3/8/2005
Assignment 3 Solutions
Page 8

Solutions to Assignment 3
CREATE DIMENSION Statements (Part 3)

Sales Order Shipments by Month and Category Code1

The Oracle parser is rather sensitive to spacing in the CREATE DIMENSION statement especially with the JOIN KEY and ATTRIBUTE clauses. I received syntax errors when the JOIN KEY keyword was placed on a new line.
DROP DIMENSION cust_vendor_d;
DROP DIMENSION item_master_d;
DROP DIMENSION comp_branch_d;
DROP DIMENSION trans_type_d;
DROP DIMENSION dateor_d;
create dimension cust_vendor_d

 level custkey is cust_vendor_dim.CustVendorKey

 level city is cust_vendor_dim.City

 level state is cust_vendor_dim.State

 level pzip is cust_vendor_dim.primZip

 level country is cust_vendor_dim.Country

 level addrcc1 is addr_cat_code1.AddrCatCodeKey

 level addrcc2 is addr_cat_code2.AddrCatCodeKey

hierarchy cust_city_rollup (

 custkey child of

 city child of

 state child of

 country)

hierarchy cust_zip_rollup (

 custkey child of

 pzip child of

 state child of

 country)
-- Note: if zip codes can cross city boundaries, a separate hierarchy

-- is necessary for zip codes as listed above.
hierarchy addrcc1_rollup (

 custkey child of

 addrcc1 join key Cust_Vendor_dim.AddrCatCode1 references addrcc1

)

hierarchy addrcc2_rollup (

 custkey child of

 addrcc2 join key Cust_Vendor_dim.AddrCatCode2 references addrcc2

)

attribute addrcc1 determines Addr_Cat_Code1.AddrCatCodeId

attribute addrcc1 determines Addr_Cat_Code1.AddrCatDesc

attribute addrcc2 determines Addr_Cat_Code2.AddrCatCodeId

attribute addrcc2 determines Addr_Cat_Code2.AddrCatDesc;

create dimension item_master_d

 level itemkey is item_master_dim.ItemMasterKey

 level itemcc1 is item_cat_code1.ItemCatCodeKey

 level itemcc2 is item_cat_code2.ItemCatCodeKey

hierarchy itemcc1_rollup (

 itemkey child of

 itemcc1 join key item_master_dim.ItemCatCode1 references itemcc1

)

hierarchy itemcc2_rollup (

 itemkey child of

 itemcc2 join key item_master_dim.ItemCatCode2 references itemcc2

)

attribute itemcc1 determines item_Cat_Code1.ItemCatCodeId

attribute itemcc1 determines item_Cat_Code1.ItemCatDesc

attribute itemcc2 determines item_Cat_Code2.ItemCatCodeId

attribute itemcc2 determines item_Cat_Code2.ItemCatDesc;

create dimension comp_branch_d

 level bpkey is branch_plant_dim.BranchPlantKey

 level compKey is company_dim.CompanyKey

hierarchy comp_rollup (

 bpkey child of

 compkey join key branch_plant_dim.CompanyKey references compkey

)

attribute bpkey determines branch_plant_dim.BranchPlantId

attribute bpkey determines branch_plant_dim.BPName

attribute compkey determines company_dim.CompanyId

attribute compkey determines company_dim.CompanyName;

create dimension dateor_d

 level datekey is date_dim.DateKey

 level CalDay is date_dim.CalDay

 level CalMon is date_dim.CalMonth

 level CalQtr is date_dim.CalQuarter

 level CalYear is date_dim.CalYear

 level DayofWeek is date_dim.DayofWeek

hierarchy date_rollup (

 datekey child of

 CalDay child of

 CalMon child of

 CalQtr child of

 CalYear)

hierarchy date_day_rollup (

 datekey child of

 DayofWeek

)

attribute datekey determines date_dim.DateJulian;

Queries (Part 4)

1: Sales Order Shipments by Month and Category Code1

Write an SQL statement to display the sum of the extended cost and the sum of the quantity. The results should include data for shipments (transaction type 5) in the year 2005. Summarize the result by calendar month and Address Category Code 1. The result should include full totals for every combination of grouped fields.
select CalMonth, AddrCatCode1, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, cust_vendor_dim c, date_dim d

where TransTypeKey = 5 and

 d.Calyear = 2005 and

 i.CustVendorKey = c.CustVendorKey and

 i.DateKey = d.DateKey

group by CUBE(AddrCatCode1, d.calmonth);
-- GROUPING SETS solution

select CalMonth, AddrCatCode1, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, cust_vendor_dim c, date_dim d

where TransTypeKey = 5 and

 d.Calyear = 2005 and

 i.CustVendorKey = c.CustVendorKey and

 i.DateKey = d.DateKey

group by GROUPING SETS((AddrCatCode1, d.calmonth), AddrCatCode1, d.calmonth, ());
2: Sales Order Shipments by Name, Year, and Quarter
Write an SQL statement to display the sum of the extended cost and the number of inventory transactions. The results should include data for shipments (transaction type 5) in the year 2006. Summarize the result by calendar year, calendar quarter, and customer name. The result should include full totals for every combination of grouped fields.
select Name, CalYear, CalQuarter, sum(ExtCost) as tot_cost, count(*) as Cnt

from inventory_fact i, cust_vendor_dim c, date_dim d

where TransTypeKey = 5 and

 d.Calyear BETWEEN 2005 AND 2006 AND

 d.datekey = i.datekey and

 i.CustVendorKey = c.CustVendorKey AND
 i.DateKey = d.DateKey

group by CUBE(c.name, CalYear, d.CalQuarter);

-- GROUPING SETS solution

select Name, CalYear, CalQuarter, sum(ExtCost) as tot_cost, count(*) as Cnt

from inventory_fact i, cust_vendor_dim c, date_dim d

where TransTypeKey = 5 and

 d.Calyear BETWEEN 2005 AND 2006 AND

 d.datekey = i.datekey and

 i.CustVendorKey = c.CustVendorKey AND

 i.DateKey = d.DateKey

group by GROUPING SETS((c.name, CalYear, d.CalQuarter), (c.name, CalYear),
 (c.name,d.CalQuarter), (CalYear, d.CalQuarter),
 c.name, CalYear, d.CalQuarter, ());

3: Adjustments by Part Number

Write an SQL statement to display the sum of the extended cost, the sum of the quantity, and the number of inventory transactions. The results should include data for adjustments (transaction type 1). Summarize the result by Second Item Id (i.e. part number). The result should include full totals for every combination of grouped fields. In addition, sort the result by Second Item Id.

select SecondItemId, sum(ExtCost) as tot_cost,
 sum(Quantity) as tot_qty, count(*) as Cnt

from inventory_fact i, item_master_dim im

where TransTypeKey = 1 and

 i.ItemMasterKey = im.ItemMasterKey

group by CUBE(SecondItemId)

order by SecondItemId;

-- ROLLUP solution

select SecondItemId, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty, count(*) as Cnt

from inventory_fact i, item_master_dim im

where TransTypeKey = 1 and

 i.ItemMasterKey = im.ItemMasterKey

group by ROLLUP(SecondItemId)

order by SecondItemId;

-- GROUPING SETS solution

select SecondItemId, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty, count(*) as Cnt

from inventory_fact i, item_master_dim im

where TransTypeKey = 1 and

 i.ItemMasterKey = im.ItemMasterKey

group by GROUPING SETS(SecondItemId, ())

order by SecondItemId;

4: Transfers by Part Number and Branch Plant

Write an SQL statement to display the sum of the extended cost and the sum of the quantity. The results should include data for transfers (transaction type 2). Summarize the result by Second Item Id (i.e. part number) and branch plant name. The result should include partial totals in order of the grouped fields (second item id and branch plant name). Transfers quantities by there very nature should sum to zero.

select SecondItemId, BPName, sum(ExtCost) as tot_cost,
 sum(Quantity) as tot_qty

from inventory_fact i, item_master_dim im, branch_plant_dim bp

where TransTypeKey = 2 and

 i.ItemMasterKey = im.ItemMasterKey and

 i.branchplantkey = bp.branchplantkey

group by ROLLUP(SecondItemId, BPName);

-- GROUPING SETS solution

select SecondItemId, BPName, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, item_master_dim im, branch_plant_dim bp

where TransTypeKey = 2 and

 i.ItemMasterKey = im.ItemMasterKey and

 i.branchplantkey = bp.branchplantkey

group by GROUPING SETS((SecondItemId, BPName), SecondItemId, ());

5: Inventory Transactions by Transaction Description and Company
Write an SQL statement to display the sum of the extended cost and the number of inventory transactions. The results should include data for all transaction types. Summarize the result by transaction description and company name. The result should include partial totals in order of the grouped fields (transaction description and company name).

select TransDescription, CompanyName, sum(ExtCost) as Tot_cost,
 count(*) as Count

from inventory_fact i, trans_type_dim tt, branch_plant_dim bp, company_dim c

where i.TransTypeKey = tt.TransTypeKey and

 i.BranchPlantKey = bp.BranchPlantKey and

 bp.CompanyKey = c.CompanyKey

group by ROLLUP(TransDescription, CompanyName);

-- GROUPING SETS solution

select TransDescription, CompanyName, sum(ExtCost) as Tot_cost,

 count(*) as Count

from inventory_fact i, trans_type_dim tt, branch_plant_dim bp, company_dim c

where i.TransTypeKey = tt.TransTypeKey and

 i.BranchPlantKey = bp.BranchPlantKey and

 bp.CompanyKey = c.CompanyKey

group by GROUPING SETS((TransDescription, CompanyName), TransDescription, ());

6a: Rewritten Query 1 without the CUBE or GROUPING SETS operators
select CalMonth, AddrCatCode1, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, cust_vendor_dim c, date_dim d

where TransTypeKey = 5 and

 d.Calyear = 2005 and

 i.CustVendorKey = c.CustVendorKey and

 i.DateKey = d.DateKey

group by d.calmonth, AddrCatCode1

UNION ALL

select CalMonth, 0, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, cust_vendor_dim c, date_dim d

where TransTypeKey = 5 and

 d.Calyear = 2005 and

 i.CustVendorKey = c.CustVendorKey and

 i.DateKey = d.DateKey

group by d.calmonth
UNION ALL

select 0, AddrCatCode1, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, cust_vendor_dim c, date_dim d

where TransTypeKey = 5 and

 d.Calyear = 2005 and

 i.CustVendorKey = c.CustVendorKey and

 i.DateKey = d.DateKey

group by AddrCatCode1
UNION ALL

select 0, 0, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, cust_vendor_dim c, date_dim d

where TransTypeKey = 5 and

 d.Calyear = 2005 and

 i.CustVendorKey = c.CustVendorKey and

 i.DateKey = d.DateKey;

6b: Rewritten Query 4 without the ROLLUP or GROUPING SETS operators
-- UNION and UNION ALL produce the same result

select SecondItemId, BPName, sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, item_master_dim im, branch_plant_dim bp

where TransTypeKey = 2 and

 i.ItemMasterKey = im.ItemMasterKey and

 i.branchplantkey = bp.branchplantkey

group by SecondItemId, BPName
UNION ALL
select SecondItemId, '', sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, item_master_dim im, branch_plant_dim bp

where TransTypeKey = 2 and

 i.ItemMasterKey = im.ItemMasterKey and

 i.branchplantkey = bp.branchplantkey

group by SecondItemId
UNION ALL
select '', '', sum(ExtCost) as tot_cost,

 sum(Quantity) as tot_qty

from inventory_fact i, item_master_dim im, branch_plant_dim bp

where TransTypeKey = 2 and

 i.ItemMasterKey = im.ItemMasterKey and

 i.branchplantkey = bp.branchplantkey;
Materialized Views (Part 5)

DROP MATERIALIZED VIEW SalesByVendorDateKeyMV2005;

DROP MATERIALIZED VIEW SalesByVendorDateKeyMV2006;

CREATE MATERIALIZED VIEW SalesByVendorDateKeyMV2005
 PCTFREE 0
 BUILD IMMEDIATE AS
 SELECT f.custvendorkey, D.DateKey,
 SUM(quantity) AS SumQty, SUM(extcost) AS ExtCost,
 COUNT(*) AS NumTrans
 FROM date_dim d, inventory_fact f

 WHERE f.datekey = d.datekey
 AND f.transtypekey = '5'
 AND d.CalYear = 2005
 GROUP BY f.custvendorkey, D.DateKey;
CREATE MATERIALIZED VIEW SalesByVendorDateKeyMV2006
 PCTFREE 0
 BUILD IMMEDIATE AS
 SELECT f.custvendorkey, D.DateKey,

 SUM(quantity) AS SumQty, SUM(extcost) AS ExtCost,

 COUNT(*) AS NumTrans
 FROM date_dim d, inventory_fact f

 WHERE f.datekey = d.datekey
 AND f.transtypekey = '5'
 AND d.CalYear = 2006
 GROUP BY f.custvendorkey, D.DateKey;
Rewritten Query 1 using SalesByVendorDayMV2005
-- CUBE solution

SELECT CalMonth, AddrCatCode1, SUM(ExtCost) as tot_cost,

 SUM(sumqty) as tot_qty

FROM SalesByVendorDateKeyMV2005 MV, cust_vendor_dim c,

 date_dim d

WHERE MV.CustVendorKey = c.CustVendorKey

 AND d.DateKey = MV.DateKey

GROUP BY CUBE(AddrCatCode1, d.calmonth);
-- GROUPING SETS solution

SELECT CalMonth, AddrCatCode1, SUM(ExtCost) as tot_cost,

 SUM(sumqty) as tot_qty

FROM SalesByVendorDateKeyMV2005 MV, cust_vendor_dim c,

 date_dim d

WHERE MV.CustVendorKey = c.CustVendorKey

 AND d.DateKey = MV.DateKey

group by GROUPING SETS((AddrCatCode1, d.calmonth), AddrCatCode1, d.calmonth, ());
Rewritten Query 2 using SalesByVendorDayMV
-- This solution can be done with a view or using a UNION operation in

-- the FROM clause. The CUBE should occur after the UNION
-- operation.
-- Solution using a VIEW
DROP VIEW Query2View;

CREATE VIEW Query2View AS

SELECT Name, CalYear, CalQuarter, ExtCost, SumQty

FROM SalesByVendorDateKeyMV2005 MV0, cust_vendor_dim c, date_dim d
WHERE MV0.CustVendorKey = c.CustVendorKey
 AND d.DateKey = MV0.DateKey
UNION ALL

SELECT Name, CalYear, CalQuarter, ExtCost, SumQty

FROM SalesByVendorDateKeyMV2006 MV1, cust_vendor_dim c, date_dim d
WHERE MV1.CustVendorKey = c.CustVendorKey
 AND d.DateKey = MV1.DateKey;
-- CUBE solution

SELECT Name, CalYear, CalQuarter, SUM(ExtCost) AS tot_cost,
 SUM(SumQty) AS tot_qty

FROM Query2View
GROUP BY CUBE(name, CalYear, CalQuarter);

-- GROUPING SETS solution

SELECT Name, CalYear, CalQuarter, SUM(ExtCost) AS tot_cost,
 SUM(SumQty) AS tot_qty

FROM Query2View
GROUP BY GROUPING SETS((name, CalYear, CalQuarter), (name, CalYear),
 (name, CalQuarter), (CalYear, CalQuarter), name,

 CalYear, CalQuarter, ());

-- Solution using UNION operation in the FROM clause
-- UNION operation in the FROM clause Solution 1

SELECT Name, CalYear, CalQuarter, SUM(ExtCost) AS TotCost,
 SUM(SumQty) AS TotQty
FROM date_dim, cust_vendor_dim,

(SELECT * FROM SalesByVendorDateKeyMV2005

UNION

SELECT * FROM SalesByVendorDateKeyMV2006) MV
WHERE MV.datekey = date_dim.datekey AND

MV.custvendorkey = cust_vendor_dim.custvendorkey

GROUP BY CUBE(name, calyear, calquarter);
-- UNION operation in the FROM clause Solution 2

SELECT CalYear,CalQuarter, Name, SUM(ExtCost), SUM(SumQty)

FROM

(

SELECT CalYear,CalQuarter, Name, ExtCost, SumQty
FROM SalesByVendorDateKeyMV2005 MV1, Date_Dim, Cust_Vendor_Dim

WHERE Date_Dim.DateKey = MV1.DateKey AND

 Cust_Vendor_Dim.CustVendorKey = MV1.CustVendorKey

UNION

SELECT CalYear,CalQuarter, Name, ExtCost, SumQty
FROM SalesByVendorDateKeyMV2006 MV2, Date_Dim, Cust_Vendor_Dim

WHERE Date_Dim.DateKey = MV2.DateKey AND

 Cust_Vendor_Dim.CustVendorKey = MV2.CustVendorKey

)

GROUP BY CUBE (CalYear,CalQuarter, Name);

-- GROUPING SETS solution

SELECT Name, CalYear, CalQuarter, SUM(ExtCost) AS TotCost,
 SUM(SumQty) AS TotQty
FROM date_dim, cust_vendor_dim,

(SELECT * FROM SalesByVendorDateKeyMV2005

UNION

SELECT * FROM SalesByVendorDateKeyMV2006) MV
WHERE MV.datekey = date_dim.datekey AND

MV.custvendorkey = cust_vendor_dim.custvendorkey

GROUP BY GROUPING SETS((name, CalYear, CalQuarter), (name, CalYear),
 (name, CalQuarter), (CalYear, CalQuarter), name,

 CalYear, CalQuarter, ());

