
C H A P T E R 3

SQL

The relational algebra described in Chapter 2 provides a concise, formal notation for
representing queries. However, commercial database systems require a query lan-
guage that is more user friendly. In this chapter, as well as Chapter 4, we study SQL,
the most influential commercially marketed query language. SQL uses a combination
of relational-algebra (Chapter 2) and relational-calculus (Chapter 5) constructs.

Although we refer to the SQL language as a “query language,” it can do much
more than just query a database. It can define the structure of the data, modify data
in the database, and specify security constraints.

It is not our intention to provide a complete users’ guide for SQL. Rather, we
present SQL’s fundamental constructs and concepts. Individual implementations of
SQL may differ in details, or may support only a subset of the full language.

3.1 Background
IBM developed the original version of SQL, originally called Sequel, as part of the
System R project in the early 1970s. The Sequel language has evolved since then,
and its name has changed to SQL (Structured Query Language). Many products now
support the SQL language. SQL has clearly established itself as the standard relational
database language.

In 1986, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) published an SQL standard, called SQL-86.
ANSI published an extended standard for SQL, SQL-89, in 1989. The next version of
the standard was SQL-92 standard, followed by SQL:1999; the most recent version is
SQL:2003. The bibliographic notes provide references to these standards.

The SQL language has several parts:

• Data-definition language (DDL). The SQL DDL provides commands for defin-
ing relation schemas, deleting relations, and modifying relation schemas.

75

76 Chapter 3 SQL

• Interactive data-manipulation language (DML). The SQL DML includes a
query language based on both the relational algebra (2) and and the tuple
relational calculus (5). It includes also commands to insert tuples into, delete
tuples from, and modify tuples in the database.

• Integrity. The SQL DDL includes commands for specifying integrity constraints
that the data stored in the database must satisfy. Updates that violate integrity
constraints are disallowed.

• View definition. The SQL DDL includes commands for defining views.

• Transaction control. SQL includes commands for specifying the beginning
and ending of transactions.

• Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how
SQL statements can be embedded within general-purpose programming lan-
guages, such as C, C++, Java, PL/I, Cobol, Pascal, and Fortran.

• Authorization. The SQL DDL includes commands for specifying access rights
to relations and views.

In this chapter, we present a survey of basic DML and the DDL features of SQL. Our
description is mainly based on the widely implemented SQL-92 standard, but we also
cover some extensions from the SQL:1999 and SQL:2003 standards.

In Chapter 4 we provide a more detailed coverage of the SQL type system, in-
tegrity constraints, and authorization. In that chapter, we also briefly outline embed-
ded and dynamic SQL, including the ODBC and JDBC standards for interacting with
a database from programs written in the C and Java languages. In Chapter 9, we
outline object-oriented extensions to SQL that were introduced in SQL:1999.

Many database systems support most of the SQL-92 standard and some of the new
constructs in SQL:1999 and SQL:2003, although currently no database system supports
all the new constructs. You should also be aware that many database systems do
not support some features of SQL-92, and that many databases provide nonstandard
features that we do not cover here. In case you find that some language features
described here do not work on the database system that you use, consult the user
manuals for your database system to find exactly what features it supports.

The enterprise that we use in the examples in this chapter, and later chapters,
is a banking enterprise. Figure 3.1 gives the relational schema that we use in our
examples, with primary key attributes underlined. Recall that in Chapter 2 we first

branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 3.1 Schema of banking enterprise.

3.2 Data Definition 77

defined a relation schema R by listing its attributes, and then defined a relation r
on the schema using the notation r(R). The notation in Figure 3.1 omits the schema
name, and defines the schema of a relation by directly listing its attributes.

3.2 Data Definition
The set of relations in a database must be specified to the system by means of a data-
definition language (DDL). The SQL DDL allows specification of not only a set of rela-
tions, but also information about each relation, including

• The schema for each relation

• The domain of values associated with each attribute

• The integrity constraints

• The set of indices to be maintained for each relation

• The security and authorization information for each relation

• The physical storage structure of each relation on disk

We discuss here basic schema definition and basic domain values; we defer discus-
sion of the other SQL DDL features to Chapter 4.

3.2.1 Basic Domain Types
The SQL standard supports a variety of built-in domain types, including:

• char(n): A fixed-length character string with user-specified length n. The full
form, character, can be used instead.

• varchar(n): A variable-length character string with user-specified maximum
length n. The full form, character varying, is equivalent.

• int: An integer (a finite subset of the integers that is machine dependent). The
full form, integer, is equivalent.

• smallint: A small integer (a machine-dependent subset of the integer domain
type).

• numeric(p, d): A fixed-point number with user-specified precision. The num-
ber consists of p digits (plus a sign), and d of the p digits are to the right of the
decimal point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither
444.5 or 0.32 can be stored exactly in a field of this type.

• real, double precision: Floating-point and double-precision floating-point num-
bers with machine-dependent precision.

• float(n): A floating-point number, with precision of at least n digits.

Additional domain values are covered in Section 4.1.

78 Chapter 3 SQL

3.2.2 Basic Schema Definition in SQL
We define an SQL relation by using the create table command:

create table r(A1D1, A2D2, . . . , AnDn,
〈integrity-constraint1〉,
. . . ,
〈integrity-constraintk〉)

where r is the name of the relation, each Ai is the name of an attribute in the schema of
relation r, and Di is the domain type of values in the domain of attribute Ai. There are
a number of different allowable integrity constraints. In this section we only discuss
primary key,which takes the form:

• primary key (Aj1 , Aj2 , . . . , Ajm
): The primary-key specification says that at-

tributes Aj1 , Aj2 , . . . , Ajm
form the primary key for the relation. The primary-

key attributes are required to be non null and unique; that is, no tuple can have
a null value for a primary key attribute, and no two tuples in the relation can
be equal on all the primary-key attributes.1 Although the primary-key specifi-
cation is optional, it is generally a good idea to specify a primary key for each
relation.

Other integrity constraints that the create table command may include are covered
later, in Section 4.2.

Figure 3.2 presents a partial SQL DDL definition of our bank database. Note that, as
in earlier chapters, we do not attempt to model precisely the real world in the bank
database example. In the real world, multiple people may have the same name, so
customer name would not be a primary key customer; a customer id would more likely
be used as a primary key. We use customer name as a primary key to keep our database
schema simple and short.

If a newly inserted or modified tuple in a relation has null values for any primary-
key attribute, or if the tuple has the same value on the primary-key attributes as does
another tuple in the relation, SQL flags an error and prevents the update.

A newly created relation is empty initially. We can use the insert command to load
data into the relation. For example, if we wish to insert the fact that there is an account
A-9732 at the Perryridge branch and that it has a balance of $1200, we write

insert into account
values (’A-9732’, ’Perryridge’, 1200)

The values are specified in the order in which the corresponding attributes are listed
in the relation schema. The insert command has a number of useful features, and is
covered in more detail later, in Section 3.10.2.

We can use the delete command to delete tuples from a relation. The command

delete from account

1. In SQL-89, primary-key attributes were not implicitly declared to be not null; an explicit not null
declaration was required.

3.2 Data Definition 79

create table customer
(customer name char(20),
customer street char(30),
customer city char(30),
primary key (customer name))

create table branch
(branch name char(15),
branch city char(30),
assets numeric(16,2),
primary key (branch name))

create table account
(account number char(10),
branch name char(15),
balance numeric(12,2),
primary key (account number))

create table depositor
(customer name char(20),
account number char(10),
primary key (customer name, account number))

Figure 3.2 SQL data definition for part of the bank database.

would delete all tuples from the account relation. Other forms of the delete command
allow specific tuples to be deleted; the delete command is covered in more detail
later, in Section 3.10.1.

To remove a relation from an SQL database, we use the drop table command. The
drop table command deletes all information about the dropped relation from the
database. The command

drop table r

is a more drastic action than

delete from r

The latter retains relation r, but deletes all tuples in r. The former deletes not only all
tuples of r, but also the schema for r. After r is dropped, no tuples can be inserted
into r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All tuples
in the relation are assigned null as the value for the new attribute. The form of the
alter table command is

alter table r add A D

where r is the name of an existing relation, A is the name of the attribute to be added,

80 Chapter 3 SQL

and D is the domain of the added attribute. We can drop attributes from a relation by
the command

alter table r drop A

where r is the name of an existing relation, and A is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although
they will allow an entire table to be dropped.

3.3 Basic Structure of SQL Queries
A relational database consists of a collection of relations, each of which is assigned
a unique name. Each relation has a structure similar to that presented in Chapter 2.
SQL allows the use of null values to indicate that the value either is unknown or does
not exist. It allows a user to specify which attributes cannot be assigned null values,
as we noted in Section 3.2.

The basic structure of an SQL expression consists of three clauses: select, from, and
where.

• The select clause corresponds to the projection operation of the relational al-
gebra. It is used to list the attributes desired in the result of a query.

• The from clause corresponds to the Cartesian-product operation of the rela-
tional algebra. It lists the relations to be scanned in the evaluation of the ex-
pression.

• The where clause corresponds to the selection predicate of the relational alge-
bra. It consists of a predicate involving attributes of the relations that appear
in the from clause.

That the term select has different meaning in SQL than in the relational algebra is an
unfortunate historical fact. We emphasize the different interpretations here to mini-
mize potential confusion.

A typical SQL query has the form

select A1, A2, . . . , An

from r1, r2, . . . , rm

where P

Each Ai represents an attribute, and each ri a relation. P is a predicate. The query is
equivalent to the relational-algebra expression

ΠA1, A2,...,An
(σP (r1 × r2 × · · · × rm))

If the where clause is omitted, the predicate P is true. However, unlike the result of a
relational-algebra expression, the result of the SQL query may contain multiple copies
of some tuples; we shall return to this issue in Section 3.3.8.

SQL forms the Cartesian product of the relations named in the from clause,
performs a relational-algebra selection using the where clause predicate, and then

3.3 Basic Structure of SQL Queries 81

projects the result onto the attributes of the select clause. In practice, SQL may con-
vert the expression into an equivalent form that can be processed more efficiently.
However, we shall defer concerns about efficiency to Chapters 13 and 14.

3.3.1 The select Clause
The result of an SQL query is, of course, a relation. Let us consider a simple query
using our banking example, “Find the names of all branches in the loan relation”:

select branch name
from loan

The result is a relation consisting of a single attribute with the heading branch name.
Formal query languages are based on the mathematical notion of a relation being

a set. Thus, duplicate tuples never appear in relations. In practice, duplicate elimina-
tion is time-consuming. Therefore, SQL (like most other commercial query languages)
allows duplicates in relations as well as in the results of SQL expressions. Thus, the
preceding query will list each branch name once for every tuple in which it appears in
the loan relation.

In those cases where we want to force the elimination of duplicates, we insert the
keyword distinct after select. We can rewrite the preceding query as

select distinct branch name
from loan

if we want duplicates removed.
SQL allows us to use the keyword all to specify explicitly that duplicates are not

removed:

select all branch name
from loan

Since duplicate retention is the default, we will not use all in our examples. To ensure
the elimination of duplicates in the results of our example queries, we will use dis-
tinct whenever it is necessary. In most queries where distinct is not used, the exact
number of duplicate copies of each tuple present in the query result is not important.
However, the number is important in certain applications; we return to this issue in
Section 3.3.8.

The asterisk symbol “ * ” can be used to denote “all attributes.” Thus, the use of
loan.* in the preceding select clause would indicate that all attributes of loan are to be
selected. A select clause of the form select * indicates that all attributes of all relations
appearing in the from clause are selected.

The select clause may also contain arithmetic expressions involving the operators
+, −, ∗, and / operating on constants or attributes of tuples. For example, the query

select loan number, branch name, amount * 100
from loan

82 Chapter 3 SQL

will return a relation that is the same as the loan relation, except that the attribute
amount is multiplied by 100.

SQL also provides special data types, such as various forms of the date type, and
allows several arithmetic functions to operate on these types.

3.3.2 The where Clause
Let us illustrate the use of the where clause in SQL. Consider the query “Find all loan
numbers for loans made at the Perryridge branch with loan amounts greater that
$1200.” This query can be written in SQL as:

select loan number
from loan
where branch name = ’Perryridge’ and amount > 1200

SQL uses the logical connectives and, or, and not—rather than the mathematical
symbols ∧, ∨, and ¬ —in the where clause. The operands of the logical connectives
can be expressions involving the comparison operators <, <=, >, >=, =, and <>.
SQL allows us to use the comparison operators to compare strings and arithmetic
expressions, as well as special types, such as date types.

SQL includes a between comparison operator to simplify where clauses that spec-
ify that a value be less than or equal to some value and greater than or equal to some
other value. If we wish to find the loan number of those loans with loan amounts
between $90,000 and $100,000, we can use the between comparison to write

select loan number
from loan
where amount between 90000 and 100000

instead of

select loan number
from loan
where amount <= 100000 and amount >= 90000

Similarly, we can use the not between comparison operator.

3.3.3 The from Clause
Finally, let us discuss the use of the from clause. The from clause by itself defines a
Cartesian product of the relations in the clause. Since the natural join is defined in
terms of a Cartesian product, a selection, and a projection, it is a relatively simple
matter to write an SQL expression for the natural join.

We write the relational-algebra expression

Πcustomer name, loan number, amount (borrower � loan)

for the query “For all customers who have a loan from the bank, find their names,
loan numbers, and loan amount.” In SQL, this query can be written as

3.3 Basic Structure of SQL Queries 83

select customer name, borrower.loan number, amount
from borrower, loan
where borrower.loan number = loan.loan number

Notice that SQL uses the notation relation-name.attribute-name, as does the relational
algebra, to avoid ambiguity in cases where an attribute appears in the schema of more
than one relation. We could have written borrower.customer name instead of customer
name in the select clause. However, since the attribute customer name appears in only

one of the relations named in the from clause, there is no ambiguity when we write
customer name.

We can extend the preceding query and consider a more complicated case in which
we require also that the loan be from the Perryridge branch: “Find the customer
names, loan numbers, and loan amounts for all loans at the Perryridge branch.” To
write this query, we need to state two constraints in the where clause, connected by
the logical connective and:

select customer name, borrower.loan number, amount
from borrower, loan
where borrower.loan number = loan.loan number and

branch name = ’Perryridge’

SQL includes extensions to perform natural joins and outer joins in the from clause.
We discuss these extensions in Section 3.11.

3.3.4 The Rename Operation
SQL provides a mechanism for renaming both relations and attributes. It uses the as
clause, taking the form:

old-name as new-name

The as clause can appear in both the select and from clauses.
Consider again the query that we used earlier:

select customer name, borrower.loan number, amount
from borrower, loan
where borrower.loan number = loan.loan number

The result of this query is a relation with the following attributes:

customer name, loan number, amount

The names of the attributes in the result are derived from the names of the attributes
in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons: First,
two relations in the from clause may have attributes with the same name, in which
case an attribute name is duplicated in the result. Second, if we used an arithmetic
expression in the select clause, the resultant attribute does not have a name. Third,

84 Chapter 3 SQL

even if an attribute name can be derived from the base relations as in the preced-
ing example, we may want to change the attribute name in the result. Hence, SQL
provides a way of renaming the attributes of a result relation.

For example, if we want the attribute name loan number to be replaced with the
name loan id, we can rewrite the preceding query as

select customer name, borrower.loan number as loan id, amount
from borrower, loan
where borrower.loan number = loan.loan number

3.3.5 Tuple Variables
The as clause is particularly useful in defining the notion of tuple variables. A tuple
variable in SQL must be associated with a particular relation. Tuple variables are de-
fined in the from clause by way of the as clause. To illustrate, we rewrite the query
“For all customers who have a loan from the bank, find their names, loan numbers,
and loan amount” as

select customer name, T.loan number, S.amount
from borrower as T, loan as S
where T.loan number = S.loan number

Note that we define a tuple variable in the from clause by placing it after the name of
the relation with which it is associated, with the keyword as in between (the keyword
as is optional). When we write expressions of the form relation-name.attribute-name,
the relation name is, in effect, an implicitly defined tuple variable.

Tuple variables are most useful for comparing two tuples in the same relation.
Recall that, in such cases, we could use the rename operation in the relational algebra.
Suppose that we want the query “Find the names of all branches that have assets
greater than at least one branch located in Brooklyn.” We can write the SQL expression

select distinct T.branch name
from branch as T, branch as S
where T.assets > S.assets and S.branch city = ’Brooklyn’

Observe that we could not use the notation branch.asset, since it would not be clear
which reference to branch is intended.

SQL permits us to use the notation (v1, v2, . . . , vn) to denote a tuple of arity n con-
taining values v1, v2, . . . , vn. The comparison operators can be used on tuples, and
the ordering is defined lexicographically. For example, (a1, a2) <= (b1, b2) is true if
a1 < b1, or (a1 = b1) ∧ (a2 <= b2); similarly, the two tuples are equal if all their
attributes are equal.

3.3.6 String Operations
SQL specifies strings by enclosing them in single quotes, for example, ’Perryridge,’
as we saw earlier. A single quote character that is part of a string can be specified by

3.3 Basic Structure of SQL Queries 85

using two single quote characters; for example, the string “It’s right” can be specified
by “It”s right”.

The most commonly used operation on strings is pattern matching using the op-
erator like. We describe patterns by using two special characters:

• Percent (%): The % character matches any substring.

• Underscore (): The character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase char-
acters, or vice versa. To illustrate pattern matching, we consider the following exam-
ples:

• ’Perry%’ matches any string beginning with “Perry.”

• ’%idge%’ matches any string containing “idge” as a substring, for example,
’Perryridge’, ’Rock Ridge’, ’Mianus Bridge’, and ’Ridgeway.’

• ’ ’ matches any string of exactly three characters.

• ’ %’ matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query
“Find the names of all customers whose street address includes the substring ‘Main’.”
This query can be written as

select customer name
from customer
where customer street like ’%Main%’

For patterns to include the special pattern characters (that is, % and), SQL allows
the specification of an escape character. The escape character is used immediately
before a special pattern character to indicate that the special pattern character is to be
treated like a normal character. We define the escape character for a like comparison
using the escape keyword. To illustrate, consider the following patterns, which use a
backslash (\) as the escape character:

• like ’ab\%cd%’ escape ’\’ matches all strings beginning with “ab%cd”.

• like ’ab\\cd%’ escape ’\’ matches all strings beginning with “ab\cd”.

SQL allows us to search for mismatches instead of matches by using the not like
comparison operator.

SQL also permits a variety of functions on character strings, such as concatenating
(using “‖”), extracting substrings, finding the length of strings, converting strings to
uppercase (using upper()) and lowercase (using lower()), and so on. SQL:1999 also
offers a similar to operation, which provides more powerful pattern matching than
the like operation; the syntax for specifying patterns is similar to that used in Unix
regular expressions.

86 Chapter 3 SQL

There are variations on the exact set of string functions supported by different
database systems. Some database systems do not distinguish uppercase from low-
ercase when matching strings. Thus, ’ABC’ like ’abc’ would return true, as would
’ABC’ = ’abc’, on such systems. Others provide extensions to specify that a string
match should ignore the case. See your database system’s manual for more details
on exactly what string functions it supports.

3.3.7 Ordering the Display of Tuples
SQL offers the user some control over the order in which tuples in a relation are dis-
played. The order by clause causes the tuples in the result of a query to appear in
sorted order. To list in alphabetic order all customers who have a loan at the Per-
ryridge branch, we write

select distinct customer name
from borrower, loan
where borrower.loan number = loan.loan number and

branch name = ’Perryridge’
order by customer name

By default, the order by clause lists items in ascending order. To specify the sort order,
we may specify desc for descending order or asc for ascending order. Furthermore,
ordering can be performed on multiple attributes. Suppose that we wish to list the
entire loan relation in descending order of amount. If several loans have the same
amount, we order them in ascending order by loan number. We express this query in
SQL as follows:

select *
from loan
order by amount desc, loan number asc

To fulfill an order by request, SQL must perform a sort. Since sorting a large num-
ber of tuples may be costly, it should be done only when necessary.

3.3.8 Duplicates
Using relations with duplicates offers advantages in several situations. Accordingly,
SQL formally defines not only what tuples are in the result of a query, but also how
many copies of each of those tuples appear in the result. We can define the duplicate
semantics of an SQL query using multiset versions of the relational operators. Here,
we define the multiset versions of several of the relational-algebra operators. Given
multiset relations r1 and r2,

1. If there are c1 copies of tuple t1 in r1, and t1 satisfies selection σθ, then there
are c1 copies of t1 in σθ(r1).

2. For each copy of tuple t1 in r1, there is a copy of tuple ΠA(t1) in ΠA(r1), where
ΠA(t1) denotes the projection of the single tuple t1.

3.4 Set Operations 87

3. If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2, there are
c1 ∗ c2 copies of the tuple t1.t2 in r1 × r2.

For example, suppose that relations r1 with schema (A, B) and r2 with schema (C)
are the following multisets:

r1 = {(1, a), (2, a)} r2 = {(2), (3), (3)}
Then ΠB(r1) would be {(a), (a)}, whereas ΠB(r1) × r2 would be

{(a, 2), (a, 2), (a, 3), (a, 3), (a, 3), (a, 3)}
We can now define how many copies of each tuple occur in the result of an SQL

query. An SQL query of the form

select A1, A2, . . . , An

from r1, r2, . . . , rm

where P

is equivalent to the relational-algebra expression

ΠA1, A2,...,An
(σP (r1 × r2 × · · · × rm))

using the multiset versions of the relational operators σ, Π, and ×.

3.4 Set Operations
The SQL operations union, intersect, and except operate on relations and correspond
to the relational-algebra operations ∪, ∩, and −. Like union, intersection, and set
difference in relational algebra, the relations participating in the operations must be
compatible; that is, they must have the same set of attributes.

Let us demonstrate how several of the example queries that we considered in
Chapter 2 can be written in SQL. We shall now construct queries involving the union,
intersect, and except operations of two sets: the set of all customers who have an
account at the bank, which can be derived by

select customer name
from depositor

and the set of customers who have a loan at the bank, which can be derived by

select customer name
from borrower

In our discussion that follows, we shall refer to the relations obtained as the result of
the preceding queries as d and b, respectively.

3.4.1 The Union Operation
To find all the bank customers having a loan, an account, or both at the bank,
we write

88 Chapter 3 SQL

(select customer name
from depositor)
union
(select customer name
from borrower)

The union operation automatically eliminates duplicates, unlike the select clause.
Thus, in the preceding query, if a customer—say, Jones—has several accounts or
loans (or both) at the bank, then Jones will appear only once in the result.

If we want to retain all duplicates, we must write union all in place of union:

(select customer name
from depositor)
union all
(select customer name
from borrower)

The number of duplicate tuples in the result is equal to the total number of duplicates
that appear in both d and b. Thus, if Jones has three accounts and two loans at the
bank, then there will be five tuples with the name Jones in the result.

3.4.2 The Intersect Operation
To find all customers who have both a loan and an account at the bank, we write

(select distinct customer name
from depositor)

intersect
(select distinct customer name
from borrower)

The intersect operation automatically eliminates duplicates. Thus, in the preceding
query, if a customer—say, Jones—has several accounts and loans at the bank, then
Jones will appear only once in the result.

If we want to retain all duplicates, we must write intersect all in place of intersect:

(select customer name
from depositor)
intersect all
(select customer name
from borrower)

The number of duplicate tuples that appear in the result is equal to the minimum
number of duplicates in both d and b. Thus, if Jones has three accounts and two loans
at the bank, then there will be two tuples with the name Jones in the result.

3.5 Aggregate Functions 89

3.4.3 The Except Operation
To find all customers who have an account but no loan at the bank, we write

(select distinct customer name
from depositor)

except
(select customer name
from borrower)

The except operation automatically eliminates duplicates. Thus, in the preceding
query, a tuple with customer name Jones will appear (exactly once) in the result only
if Jones has an account at the bank, but has no loan at the bank.

If we want to retain all duplicates, we must write except all in place of except:

(select customer name
from depositor)
except all
(select customer name
from borrower)

The number of duplicate copies of a tuple in the result is equal to the number of
duplicate copies of the tuple in depositor minus the number of duplicate copies of
the tuple in borrower, provided that the difference is positive. Thus, if Jones has three
accounts and one loan at the bank, then there will be two tuples with the name Jones
in the result. If, instead, this customer has two accounts and three loans at the bank,
there will be no tuple with the name Jones in the result.

3.5 Aggregate Functions
Aggregate functions are functions that take a collection (a set or multiset) of values as
input and return a single value. SQL offers five built-in aggregate functions:

• Average: avg

• Minimum: min

• Maximum: max

• Total: sum

• Count: count

The input to sum and avg must be a collection of numbers, but the other operators
can operate on collections of nonnumeric data types, such as strings, as well.

As an illustration, consider the query “Find the average account balance at the
Perryridge branch.” We write this query as follows:

90 Chapter 3 SQL

select avg (balance)
from account
where branch name = ’Perryridge’

The result of this query is a relation with a single attribute, containing a single tu-
ple with a numerical value corresponding to the average balance at the Perryridge
branch. Optionally, we can give a name to the attribute of the result relation by using
the as clause.

There are circumstances where we would like to apply the aggregate function not
only to a single set of tuples, but also to a group of sets of tuples; we specify this wish
in SQL using the group by clause. The attribute or attributes given in the group by
clause are used to form groups. Tuples with the same value on all attributes in the
group by clause are placed in one group.

As an illustration, consider the query “Find the average account balance at each
branch.” We write this query as follows:

select branch name, avg (balance)
from account
group by branch name

Retaining duplicates is important in computing an average. Suppose that the ac-
count balances at the (small) Brighton branch are $1000, $3000, $2000, and $1000. The
average balance is $7000/4 = $1750.00. If duplicates were eliminated, we would ob-
tain the wrong answer ($6000/3 = $2000).

There are cases where we must eliminate duplicates before computing an aggre-
gate function. If we do want to eliminate duplicates, we use the keyword distinct in
the aggregate expression. An example arises in the query “Find the number of de-
positors for each branch.” In this case, a depositor counts only once, regardless of the
number of accounts that depositor may have. We write this query as follows:

select branch name, count (distinct customer name)
from depositor, account
where depositor.account number = account.account number
group by branch name

At times, it is useful to state a condition that applies to groups rather than to tu-
ples. For example, we might be interested in only those branches where the average
account balance is more than $1200. This condition does not apply to a single tuple;
rather, it applies to each group constructed by the group by clause. To express such a
query, we use the having clause of SQL. SQL applies predicates in the having clause
after groups have been formed, so aggregate functions may be used. We express this
query in SQL as follows:

select branch name, avg (balance)
from account
group by branch name
having avg (balance) > 1200

3.6 Null Values 91

At times, we wish to treat the entire relation as a single group. In such cases, we
do not use a group by clause. Consider the query “Find the average balance for all
accounts.” We write this query as follows:

select avg (balance)
from account

We use the aggregate function count frequently to count the number of tuples in
a relation. The notation for this function in SQL is count (*). Thus, to find the number
of tuples in the customer relation, we write

select count (*)
from customer

SQL does not allow the use of distinct with count (*). It is legal to use distinct with
max and min, even though the result does not change. We can use the keyword all
in place of distinct to specify duplicate retention, but, since all is the default, there is
no need to do so.

If a where clause and a having clause appear in the same query, SQL applies the
predicate in the where clause first. Tuples satisfying the where predicate are then
placed into groups by the group by clause. SQL then applies the having clause, if it
is present, to each group; it removes the groups that do not satisfy the having clause
predicate. The select clause uses the remaining groups to generate tuples of the result
of the query.

To illustrate the use of both a having clause and a where clause in the same query,
we consider the query “Find the average balance for each customer who lives in
Harrison and has at least three accounts.”

select depositor.customer name, avg (balance)
from depositor, account, customer
where depositor.account number = account.account number and

depositor.customer name = customer.customer name and
customer city = ’Harrison’

group by depositor.customer name
having count (distinct depositor.account number) >= 3

3.6 Null Values
SQL allows the use of null values to indicate absence of information about the value
of an attribute.

We can use the special keyword null in a predicate to test for a null value. Thus,
to find all loan numbers that appear in the loan relation with null values for amount,
we write

select loan number
from loan
where amount is null

92 Chapter 3 SQL

The predicate is not null tests for the absence of a null value.
The use of a null value in arithmetic and comparison operations causes several

complications. In Section 2.5 we saw how null values are handled in the relational
algebra. We now outline how SQL handles null values.

The result of an arithmetic expression (involving, for example +, −, ∗ or /) is null
if any of the input values is null. SQL treats as unknown the result of any comparison
involving a null value (other than is null and is not null).

Since the predicate in a where clause can involve Boolean operations such as and,
or, and not on the results of comparisons, the definitions of the Boolean operations
are extended to deal with the value unknown, as outlined in Section 2.5.

• and: The result of true and unknown is unknown, false and unknown is false,
while unknown and unknown is unknown.

• or: The result of true or unknown is true, false or unknown is unknown, while
unknown or unknown is unknown.

• not: The result of not unknown is unknown.

SQL defines the result of an SQL statement of the form

select . . . from R1, · · · , Rn where P

to contain (projections of) tuples in R1 × · · · × Rn for which predicate P evaluates to
true. If the predicate evaluates to either false or unknown for a tuple in R1×· · ·×Rn

(the projection of) the tuple is not added to the result.
SQL also allows us to test whether the result of a comparison is unknown, rather

than true or false, by using the clauses is unknown and is not unknown.
Null values, when they exist, also complicate the processing of aggregate opera-

tors. For example, assume that some tuples in the loan relation have a null value for
amount. Consider the following query to total all loan amounts:

select sum (amount)
from loan

The values to be summed in the preceding query include null values, since some
tuples have a null value for amount. Rather than say that the overall sum is itself null,
the SQL standard says that the sum operator should ignore null values in its input.

In general, aggregate functions treat nulls according to the following rule: All ag-
gregate functions except count (*) ignore null values in their input collection. As a
result of null values being ignored, the collection of values may be empty. The count
of an empty collection is defined to be 0, and all other aggregate operations return a
value of null when applied on an empty collection. The effect of null values on some
of the more complicated SQL constructs can be subtle.

A Boolean type data, which can take values true, false, and unknown, was in-
troduced in SQL:1999. The aggregate functions some and every, which mean exactly
what you would intuitively expect, can be applied on a collection of Boolean values.

3.7 Nested Subqueries 93

3.7 Nested Subqueries
SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of subqueries
is to perform tests for set membership, make set comparisons, and determine set car-
dinality. We shall study these uses in subsequent sections.

3.7.1 Set Membership
SQL allows testing tuples for membership in a relation. The in connective tests for set
membership, where the set is a collection of values produced by a select clause. The
not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the customers who have both a
loan and an account at the bank.” Earlier, we wrote such a query by intersecting two
sets: the set of depositors at the bank, and the set of borrowers from the bank. We
can take the alternative approach of finding all account holders at the bank who are
members of the set of borrowers from the bank. Clearly, this formulation generates
the same results as the previous one did, but it leads us to write our query using
the in connective of SQL. We begin by finding all account holders, and we write the
subquery

(select customer name
from depositor)

We then need to find those customers who are borrowers from the bank and who
appear in the list of account holders obtained in the subquery. We do so by nesting
the subquery in an outer select. The resulting query is

select distinct customer name
from borrower
where customer name in (select customer name

from depositor)

This example shows that it is possible to write the same query several ways in
SQL. This flexibility is beneficial, since it allows a user to think about the query in
the way that seems most natural. We shall see that there is a substantial amount of
redundancy in SQL.

In the preceding example, we tested membership in a one-attribute relation. It is
also possible to test for membership in an arbitrary relation in SQL. We can thus write
the query “Find all customers who have both an account and a loan at the Perryridge
branch” in yet another way:

94 Chapter 3 SQL

select distinct customer name
from borrower, loan
where borrower.loan number = loan.loan number and

branch name = ’Perryridge’ and
(branch name, customer name) in

(select branch name, customer name
from depositor, account
where depositor.account number = account.account number)

We use the not in construct in a similar way. For example, to find all customers
who do have a loan at the bank, but do not have an account at the bank, we can write

select distinct customer name
from borrower
where customer name not in (select customer name

from depositor)

The in and not in operators can also be used on enumerated sets. The following
query selects the names of customers who have a loan at the bank, and whose names
are neither Smith nor Jones.

select distinct customer name
from borrower
where customer name not in (’Smith’, ’Jones’)

3.7.2 Set Comparison
As an example of the ability of a nested subquery to compare sets, consider the query
“Find the names of all branches that have assets greater than those of at least one
branch located in Brooklyn.” In Section 3.3.5, we wrote this query as follows:

select distinct T.branch name
from branch as T, branch as S
where T.assets > S.assets and S.branch city = ’Brooklyn’

SQL does, however, offer an alternative style for writing the preceding query. The
phrase “greater than at least one” is represented in SQL by > some. This construct
allows us to rewrite the query in a form that resembles closely our formulation of the
query in English.

select branch name
from branch
where assets > some (select assets

from branch
where branch city = ’Brooklyn’)

The subquery

3.7 Nested Subqueries 95

(select assets
from branch
where branch city = ’Brooklyn’)

generates the set of all asset values for all branches in Brooklyn. The > some
comparison in the where clause of the outer select is true if the assets value of the
tuple is greater than at least one member of the set of all asset values for branches in
Brooklyn.

SQL also allows < some, <= some, >= some, = some, and <> some comparisons.
As an exercise, verify that = some is identical to in, whereas <> some is not the same
as not in. The keyword any is synonymous to some in SQL. Early versions of SQL
allowed only any. Later versions added the alternative some to avoid the linguistic
ambiguity of the word any in English.

Now we modify our query slightly. Let us find the names of all branches that
have an asset value greater than that of each branch in Brooklyn. The construct > all
corresponds to the phrase “greater than all.” Using this construct, we write the query
as follows:

select branch name
from branch
where assets > all (select assets

from branch
where branch city = ’Brooklyn’)

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all compar-
isons. As an exercise, verify that <> all is identical to not in.

As another example of set comparisons, consider the query “Find the branch that
has the highest average balance.” Aggregate functions cannot be composed in SQL.
Thus, we cannot use max (avg (. . .)). Instead, we can follow this strategy: We begin
by writing a query to find all average balances, and then nest it as a subquery of a
larger query that finds those branches for which the average balance is greater than
or equal to all average balances:

select branch name
from account
group by branch name
having avg (balance) >= all (select avg (balance)

from account
group by branch name)

3.7.3 Test for Empty Relations
SQL includes a feature for testing whether a subquery has any tuples in its result. The
exists construct returns the value true if the argument subquery is nonempty. Using
the exists construct, we can write the query “Find all customers who have both an
account and a loan at the bank” in still another way:

96 Chapter 3 SQL

select customer name
from borrower
where exists (select *

from depositor
where depositor.customer name = borrower.customer name)

We can test for the nonexistence of tuples in a subquery by using the not ex-
ists construct. We can use the not exists construct to simulate the set containment
(that is, superset) operation: We can write “relation A contains relation B” as “not
exists (B except A).” (Although it is not part of the SQL-92 and SQL:1999 standards,
the contains operator was present in some early relational systems.) To illustrate the
not exists operator, consider again the query “Find all customers who have an ac-
count at all the branches located in Brooklyn.” For each customer, we need to see
whether the set of all branches at which that customer has an account contains the
set of all branches in Brooklyn. Using the except construct, we can write the query as
follows:

select distinct S.customer name
from depositor as S
where not exists ((select branch name

from branch
where branch city = ’Brooklyn’)

except
(select R.branch name
from depositor as T, account as R
where T.account number = R.account number and

S.customer name = T.customer name))

Here, the subquery

(select branch name
from branch
where branch city = ’Brooklyn’)

finds all the branches in Brooklyn. The subquery

(select R.branch name
from depositor as T, account as R
where T.account number = R.account number and

S.customer name = T.customer name)

finds all the branches at which customer S.customer name has an account. Thus, the
outer select takes each customer and tests whether the set of all branches at which
that customer has an account contains the set of all branches located in Brooklyn.

In queries that contain subqueries, a scoping rule applies for tuple variables. In
a subquery, according to the rule, it is legal to use only tuple variables defined in
the subquery itself or in any query that contains the subquery. If a tuple variable
is defined both locally in a subquery and globally in a containing query, the local

3.8 Complex Queries 97

definition applies. This rule is analogous to the usual scoping rules used for variables
in programming languages.

3.7.4 Test for the Absence of Duplicate Tuples
SQL includes a feature for testing whether a subquery has any duplicate tuples in its
result. The unique construct returns the value true if the argument subquery contains
no duplicate tuples. Using the unique construct, we can write the query “Find all
customers who have at most one account at the Perryridge branch” as follows:

select T.customer name
from depositor as T
where unique (select R.customer name

from account, depositor as R
where T.customer name = R.customer name and

R.account number = account.account number and
account.branch name = ’Perryridge’)

We can test for the existence of duplicate tuples in a subquery by using the not
unique construct. To illustrate this construct, consider the query “Find all customers
who have at least two accounts at the Perryridge branch,” which we write as

select distinct T.customer name
from depositor T
where not unique (select R.customer name

from account, depositor as R
where T.customer name = R.customer name and

R.account number = account.account number and
account.branch name = ’Perryridge’)

Formally, the unique test on a relation is defined to fail if and only if the relation
contains two tuples t1 and t2 such that t1 = t2. Since the test t1 = t2 fails if any of the
fields of t1 or t2 are null, it is possible for unique to be true even if there are multiple
copies of a tuple, as long as at least one of the attributes of the tuple is null.

3.8 Complex Queries
Complex queries are often hard or impossible to write as a single SQL block or a
union/intersection/difference of SQL blocks. (An SQL block consists of a single select-
from-where statement, possibly with group by and having clauses.) We study here
two ways of composing multiple SQL blocks to express a complex query: derived
relations and the with clause.

3.8.1 Derived Relations
SQL allows a subquery expression to be used in the from clause. If we use such an
expression, then we must give the result relation a name, and we can rename the

98 Chapter 3 SQL

attributes. We do this renaming by using the as clause. For example, consider the
subquery

(select branch name, avg (balance)
from account
group by branch name)
as branch avg (branch name, avg balance)

This subquery generates a relation consisting of the names of all branches and their
corresponding average account balances. The subquery result is named branch avg,
with the attributes branch name and avg balance.

To illustrate the use of a subquery expression in the from clause, consider the
query “Find the average account balance of those branches where the average ac-
count balance is greater than $1200.” We wrote this query in Section 3.5 by using the
having clause. We can now rewrite this query, without using the having clause, as
follows:

select branch name, avg balance
from (select branch name, avg (balance)

from account
group by branch name)
as branch avg (branch name, avg balance)

where avg balance > 1200

Note that we do not need to use the having clause, since the subquery in the from
clause computes the average balance, and its result is named as branch avg; we can
use the attributes of branch avg directly in the where clause.

As another example, suppose we wish to find the maximum across all branches of
the total balance at each branch. The having clause does not help us in this task, but
we can write this query easily by using a subquery in the from clause, as follows:

select max(tot balance)
from (select branch name, sum(balance)

from account
group by branch name) as branch total (branch name, tot balance)

3.8.2 The with Clause
Complex queries are much easier to write and to understand if we structure them
by breaking them into smaller views that we then combine, just as we structure pro-
grams by breaking their task into procedures. However, unlike a procedure defini-
tion, a create view clause creates a view definition in the database, and the view
definition stays in the database until a command drop view view-name is executed.

The with clause provides a way of defining a temporary view whose definition is
available only to the query in which the with clause occurs. Consider the following
query, which selects accounts with the maximum balance; if there are many accounts
with the same maximum balance, all of them are selected.

3.9 Views 99

with max balance (value) as
select max(balance)
from account

select account number
from account, max balance
where account.balance = max balance.value

The with clause, introduced in SQL:1999, is currently supported only by some data-
bases.

We could have written the above query by using a nested subquery in either the
from clause or the where clause. However, using nested subqueries would have
made the query harder to read and understand. The with clause makes the query
logic clearer; it also permits a view definition to be used in multiple places within a
query.

For example, suppose we want to find all branches where the total account deposit
is greater than the average of the total account deposits at all branches. We can write
the query using the with clause as follows.

with branch total (branch name, value) as
select branch name, sum(balance)
from account
group by branch name

with branch total avg(value) as
select avg(value)
from branch total

select branch name
from branch total, branch total avg
where branch total.value >= branch total avg.value

We can, of course, create an equivalent query without the with clause, but it would
be more complicated and harder to understand. You can write the equivalent query
as an exercise.

3.9 Views
In our examples up to this point, we have operated at the logical-model level. That
is, we have assumed that the relations in the collection we are given are the actual
relations stored in the database.

It is not desirable for all users to see the entire logical model. Security consider-
ations may require that certain data be hidden from users. Consider a person who
needs to know a customer’s loan number and branch name, but has no need to see
the loan amount. This person should see a relation described (modulo renaming of
attributes), in SQL, by

select customer name, borrower.loan number, branch name
from borrower, loan
where borrower.loan number = loan.loan number

100 Chapter 3 SQL

Aside from security concerns, we may wish to create a personalized collection of
relations that is better matched to a certain user’s intuition than is the logical model.
An employee in the advertising department, for example, might like to see a relation
consisting of the customers who have either an account or a loan at the bank, and
the branches with which they do business. The relation that we would create for that
employee is

(select branch name, customer name
from depositor, account
where depositor.account number = account.account number)
union
(select branch name, customer name
from borrower, loan
where borrower.loan number = loan.loan number)

Any relation that is not part of the logical model, but is made visible to a user as a
virtual relation, is called a view. It is possible to support a large number of views on
top of any given set of actual relations.

3.9.1 View Definition
We define a view in SQL by using the create view command. To define a view, we
must give the view a name and must state the query that computes the view. The
form of the create view command is

create view v as <query expression>

where <query expression> is any legal query expression. The view name is repre-
sented by v.

As an example, consider the view consisting of branches and their customers. As-
sume that we want this view to be called all customer. We define this view as follows:

create view all customer as
(select branch name, customer name
from depositor, account
where depositor.account number = account.account number)

union
(select branch name, customer name
from borrower, loan
where borrower.loan number = loan.loan number)

Once we have defined a view, we can use the view name to refer to the virtual re-
lation that the view generates. Using the view all customer, we can find all customers
of the Perryridge branch by writing

3.9 Views 101

select customer name
from all customer
where branch name = ’Perryridge’

View names may appear in any place where a relation name may appear, so long
as no update operations are executed on the views. We study the issue of update
operations on views in Section 3.10.4.

The attribute names of a view can be specified explicitly as follows:

create view branch total loan(branch name, total loan) as
select branch name, sum(amount)
from loan
group by branch name

The preceding view gives for each branch the sum of the amounts of all the loans
at the branch. Since the expression sum(amount) does not have a name, the attribute
name is specified explicitly in the view definition.

Intuitively, at any given time, the set of tuples in the view relation is the result
of evaluation of the query expression that defines the view at that time. Thus, if a
view relation is computed and stored, it may become out of date if the relations used
to define it are modified. To avoid this, views are usually implemented as follows.
When we define a view, the database system stores the definition of the view itself,
rather than the result of evaluation of the relational-algebra expression that defines
the view. Wherever a view relation appears in a query, it is replaced by the stored
query expression. Thus, whenever we evaluate the query, the view relation gets re-
computed.

Certain database systems allow view relations to be stored, but they make sure
that, if the actual relations used in the view definition change, the view is kept up
to date. Such views are called materialized views. The process of keeping the view
up to date is called view maintenance, covered in Section 14.5. Applications that use
a view frequently benefit from the use of materialized views, as do applications that
demand fast response to certain view-based queries. Of course, the benefits to queries
from the materialization of a view must be weighed against the storage costs and the
added overhead for updates.

3.9.2 Views Defined by Using Other Views
In Section 3.9.1 we mentioned that view relations may appear in any place that a
relation name may appear, except for restrictions on the use of views in update ex-
pressions. Thus, one view may be used in the expression defining another view. For
example, we can define the view perryridge customer as follows:

create view perryridge customer as
select customer name
from all customer
where branch name = ’Perryridge’

where all customer is itself a view relation.

102 Chapter 3 SQL

View expansion is one way to define the meaning of views defined in terms of
other views. The procedure assumes that view definitions are not recursive; that is,
no view is used in its own definition, whether directly, or indirectly through other
view definitions. For example, if v1 is used in the definition of v2, v2 is used in the
definition of v3, and v3 is used in the definition of v1, then each of v1, v2, and v3
is recursive. Recursive view definitions are useful in some situations, and we revisit
them in the context of the Datalog language, in Section 5.4.

Let view v1 be defined by an expression e1 that may itself contain uses of view
relations. A view relation stands for the expression defining the view, and therefore
a view relation can be replaced by the expression that defines it. If we modify an ex-
pression by replacing a view relation by the latter’s definition, the resultant expres-
sion may still contain other view relations. Hence, view expansion of an expression
repeats the replacement step as follows:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

As long as the view definitions are not recursive, this loop will terminate. Thus, an
expression e containing view relations can be understood as the expression resulting
from view expansion of e, which does not contain any view relations.

As an illustration of view expansion, consider the following expression:

select *
from perryridge customer
where customer name = ’John’

The view-expansion procedure initially generates

select *
from (select customer name

from all customer
where branch name = ’Perryridge’)

where customer name = ’John’

It then generates

select *
from (select customer name

from ((select branch name, customer name
from depositor, account
where depositor.account number = account.account number)
union

(select branch name, customer name
from borrower, loan
where borrower.loan number = loan.loan number))

where branch name = ’Perryridge’)
where customer name = ’John’

3.10 Modification of the Database 103

At this time, there are no more uses of view relations, and view expansion termi-
nates.

3.10 Modification of the Database
We have restricted our attention until now to the extraction of information from the
database. Now, we show how to add, remove, or change information with SQL.

3.10.1 Deletion
A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses a
deletion by

delete from r
where P

where P represents a predicate and r represents a relation. The delete statement first
finds all tuples t in r for which P (t) is true, and then deletes them from r. The where
clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
The predicate in the where clause may be as complex as a select command’s where
clause. At the other extreme, the where clause may be empty. The request

delete from loan

deletes all tuples from the loan relation. (Well-designed systems will seek confirma-
tion from the user before executing such a devastating request.)

Here are examples of SQL delete requests:

• Delete all account tuples in the Perryridge branch.

delete from account
where branch name = ’Perryridge’

• Delete all loans with loan amounts between $1300 and $1500.

delete from loan
where amount between 1300 and 1500

• Delete all account tuples at every branch located in Brooklyn.

delete from account
where branch name in (select branch name

from branch
where branch city = ’Brooklyn’)

104 Chapter 3 SQL

This delete request first finds all branches in Brooklyn, and then deletes all
account tuples pertaining to those branches.

Note that, although we may delete tuples from only one relation at a time, we may
reference any number of relations in a select-from-where nested in the where clause
of a delete. The delete request can contain a nested select that references the relation
from which tuples are to be deleted. For example, suppose that we want to delete the
records of all accounts with balances below the average at the bank. We could write

delete from account
where balance < (select avg (balance)

from account)

The delete statement first tests each tuple in the relation account to check whether the
account has a balance less than the average at the bank. Then, all tuples that fail the
test—that is, represent an account with a lower-than-average balance—are deleted.
Performing all the tests before performing any deletion is important—if some tuples
are deleted before other tuples have been tested, the average balance may change,
and the final result of the delete would depend on the order in which the tuples were
processed!

3.10.2 Insertion
To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Obviously, the attribute values for in-
serted tuples must be members of the attribute’s domain. Similarly, tuples inserted
must be of the correct arity.

The simplest insert statement is a request to insert one tuple. Suppose that we
wish to insert the fact that there is an account A-9732 at the Perryridge branch and
that it has a balance of $1200. We write

insert into account
values (’A-9732’, ’Perryridge’, 1200)

In this example, the values are specified in the order in which the corresponding
attributes are listed in the relation schema. For the benefit of users who may not
remember the order of the attributes, SQL allows the attributes to be specified as part
of the insert statement. For example, the following SQL insert statements are identical
in function to the preceding one:

insert into account (account number, branch name, balance)
values (’A-9732’, ’Perryridge’, 1200)

insert into account (branch name, account number, balance)
values (’Perryridge’, ’A-9732’, 1200)

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to present a new $200 savings account as a gift to all loan

3.10 Modification of the Database 105

customers of the Perryridge branch, for each loan they have. Let the loan number
serve as the account number for the savings account. We write

insert into account
select loan number, branch name, 200
from loan
where branch name = ’Perryridge’

Instead of specifying a tuple as we did earlier in this section, we use a select to specify
a set of tuples. SQL evaluates the select statement first, giving a set of tuples that is
then inserted into the account relation. Each tuple has a loan number (which serves as
the account number for the new account), a branch name (Perryridge), and an initial
balance of the new account ($200).

We also need to add tuples to the depositor relation; we do so by writing

insert into depositor
select customer name, loan number
from borrower, loan
where borrower.loan number = loan.loan number and

branch name = ’Perryridge’

This query inserts a tuple (customer name, loan number) into the depositor relation for
each customer name who has a loan in the Perryridge branch with loan number loan
number.

It is important that we evaluate the select statement fully before we carry out
any insertions. If we carry out some insertions even as the select statement is being
evaluated, a request such as

insert into account
select *
from account

might insert an infinite number of tuples! The request would insert the first tuple in
account again, creating a second copy of the tuple. Since this second copy is part of
account now, the select statement may find it, and a third copy would be inserted into
account. The select statement may then find this third copy and insert a fourth copy,
and so on, forever. Evaluating the select statement completely before performing
insertions avoids such problems.

Our discussion of the insert statement considered only examples in which a value
is given for every attribute in inserted tuples. It is possible, as we saw in Chapter 2,
for inserted tuples to be given values on only some attributes of the schema. The
remaining attributes are assigned a null value denoted by null. Consider the request

insert into account
values (’A-401’, null, 1200)

106 Chapter 3 SQL

We know that account A-401 has $1200, but the branch name is not known. Consider
the query

select account number
from account
where branch name = ’Perryridge’

Since the branch at which account A-401 is maintained is not known, we cannot de-
termine whether it is equal to “Perryridge.”

We can prohibit the insertion of null values on specified attributes by using the
SQL DDL, which we discuss in Section 3.2.

Most relational database products have special “bulk loader” utilities to insert a
large set of tuples into a relation. These utilities allow data to be read from formatted
text files, and can execute much faster than an equivalent sequence of insert state-
ments.

3.10.3 Updates
In certain situations, we may wish to change a value in a tuple without changing all
values in the tuple. For this purpose, the update statement can be used. As we could
for insert and delete, we can choose the tuples to be updated by using a query.

Suppose that annual interest payments are being made, and all balances are to be
increased by 5 percent. We write

update account
set balance = balance * 1.05

The preceding update statement is applied once to each of the tuples in account rela-
tion.

If interest is to be paid only to accounts with a balance of $1000 or more, we can
write

update account
set balance = balance * 1.05
where balance >= 1000

In general, the where clause of the update statement may contain any construct
legal in the where clause of the select statement (including nested selects). As with
insert and delete, a nested select within an update statement may reference the re-
lation that is being updated. As before, SQL first tests all tuples in the relation to see
whether they should be updated, and carries out the updates afterward. For exam-
ple, we can write the request “Pay 5 percent interest on accounts whose balance is
greater than average” as follows:

update account
set balance = balance * 1.05
where balance > (select avg (balance)

from account)

3.10 Modification of the Database 107

Let us now suppose that all accounts with balances over $10,000 receive 6 percent
interest, whereas all others receive 5 percent. We could write two update statements:

update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance <= 10000

Note that, as we saw in Chapter 2, the order of the two update statements is impor-
tant. If we changed the order of the two statements, an account with a balance just
under $10,000 would receive 11.3 percent interest.

SQL provides a case construct, which we can use to perform both the updates with
a single update statement, avoiding the problem with order of updates.

update account
set balance = case

when balance <= 10000 then balance * 1.05
else balance * 1.06

end

The general form of the case statement is as follows.

case
when pred1 then result1

when pred2 then result2

. . .
when predn then resultn

else result0

end

The operation returns result i, where i is the first of pred1, pred2, . . . , predn that is sat-
isfied; if none of the predicates is satisfied, the operation returns result0. Case state-
ments can be used in any place where a value is expected.

3.10.4 Update of a View
Although views are a useful tool for queries, they present serious problems if we ex-
press updates, insertions, or deletions with them. The difficulty is that a modification
to the database expressed in terms of a view must be translated to a modification to
the actual relations in the logical model of the database.

To illustrate the problem, consider a clerk who needs to see all loan data in the loan
relation, except loan amount. Let loan branch be the view given to the clerk. We define
this view as

108 Chapter 3 SQL

create view loan branch as
select loan number, branch name
from loan

Since we allow a view name to appear wherever a relation name is allowed, the
clerk can write:

insert into loan branch
values (’L-37’, ’Perryridge’)

This insertion must be represented by an insertion into the relation loan, since loan is
the actual relation from which the database system constructs the view loan branch.
However, to insert a tuple into loan, we must have some value for amount. There are
two reasonable approaches to dealing with this insertion:

• Reject the insertion, and return an error message to the user.

• Insert a tuple (L-37, “Perryridge”, null) into the loan relation.

Another problem with modification of the database through views occurs with a
view such as

create view loan info as
select customer name, amount
from borrower, loan
where borrower.loan number = loan.loan number

This view lists the loan amount for each loan that any customer of the bank has.
Consider the following insertion through this view:

insert into loan info
values (’Johnson’, 1900)

loan_number branch_name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge

Perryridge
1500

L-16 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500
null null 1900

customer_name loan_number
Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17
Johnson null

loan
borrower

Figure 3.3 Tuples inserted into loan and borrower.

3.10 Modification of the Database 109

The only possible method of inserting tuples into the borrower and loan relations is
to insert (“Johnson”, null) into borrower and (null, null, 1900) into loan. Then, we obtain
the relations shown in Figure 3.3. However, this update does not have the desired
effect, since the view relation loan info still does not include the tuple (“Johnson”,
1900). Thus, there is no way to update the relations borrower and loan by using nulls
to get the desired update on loan info.

Because of problems such as these, modifications are generally not permitted on
view relations, except in limited cases. Different database systems specify different
conditions under which they permit updates on view relations; see the database
system manuals for details. The general problem of database modification through
views has been the subject of substantial research, and the bibliographic notes pro-
vide pointers to some of this research.

In general, an SQL view is said to be updatable (that is, inserts, updates or deletes
can be applied on the view) if the following conditions are all satisfied:

• The from clause has only one database relation.

• The select clause contains only attribute names of the relation, and does not
have any expressions, aggregates, or distinct specification.

• Any attribute not listed in the select clause can be set to null.

• The query does not have a group by or having clause.

Under these constraints, the update, insert, and delete operations would be forbid-
den on the example view all customer that we defined previously.

Suppose a view downtown account is defined as follows:

create view downtown account as
select account number, branch name, balance
from account
where branch name = ’Downtown’

The above view is updatable, since it satisfies the conditions listed earlier.
Even with the conditions on updatability, the following problem still remains. Sup-

pose that a user tries to insert the tuple (’A-999’, ’Perryridge’, 1000) into the downtown
account view. This tuple can be inserted into the account relation, but it would not ap-

pear in the downtown account view since it does not satisfy the selection imposed by
the view.

By default, SQL would allow the above update to proceed. However, views can be
defined with a with check option clause at the end of the view definition; then, if a
tuple inserted into the view does not satisfy the view’s where clause condition, the
insertion is rejected by the database system. Updates are similarly rejected if the new
value does not satisfy the where clause conditions.

SQL:1999 has a more complex set of rules about when inserts, updates, and deletes
can be executed on a view, that allows updates through a larger class of views; how-
ever, the rules are too complex to be discussed here.

110 Chapter 3 SQL

3.10.5 Transactions
A transaction consists of a sequence of query and/or update statements. The SQL
standard specifies that a transaction begins implicitly when an SQL statement is exe-
cuted. One of the following SQL statements must end the transaction:

• Commit work commits the current transaction; that is, it makes the updates
performed by the transaction become permanent in the database. After the
transaction is committed, a new transaction is automatically started.

• Rollback work causes the current transaction to be rolled back; that is, it un-
does all the updates performed by the SQL statements in the transaction. Thus,
the database state is restored to what it was before the first statement of the
transaction was executed.

The keyword work is optional in both the statements.
Transaction rollback is useful if some error condition is detected during execution

of a transaction. Commit is similar, in a sense, to saving changes to a document that
is being edited, while rollback is similar to quitting the edit session without saving
changes. Once a transaction has executed commit work, its effects can no longer be
undone by rollback work. The database system guarantees that in the event of some
failure, such as an error in one of the SQL statements, a power outage, or a system
crash, a transaction’s effects will be rolled back if it has not yet executed commit
work. In the case of power outage or other system crash, the rollback occurs when
the system restarts.

For instance, to transfer money from one account to another we need to update
two account balances. The two update statements would form a transaction. An error
while a transaction executes one of its statements would result in undoing of the
effects of the earlier statements of the transaction, so that the database is not left in a
partially updated state. We study further properties of transactions in Chapter 15.

If a program terminates without executing either of these commands, the updates
are either committed or rolled back. The standard does not specify which of the two
happens, and the choice is implementation dependent. In many SQL implementa-
tions, by default each SQL statement is taken to be a transaction on its own, and gets
committed as soon as it is executed. Automatic commit of individual SQL statements
must be turned off if a transaction consisting of multiple SQL statements needs to be
executed. How to turn off automatic commit depends on the specific SQL implemen-
tation.

A better alternative, which is part of the SQL:1999 standard (but supported by only
some SQL implementations currently), is to allow multiple SQL statements to be en-
closed between the keywords begin atomic . . . end. All the statements between the
keywords then form a single transaction.

3.11 Joined Relations∗∗
SQL provides not only the basic Cartesian-product mechanism for joining tuples of
relations, but also provides (in SQL-92 and later SQL versions) various other mecha-

3.11 Joined Relations∗∗ 111

loan_number branch_name amount
L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

loan

customer_name loan_number
Jones L-170
Smith L-230
Hayes L-155

borrower

Figure 3.4 The loan and borrower relations.

nisms for joining relations, including condition joins and natural joins, as well as var-
ious forms of outer joins. These additional operations are typically used as subquery
expressions in the from clause.

3.11.1 Examples
We illustrate the various join operations by using the relations loan and borrower in
Figure 3.4. We start with a simple example of inner joins. Figure 3.5 shows the result
of the expression

loan inner join borrower on loan.loan number = borrower .loan number

The expression computes the theta join of the loan and the borrower relations, with
the join condition being loan.loan number = borrower.loan number. The attributes of the
result consist of the attributes of the left-hand-side relation followed by the attributes
of the right-hand-side relation.

Note that the attribute loan number appears twice in the figure—the first occur-
rence is from loan, and the second is from borrower. The SQL standard does not require
attribute names in such results to be unique. An as clause should be used to assign
unique names to attributes in query and subquery results.

We rename the result relation of a join and the attributes of the result relation by
using an as clause, as illustrated here:

loan inner join borrower on loan.loan number = borrower.loan number
as lb(loan number, branch, amount, cust, cust loan num)

We rename the second occurrence of loan number to cust loan num. The ordering of the
attributes in the result of the join is important for the renaming.

Next, we consider an example of the left outer-join operation:

loan_number branch_name amount customer_name loan_number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230

Figure 3.5 The result of loan inner join borrower on
loan.loan number = borrower .loan number .

112 Chapter 3 SQL

loan_number branch_name amount customer_name loan_number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 null null

Figure 3.6 The result of loan left outer join borrower on
loan.loan number = borrower .loan number .

loan left outer join borrower on loan.loan number = borrower.loan number

We can compute the left outer-join operation logically as follows. First, compute the
result of the inner join as before. Then, for every tuple t in the left-hand-side relation
loan that does not match any tuple in the right-hand-side relation borrower in the inner
join, add a tuple r to the result of the join: The attributes of tuple r that are derived
from the left-hand-side relation are filled in with the values from tuple t, and the
remaining attributes of r are filled with null values. Figure 3.6 shows the resultant
relation. The tuples (L-170, Downtown, 3000) and (L-230, Redwood, 4000) join with
tuples from borrower and appear in the result of the inner join, and hence in the result
of the left outer join. On the other hand, the tuple (L-260, Perryridge, 1700) did not
match any tuple from borrower in the inner join, and hence a tuple (L-260, Perryridge,
1700, null, null) is present in the result of the left outer join.

Finally, we consider an example of the natural-join operation:

loan natural inner join borrower

This expression computes the natural join of the two relations. The only attribute
name common to loan and borrower is loan number. Figure 3.7 shows the result of the
expression. The result is similar to the result of the inner join with the on condition in
Figure 3.5, since they have, in effect, the same join condition. However, the attribute
loan number appears only once in the result of the natural join, whereas it appears
twice in the result of the join with the on condition.

3.11.2 Join Types and Conditions
In Section 3.11.1, we saw examples of the join operations permitted in SQL. Join op-
erations take two relations and return another relation as the result. Although outer-
join expressions are typically used in the from clause, they can be used anywhere
that a relation can be used.

loan_number branch_name amount customer_name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

Figure 3.7 The result of loan natural inner join borrower.

3.11 Joined Relations∗∗ 113

Join types
inner join
left outer join
right outer join
full outer join

Join conditions
natural
on < predicate>
using (A1, A1, . . ., An)

Figure 3.8 Join types and join conditions.

Each of the variants of the join operations in SQL consists of a join type and a join
condition. The join condition defines which tuples in the two relations match and what
attributes are present in the result of the join. The join type defines how tuples in each
relation that do not match any tuple in the other relation (based on the join condition)
are treated. Figure 3.8 shows some of the allowed join types and join conditions. The
first join type is the inner join, and the other three are the outer joins. Of the three join
conditions, we have seen the natural join and the on condition before, and we shall
discuss the using condition, later in this section.

The use of a join condition is mandatory for outer joins, but is optional for inner
joins (if it is omitted, a Cartesian product results). Syntactically, the keyword natural
appears before the join type, as illustrated earlier, whereas the on and using con-
ditions appear at the end of the join expression. The keywords inner and outer are
optional, since the rest of the join type enables us to deduce whether the join is an
inner join or an outer join.

The meaning of the join condition natural, in terms of which tuples from the two
relations match, is straightforward. The ordering of the attributes in the result of a
natural join is as follows. The join attributes (that is, the attributes common to both
relations) appear first, in the order in which they appear in the left-hand-side relation.
Next come all nonjoin attributes of the left-hand-side relation, and finally all nonjoin
attributes of the right-hand-side relation.

The right outer join is symmetric to the left outer join. Tuples from the right-hand-
side relation that do not match any tuple in the left-hand-side relation are padded
with nulls and are added to the result of the right outer join.

Here is an example of combining the natural-join condition with the right outer
join type:

loan natural right outer join borrower

Figure 3.9 shows the result of this expression. The attributes of the result are defined
by the join type, which is a natural join; hence, loan number appears only once. The

loan_number branch_name amount customer_name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes

Figure 3.9 The result of loan natural right outer join borrower.

114 Chapter 3 SQL

first two tuples in the result are from the inner natural join of loan and borrower. The
tuple (Hayes, L-155) from the right-hand-side relation does not match any tuple from
the left-hand-side relation loan in the natural inner join. Hence, the tuple (L-155, null,
null, Hayes) appears in the join result.

The join condition using(A1, A2, . . . , An) is similar to the natural-join condition,
except that the join attributes are the attributes A1, A2, . . . , An, rather than all at-
tributes that are common to both relations. The attributes A1, A2, . . . , An must consist
of only attributes that are common to both relations, and they appear only once in the
result of the join.

The full outer join is a combination of the left and right outer-join types. After
the operation computes the result of the inner join, it extends with nulls tuples from
the left-hand-side relation that did not match with any from the right-hand-side, and
adds them to the result. Similarly, it extends with nulls tuples from the right-hand-
side relation that did not match with any tuples from the left-hand-side relation and
adds them to the result.

For example, Figure 3.10 shows the result of the expression

loan full outer join borrower using (loan number)

As another example of the use of the outer-join operation, we can write the query
“Find all customers who have an account but no loan at the bank” as

select d CN
from (depositor left outer join borrower

on depositor.customer name = borrower.customer name)
as db1 (d CN, account number, b CN, loan number)

where b CN is null

Similarly, we can write the query “Find all customers who have either an account
or a loan (but not both) at the bank,” with natural full outer joins as:

select customer name
from (depositor natural full outer join borrower)
where account number is null or loan number is null

SQL-92 also provides two other join types, called cross join and union join. The
first is equivalent to an inner join without a join condition; the second is equivalent
to a full outer join on the “false” condition—that is, where the inner join is empty.

loan_number branch_name amount customer_name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null
L-155 null null Hayes

Figure 3.10 The result of loan full outer join borrower using (loan number).

Review Terms 115

3.12 Summary
• Commercial database systems do not use the terse, formal relational algebra

covered in Chapter 2. The widely used SQL language, which we studied in
this chapter, is based on the relational algebra, but includes much “syntactic
sugar.”

• The SQL data-definition language is used to create relations with specified
schemas. The SQL DDL supports a number of types including date and time
types. Further details on the SQL DDL, in particular its support for integrity
constraints, appear in Section 3.2.

• SQL includes a variety of language constructs for queries on the database. All
the relational-algebra operations, including the extended relational-algebra
operations, can be expressed by SQL. SQL also allows ordering of query re-
sults by sorting on specified attributes.

• SQL handles queries on relations containing null values by adding the truth
value “unknown” to the usual truth values of true and false.

• SQL allows nested subqueries in the where clause. The outer query can per-
form a variety of operations on the subquery result such as checking for empti-
ness or containment of a value in the subquery result. Subqueries in the from
clause are called derived relations.

• View relations can be defined as relations containing the result of queries.
Views are useful for hiding unneeded information, and for collecting together
information from more than one relation into a single view.

• Temporary views defined by using the with clause are also useful for breaking
up complex queries into smaller and easier-to-understand parts.

• SQL provides constructs for updating, inserting, and deleting information.
Updates through views are allowed only when some fairly restrictive con-
ditions are satisfied.

• Transactions are a sequence of queries and updates that together carry out
a task. Transactions can be committed, or rolled back; when a transaction is
rolled back, the effects of all updates performed by the transaction are undone.

• SQL supports several types of outer join with several types of join conditions.

Review Terms
• DDL: data-definition language

• DML: data-manipulation
language

• select clause

• from clause

• where clause

• as clause

• Tuple variable

• order by clause

• Duplicates

116 Chapter 3 SQL

person (driver id, name, address)
car (license, model, year)
accident (report number, date, location)
owns (driver id, license)
participated (driver id, car, report number, damage amount)

Figure 3.11 Insurance database.

• Set operations

� union, intersect, except

• Aggregate functions

� avg, min, max, sum, count
� group by

• Null values

� Truth value “unknown”

• Nested subqueries

• Set operations

� {<, <=, >, >=} { some, all }
� exists
� unique

• Derived relations (in from clause)

• with clause

• Views
� View definition
� View expansion

• Database modification
� delete, insert, update
� View update

• Transaction
� commit
� rollback

• Join types
� Inner and outer join
� left, right and full outer join
� natural, using, and on

Practice Exercises
3.1 Consider the insurance database of Figure 3.11, where the primary keys are un-

derlined. Construct the following SQL queries for this relational database.
a. Find the total number of people who owned cars that were involved in ac-

cidents in 1989.
b. Add a new accident to the database; assume any values for required at-

tributes.
c. Delete the Mazda belonging to “John Smith.”

3.2 Consider the employee database of Figure 3.12, where the primary keys are un-
derlined. Give an expression in SQL for each of the following queries.

employee (employee name, street, city)
works (employee name, company name, salary)
company (company name, city)
manages (employee name, manager name)

Figure 3.12 Employee database.

Practice Exercises 117

a. Find the names and cities of residence of all employees who work for First
Bank Corporation.

b. Find the names, street addresses, and cities of residence of all employees
who work for First Bank Corporation and earn more than $10,000.

c. Find all employees in the database who do not work for First Bank Corpo-
ration.

d. Find all employees in the database who earn more than each employee of
Small Bank Corporation.

e. Assume that the companies may be located in several cities. Find all com-
panies located in every city in which Small Bank Corporation is located.

f. Find the company that has the most employees.
g. Find those companies whose employees earn a higher salary, on average,

than the average salary at First Bank Corporation.

3.3 Consider the relational database of Figure 3.12. Give an expression in SQL for
each of the following queries.

a. Modify the database so that Jones now lives in Newtown.
b. Give all managers of First Bank Corporation a 10 percent raise unless the

salary becomes greater than $100,000; in such cases, give only a 3 percent
raise.

3.4 SQL-92 provides an n-ary operation called coalesce, which is defined as follows:
coalesce(A1, A2, . . . , An) returns the first nonnull Ai in the list A1, A2, . . . , An,
and returns null if all of A1, A2, . . . , An are null.

Let a and b be relations with the schemas A(name, address, title) and B(name,
address, salary), respectively. Show how to express a natural full outer join b
using the full outer-join operation with an on condition and the coalesce op-
eration. Make sure that the result relation does not contain two copies of the
attributes name and address, and that the solution is correct even if some tuples
in a and b have null values for attributes name or address.

3.5 Suppose that we have a relation marks(student id, score) and we wish to assign
grades to students based on the score as follows: grade F if score < 40, grade C
if 40 ≤ score < 60, grade B if 60 ≤ score < 80, and grade A if 80 ≤ score. Write
SQL queries to do the following:

a. Display the grade for each student, based on the marks relation.
b. Find the number of students with each grade.

3.6 Consider the SQL query

select p.a1
from p, r1, r2
where p.a1 = r1.a1 or p.a1 = r2.a1

Under what conditions does the preceding query select values of p.a1 that are
either in r1 or in r2? Examine carefully the cases where one of r1 or r2 may be
empty.

118 Chapter 3 SQL

3.7 Certain systems allow marked nulls. A marked null ⊥i is equal to itself, but if
i �= j, then ⊥i �=⊥j . One application of marked nulls is to allow certain updates
through views. Consider the view loan info (Section 3.9). Show how you can use
marked nulls to allow the insertion of the tuple (“Johnson”, 1900) through loan
info.

Exercises

3.8 Consider the insurance database of Figure 3.11, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.

a. Find the number of accidents in which the cars belonging to “John Smith”
were involved.

b. Update the damage amount for the car with license number “AABB2000” in
the accident with report number “AR2197” to $3000.

3.9 Consider the employee database of Figure 3.12, where the primary keys are un-
derlined. Give an expression in SQL for each of the following queries.

a. Find the names of all employees who work for First Bank Corporation.
b. Find all employees in the database who live in the same cities as the com-

panies for which they work.
c. Find all employees in the database who live in the same cities and on the

same streets as do their managers.
d. Find all employees who earn more than the average salary of all employees

of their company.
e. Find the company that has the smallest payroll.

3.10 Consider the relational database of Figure 3.12. Give an expression in SQL for
each of the following queries.

a. Give all employees of First Bank Corporation a 10 percent raise.
b. Give all managers of First Bank Corporation a 10 percent raise.
c. Delete all tuples in the works relation for employees of Small Bank Corpora-

tion.

3.11 Let the following relation schemas be given:

R = (A, B, C)
S = (D, E, F)

Let relations r(R) and s(S) be given. Give an expression in SQL that is equivalent
to each of the following queries.

a. ΠA(r)
b. σB = 17 (r)
c. r × s
d. ΠA,F (σC = D(r × s))

3.12 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give an
expression in SQL that is equivalent to each of the following queries.

Exercises 119

a. r1 ∪ r2

b. r1 ∩ r2

c. r1 − r2

d. ΠAB(r1) � ΠBC(r2)

3.13 Show that, in SQL, <> all is identical to not in.

3.14 Consider the relational database of Figure 3.12. Using SQL, define a view con-
sisting of manager name and the average salary of all employees who work for
that manager. Explain why the database system should not allow updates to be
expressed in terms of this view.

3.15 Write an SQL query, without using a with clause, to find all branches where
the total account deposit is less than the average total account deposit at all
branches,

a. Using a nested query in the from clause.
b. Using a nested query in a having clause.

3.16 List two reasons why null values might be introduced into the database.

3.17 Show how to express the coalesce operation from Exercise 3.4 using the case
operation.

3.18 Give an SQL schema definition for the employee database of Figure 3.12. Choose
an appropriate domain for each attribute and an appropriate primary key for
each relation schema.

3.19 Using the relations of our sample bank database, write SQL expressions to define
the following views:

a. A view containing the account numbers and customer names (but not the
balances) for all accounts at the Deer Park branch.

b. A view containing the names and addresses of all customers who have an
account with the bank, but do not have a loan.

c. A view containing the name and average account balance of every customer
of the Rock Ridge branch.

3.20 For each of the views that you defined in Exercise 3.19, explain how updates
would be performed (if they should be allowed at all).

3.21 Consider the following relational schema

employee(empno, name, office, age)
books(isbn, title, authors, publisher)
loan(empno, isbn, date)

Write the following queries in SQL.
a. Print the names of employees who have borrowed any book published by

McGraw-Hill.
b. Print the names of employees who have borrowed all books published by

McGraw-Hill.

120 Chapter 3 SQL

c. For each publisher, print the names of employees who have borrowed more
than five books of that publisher.

3.22 Consider the relational schema

student(student id, student name)
registered(student id, course id)

Write an SQL query to list the student-id and name of each student along with
the total number of courses that the student is registered for. Students who are
not registered for any course must also be listed, with the number of registered
courses shown as 0.

3.23 Suppose that we have a relation marks(student id, score). Write an SQL query to
find the dense rank of each student. That is, all students with the top mark get a
rank of 1, those with the next highest mark get a rank of 2, and so on. Hint: Split
the task into parts, using the with clause.

Bibliographical Notes
The original version of SQL, called Sequel 2, is described by Chamberlin et al. [1976].
Sequel 2 was derived from the languages Square (Boyce et al. [1975] and Chamber-
lin and Boyce [1974]). The American National Standard SQL-86 is described in ANSI
[1986]. The IBM Systems Application Architecture definition of SQL is defined by IBM
[1987]. The official standards for SQL-89 and SQL-92 are available as ANSI [1989] and
ANSI [1992], respectively.

Textbook descriptions of the SQL-92 language include Date and Darwen [1997],
Melton and Simon [1993], and Cannan and Otten [1993]. Date and Darwen [1997]
and Date [1993a] include a critique of SQL-92.

Textbooks on SQL:1999 include Melton and Simon [2001] and Melton [2002]. Eisen-
berg and Melton [1999] provide an overview of SQL:1999. Donahoo and Speegle [2005]
covers SQL from a developers perspective. Eisenberg et al. [2004] provides an overview
of SQL:2003.

The SQL:1999 and SQL:2003 standards are published as a collection of ISO/IEC stan-
dards documents, which are described in more detail in Section 23.3. The standard
documents are densely packed with information and hard to read, and of use pri-
marily for database system implementers. The standards documents are available
for purchase electronically from the Web site http://webstore.ansi.org.

Many database products support SQL features beyond those specified in the stan-
dard, and may not support some features of the standard. More information on these
features may be found in the SQL user manuals of the respective products.

The processing of SQL queries, including algorithms and performance issues, is
discussed in Chapters 13 and 14. Bibliographic references on these matters appear in
those chapters.

The rules used by SQL to determine the updatability of a view, and how updates
are reflected on the underlying database relations, are defined by the SQL:1999 stan-
dard, and are summarized in Melton and Simon [2001].

