the customer vendor key and the vendor’s location, the customer vendor key and the first address code, and the customer vendor key and the second address code. Use the ATTRIBUTE clause to add functional relationships to columns in the Address Category Code 1 table and the Address Category Code 2 table.
· Create a dimension for item master data. The dimension should include levels for the item master key, the item category 1 code, and the item category 2 code. Define hierarchies to show relationships between the item master key and the item category 1 code and the item master key and the item category 2 code. Use the ATTRIBUTE clause to add functional relationships to columns in the item category 1 and item category 2 tables.
· Create a dimension for branch-plant data. The dimension should include levels for the branch plant key and the company key. Define a hierarchy to show the relationship between the branch plant key and the company key. Use the ATTRIBUTE clause to add functional relationships to columns in the branch-plant and company tables.
· Create a dimension for date data. The dimension should include levels for the date key, the calendar day, the calendar month, the calendar quarter, the calendar year, and the day of the week. Define hierarchies to show relationships among the date key, the calendar day, the calendar month, the calendar quarter, and the calendar year, and between the date key and the day of the week. Use the ATTRIBUTE clause to add functional relationships to the Julian date column in the date dimension table.
4. Write Queries
Write Oracle SELECT statements for the following problems. You may need to use the CUBE and ROLLUP clauses in your SELECT statements. Your SELECT statements should reference the fact table (Inventory_Fact) along with the dimension tables of the snowflake schema in Appendix B. Your SELECT statements should not reference the dimensions that you created in part 3. Use the CUBE and ROLLUP options of the GROUP BY clause where indicated in the problem statements.
Query 1: Sales Order Shipments by Month and Category Code1

Write an SQL statement to display the sum of the extended cost and the sum of the quantity. The results should include data for shipments (transaction type 5) in the year 2005. Summarize the result by calendar month and Address Category Code 1. The result should include full totals for every combination of grouped fields.
Query 2: Sales Order Shipments by Name, Year, and Quarter
Write an SQL statement to display the sum of the extended cost and the number of inventory transactions. The results should include data for shipments (transaction type 5) in the years 2005 and 2006. Summarize the result by calendar year, calendar quarter, and customer name. The result should include full totals for every combination of grouped fields.
Query 3: Adjustments by Part Number

Write an SQL statement to display the sum of the extended cost, the sum of the quantity, and the number of inventory transactions. The results should include data for adjustments (transaction type 1). Summarize the result by Second Item Id (i.e. part number). The result should include full totals for every combination of grouped fields. In addition, sort the result by Second Item Id.

Query 4: Transfers by Part Number and Branch Plant

Write an SQL statement to display the sum of the extended cost and the sum of the quantity. The results should include data for transfers (transaction type 2). Summarize the result by Second Item Id (i.e. part number) and branch plant name. The result should include partial totals in order of the grouped fields (second item id and branch plant name). Transfer quantities by design should sum to zero.

Query 5: Inventory Transactions by Transaction Description and Company

Write an SQL statement to display the sum of the extended cost and the number of inventory transactions. The results should include data for all transaction types. Summarize the result by transaction description and company name. The result should include partial totals in order of the grouped fields (transaction description and company name). 
Query 6: Rewrite Queries without CUBE, ROLLUP, and GROUPING SETS
Rewrite queries 1 and 4 without the usage of the CUBE, ROLLUP, or GROUPING SETS operators of the GROUP BY clause. The rewritten queries should still access the base tables, not the materialized views specified in section 5. In rewriting the queries, you may use '' (two single quotes) as the default text value and 0 as the default numeric value.
5. Create Materialized View and Rewrite Queries
Write CREATE MATERIALIZED VIEW statements according to the following specifications. After you write the statements, rewrite queries 1 and 2 from Section 4 using the materialized views. To assist in my grading, please include DROP MATERIALIZED VIEW statements before your CREATE MATERIALIZED VIEW statements. 
· Both materialized views should contain the sum of the extended cost, the sum of the quantity, and the number of inventory transactions.
· In both materialized views, these calculated amounts should be summarized by the customer vendor key and the date key.
· The first materialized view should include only sales shipment transactions (transaction type 5) for the year 2005.
· The second materialized view should include only sales shipment transactions (transaction type 5) for the year 2006.
· Neither materialized view should include subtotals that are created by the CUBE and the ROLLUP keywords.
· Rewrite queries 1 and 2 using the materialized views in place of the fact table.
Grading

If you follow the instructions, you should receive full credit.  Here are my grading guidelines:

· The CREATE DIMENSION statements in Section 3 are worth 30%. Please include DROP DIMENSION statements in your assignment listing.  

· The SELECT statements in Section 4 are worth 40%.  

· The CREATE MATERIALIZED VIEW statement and rewritten SELECT statements in Section 5 are worth 30%. Please include DROP MATERIALIZED VIEW statements in your assignment listing.
· In the deduction of points, I will distinguish between major errors such as syntax errors and missing statements, medium errors such as missing a table in a SELECT statement, and minor errors such as missing a WHERE condition in a SELECT statement.
Completion

Upload a file containing your Oracle SQL statements to the Digital Drop Box part of the Blackboard website. Use the following naming scheme for your assignment file: LastNameFirstNameA3. To facilitate grading, please format your statements neatly. To test your code, I will execute your SQL statements using the tables in my account on the COBCU2 server. Please indicate your name and Oracle user name in your document.

Appendix A: Data Dictionary for the Snowflake Schema Table Design

Appendix A contains a brief description of each column in the tables of the Inventory Snowflake Schema. The primary keys of most tables are based on Oracle sequences that are defined in Appendix B.  A number of columns are based on the Oracle One World specifications.
Address Category 1 Table (addr_cat_code1)

This table defines address category codes related to customers/vendors.  These codes allow customers/vendors to be group.  Example grouping might be customer type, customer area, etc.

AddrCatCodeKey  
Unique Key based on sequence addr_cat_code1_seq.

AddrCatCodeId   
Four character category code

AddrCatDesc
Thirty character category code description

Address Category 2 Table (addr_cat_code2)

This table defines address category codes related to customers/vendors.  These codes allow customers/vendors to be group.  Example grouping might be customer type, customer area, etc.

AddrCatCodeKey  

Primary Key based on sequence addr_cat_code2_seq.

AddrCatCodeId   
Four character category code 

AddrCatDesc    
Thirty character category code description

Item Category 1 Table (item_cat_code1)

This table defines item master category codes related to item masters (parts)  These codes allow part numbers to be group.  Example grouping might be product class, spare part, finish good, etc.

ItemCatCodeKey  
Primary Key based on sequence item_cat_code1_seq.

ItemCatCodeId   
Four character category code

ItemCatDesc
Thirty character category code description

Item Category 2 Table (item_cat_code2)

This table defines item master category codes related to item masters (parts)  These codes allow part numbers to be group.  Example grouping might be product class, spare part, finish good, etc.

ItemCatCodeKey
Primary Key based on sequence item_cat_code2_seq.

ItemCatCodeId
Four character category code

ItemCatDesc
Thirty character category code description

Zip Codes Table (zip_codes)
This table provides the basis to create many unique customer records for a variety with a variety of zip codes.

ZipKey
Primary Key, user defined.

ZipCity
City related to zip code

ZipState
State related to zip code

ZipZip 
Zip Code 

ZipConsec
The zip code plus this number define the range of zip codes for this city 

ZipWeight
The weight (percentage * 100) that will be applied to creating customers.  All ZipWeight columns totaled should equal 100.

Date Sequence Table (date_dim)

This table provides the date pattern.  Date patterns can be daily, five days per week, weekly or monthly.

DateKey
Primary Key based on sequence date_seq.  

DateJulian
Julian date in the form of YYYYDDD.  Where YYYY is the year and DDD is the sequential date.

CalDay 
Calendar day from 1 to 31.

CalMonth
Calendar month from 1 to 12

CalQuarter
Calendar quarter from 1 to 4

CalYear
Calendar year valid for ranges from 1900 to 2100

DayOfWeek
Day of the week, 1 to 7, 1 is Sunday, 2 is Monday, etc

FiscalYear
Corresponding Fiscal Year

FiscalPeriod
Corresponding Fiscal Period

Transaction Type Table (trans_type_dim)

This table defines the various types of inventory transactions.  Examples include transfers, adjustments, shipments, receipts, etc.

TransTypeKey
Primary Key, hard coded to the following values.

TransTypeId =1 then inventory adjustment (IA)

TransTypeId =2 then inventory transfer (IT)

TransTypeId =3 then inventory simple issue (IS)

TransTypeId =4 then purchase order receipt (OV)

TransTypeId =5 then sales order shipment   (AR)

TransTypeId =6 then mfg issue (IM)

TransTypeId =7 then mfg completion (IC) 

TransTypeId =8 then mfg parent scrap (IS)

TransTypeId =9 then mfg component scrap (IZ)    

TransTypeCodeId
Corresponding JDE cardex code, an example is IA for an adjustment.

TransDescription
Transaction Type Description

Customer Vendor Table (cust_vendor_dim)

This table defines possible customers and vendors involved with related sales and purchasing related transactions.

CustVendorKey
Primary Key based on the sequence cust_vendor_seq.

AddrBookId
The JDE related address book number.

Name
Customer Name

Address
Address

City

State

PrimZip
Integer form of the zip code

Zip
Zip code that could be in various forms (nnnnn, nnnnn-nnnn, etc).

Country
Country

AddrCatCode1
JDE related Category code, foreign key to the address category code 1

AddrCatCode2
JDE related Category code, foreign key to the address category code 2

Item Master Table (item_master_dim)

This table defines item masters (ie part numbers).  

ItemMasterKey  
Primary key based on the sequence item_master_seq.

ShortItemId
JDE related short item id.

SecondItemId
JDE related 2nd item number

ThirdItemId
JDE related 3rd item number

ItemCatCode1
JDE related category code, foreign key to the item category code1 table

ItemCatCode2
JDE related category code, foreign key to the item category code2 table

ItemDesc
JDE related item master description

UOM
JDE related primary unit of measure

Company Table (company_dim)

This table contains company records including the base currency.

CompanyKey
Primary key based on the sequence company_seq.

CompanyId
JDE related 5 character company id.

CompanyName
JDE related company name

CurrencyCode
JDE related currency code

CurrencyDesc
JDE related currency description

Branch Plant Table (branch_plant_dim)

This table contains the Branch Plant information.

BranchPlantKey 
Primary Key based on sequence branch_plant_seq

BranchPlantId
JDE related Branch Plant Id (12 character MCU).

CompanyKey
Owning company for this branch, foreign key to Company table.

CarryingCost
Carrying Cost percentage defined as a decimal

CostMethod 
JDE related Cost Method.

BPName
JDE related Branch Plant Name.

Inventory Transaction Fact Table (inventory_fact)

This table contains the inventory transactions facts.  Integer keys are used to help limit the size of the rows.  The measures are unit cost, quantity, and extended cost.

InventoryKey
Primary key based on the sequence inventory_seq.

BranchPlantKey
Transaction Branch, Foreign key to the branch plant table.

DateKey
Transaction Date, foreign key to the date table.

ItemMasterKey
Transaction Part Number, foreign key to the item master table.

TransTypeKey
Transaction Type, foreign key to the transaction type table.

CustVendorKey
Optional address book key that is a foreign key to the customer vendor table. This column allows null values. The column is not null only on sales and purchasing transactions

UnitCost
Unit cost with up to 4 decimals of precision.

Quantity
Quantity with up to 4 decimals of precision.

ExtCost
Extended Cost with up to 2 decimals of precision.

Appendix B: CREATE TABLE Statements
-- drop exisiting tables...

drop table inventory_fact;

drop table date_dim;

drop table trans_type_dim;

drop table cust_vendor_dim;

drop table item_master_dim;

drop table branch_plant_dim;

drop table company_dim;

drop table addr_cat_code1;

drop table addr_cat_code2;

drop table item_cat_code1;

drop table item_cat_code2;

drop table zip_codes;

-- drop existing sequences...

drop sequence inventory_seq;

drop sequence date_seq;

drop sequence branch_plant_seq;

drop sequence cust_vendor_seq;

drop sequence item_master_seq;

drop sequence company_seq;

drop sequence addr_cat_code1_seq;

drop sequence addr_cat_code2_seq;

drop sequence item_cat_code1_seq;

drop sequence item_cat_code2_seq;

-- create sequences to be used as keys for specific dimension tables...

create sequence inventory_seq   start with 1 increment by 1;

create sequence date_seq           start with 1 increment by 1;

create sequence branch_plant_seq   start with 1 increment by 1;

create sequence cust_vendor_seq    start with 1 increment by 1;

create sequence item_master_seq    start with 1 increment by 1;

create sequence company_seq        start with 1 increment by 1;

create sequence addr_cat_code1_seq start with 1 increment by 1;

create sequence addr_cat_code2_seq start with 1 increment by 1;

create sequence item_cat_code1_seq start with 1 increment by 1;

create sequence item_cat_code2_seq start with 1 increment by 1;

-- create address category code...

create table addr_cat_code1(

  AddrCatCodeKey  integer not null,

  AddrCatCodeId   varchar2(4) not null,

  AddrCatDesc     varchar2(30) not null,

  constraint      addr_cat_code1_PK Primary Key(AddrCatCodeKey)

);

create table addr_cat_code2(

  AddrCatCodeKey  integer not null,

  AddrCatCodeId   varchar2(4) not null,

  AddrCatDesc     varchar2(30) not null,

  constraint      addr_cat_code2_PK Primary Key(AddrCatCodeKey)

);

create table item_cat_code1(

  ItemCatCodeKey  integer not null,

  ItemCatCodeId   varchar2(4) not null,

  ItemCatDesc     varchar2(30) not null,

  constraint      item_cat_code1_PK Primary Key(ItemCatCodeKey)

);

create table item_cat_code2(

  ItemCatCodeKey  integer not null,

  ItemCatCodeId   varchar2(4) not null,

  ItemCatDesc     varchar2(30) not null,

  constraint      item_cat_code2_PK Primary Key(ItemCatCodeKey)

);

create table zip_codes(

  ZipKey          integer not null,

  ZipCity         varchar2(20) not null,

  ZipState
  varchar2(2) not null,

  ZipZip          integer,

  ZipConsec       integer,   -- number of consecutive zip codes...

  ZipWeight       integer,   -- weight rating for zip code genreation

  constraint      zip_codes_PK Primary Key(ZipKey)

);

create table date_dim(

  DateKey      integer not Null, 

  DateJulian   integer not Null,  -- julian date in the format of yyyymmddd

  CalDay       integer not Null,  -- from 1 to 31

  CalMonth     integer not Null,  -- from 1 to 12

  CalQuarter   integer not Null,  -- from 1 to 4

  CalYear      integer not Null,  -- valid for 1900 to 2100

  DayOfWeek    integer not Null,  -- 1 to 7 1 is Sunday, 2 is monday...

  FiscalYear   integer not Null,

  FiscalPeriod integer not Null,

  constraint   date_dim_pk Primary Key(DateKey),

  constraint   date_dim_CalDay_CS check (CalDay >= 0 and CalDay <= 31),

  constraint   date_dim_CalMonth_CS check (CalMonth >= 0 and CalMonth <= 12),

  constraint   date_dim_CalQuarter_CS check (CalQuarter >= 0 and CalQuarter <= 4),

  constraint   date_dim_CalYear_CS check (CalYear >= 1900 and CalYear <= 2100),

  constraint   date_dim_DayOfWeek_CS check (DayOfWeek >= 0 and DayOfWeek <= 6)

);

create table trans_type_dim(

  TransTypeKey       integer not null,

  TransTypeCodeId    varchar2(2) not null,

  TransDescription   varchar2(30) not null,

  constraint         trans_type_pk Primary Key(TransTypeKey),

  constraint         trans_type_TransTypeId_CS check (TransTypeKey >= 1 and TransTypeKey <= 9)

 -- TransTypeId =1 then inventory adjustment (IA)

 -- TransTypeId =2 then inventory transfer (IT)

 -- TransTypeId =3 then inventory simple issue (IS)

 -- TransTypeId =4 then purchase order receipt (OV)

 -- TransTypeId =5 then sales order shipment   (AR)

 -- TransTypeId =6 then mfg issue (IM)

 -- TransTypeId =7 then mfg completion (IC) 

 -- TransTypeId =8 then mfg parent scrap (IS)

 -- TransTypeId =9 then mfg component scrap (IZ)    

);

create table cust_vendor_dim(

  CustVendorKey   integer not null,

  AddrBookId      integer not null unique,

  Name            varchar2(30) not null,

  Address         varchar2(30) not null,

  City 
          varchar2(20) not null,

  State           varchar2(2) not null,

  PrimZip         integer not null,

  Zip             varchar2(10) not null,

  Country         varchar2(3) default 'USA',

  AddrCatCode1    integer,

  AddrCatCode2    integer,

  constraint cust_vend_dim_pk Primary Key(CustVendorKey),

  constraint cust_vend_CatCode1_FK Foreign Key(AddrCatCode1) references addr_cat_code1,

  constraint cust_vend_CatCode2_FK Foreign Key(AddrCatCode2) references addr_cat_code2

);

create table item_master_dim(

  ItemMasterKey  integer not null,

  ShortItemId    integer not null unique,

  SecondItemId   varchar2(30) not null,

  ThirdItemId    varchar2(30) not null,

  ItemCatCode1   integer,

  ItemCatCode2   integer,

  ItemDesc       varchar(30),

  UOM            varchar2(3),

  constraint item_master_dim_pk Primary Key(ItemMasterkey),

  constraint item_master_CatCode1_FK Foreign Key(ItemCatCode1) references item_cat_code1,

  constraint item_master_CatCode2_FK Foreign Key(ItemCatCode2) references item_cat_code2

);

create table company_dim(

  CompanyKey     integer,

  CompanyId      varchar(5) not null,

  CompanyName    varchar2(30) not null,

  CurrencyCode   varchar2(5) not null,

  CurrencyDesc   varchar2(30)not null,

  constraint company_dim_pk Primary Key (CompanyKey)

);

create table branch_plant_dim(

  BranchPlantKey integer,   --  sequence used for branch plant table

  BranchPlantId  varchar2(12) not null,

  CompanyKey     integer,

  CarryingCost   number(3,2) not null,

  CostMethod     varchar2(2) not null,

  BPName         varchar2(30),

  constraint branch_plant_dim_pk Primary Key (BranchPlantKey),

  constraint branch_plant_CompanyId_FK Foreign Key(CompanyKey) references company_dim

);

create table inventory_fact(

  InventoryKey    integer,  -- sequence number used for fact table

  BranchPlantKey  integer not NULL,

  DateKey         integer not NULL,

  ItemMasterKey   integer not NULL,

  TransTypeKey    integer not NULL,

  CustVendorKey   integer,

  UnitCost        decimal(12,4),

  Quantity        decimal(9,4),

  ExtCost         decimal(14,2),

  constraint inv_fact_PK PRIMARY Key(InventoryKey),

  constraint inv_fact_Branch_Plant_FK Foreign Key(BranchPlantKey) references branch_plant_dim,

  constraint inv_fact_DateId_FK Foreign Key(DateKey) references Date_dim,

  constraint inv_fact_CustVendorKey_FK Foreign Key(CustVendorKey) references cust_vendor_dim,

  constraint inv_fact_TransTypeId_FK Foreign Key(TransTypeKey) references trans_type_dim,

  constraint inv_fact_ShortItemId_FK Foreign Key(ItemMasterKey) references item_master_dim

);


_1073094625.vsd
�

Work Order Header�

Work Order Generation�

Issue/Scrap Parts�

Time Reporting�

Work Order Completions�

Manufacturing Accounting�

Sales Order Entry�

Pick List Generation�

Shipment�

Sales Update�

Purchase Order Entry�

Purchase Order Transfer�

Purchase Order Receipt�

Create Voucher�

Perpetual Inventory
Master DB�

Work Order 
Life Cycle�

Sales
Life Cycle�

Purchasing
Life Cycle�

Inventory
Transactions�

Inventory Adjustments�

Inventory Transfers�

Simple Issues�

Inventory Reclassifications�

�

Perpetual Inventory Transactions�


