
1 C h a p t e r

The Quantum Theory
 of the Submicroscopic 

World

Early attempts by nineteenth-century physicists to understand atoms and molecules 
met with only limited success. By assuming that molecules behave like rebounding 
balls, physicists were able to predict and explain some familiar phenomena, such as 
the pressure exerted by a gas. However, this model could not account for a number 
of newly discovered phenomena, such as the photoelectric effect or the emission 
spectra of atoms. The early twentieth century brought the development of quantum 
mechanics and the realization that the behavior of atoms and molecules cannot be 
described by the physical laws that work so well for everyday objects.
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72 Chapter 1 The Quantum Theory of the Submicroscopic World

1.1  Classical Physics Does Not Adequately Describe 

the Interaction of Light with Matter

The motion of objects in the everyday world can be well described by the laws of 
classical physics —a description of the physical world that began with the development 
of the laws of motion by Isaac Newton. These laws were enormously successful as a 
unifying principle in physics until the end of the nineteenth century.

Science at the End of the Nineteenth Century: 

The Classical Model

The principal assumptions of classical physics can be summarized as follows:

1. The physical state of any system can be described by a set of quantities called 
dynamical variables that take on well-defi ned values at any instant of time.

2. The future state of any system is completely determined if the initial state of the 
system is known.

3. The energy of a system can be varied in a continuous manner over the allowed 
range.

 If these assumptions seem quite reasonable, even obvious, to us, it is because 
they are consistent with our observations of the world in which we live. Up until 
1900, the classical model was successful in describing accurately the motion of 
known objects up to the planetary scale, so it was widely assumed that this success 
would extend to the newly discovered submicroscopic world of atoms and mole-
cules. However, as we will see, the classical model was unable to account for a 
number of experimental results that probed the nature of atoms and molecules and 
their interaction with light. This led to the discovery of quantum mechanics,1 which 
represented a fundamental change in our understanding of the way nature works at 
the atomic scale.
 Classical physics just before 1900 consisted of two major theoretical frameworks. 
The fi rst was classical mechanics, which seeks to explain the motion of matter, and 
the second was the wave theory of light, a description of electromagnetic radiation.

Classical Mechanics
Classical mechanics as a unifying principle of physics began with Newton’s laws of 
motion. As discussed in Section 0.1, Newton’s second law

 F 5 ma (1.1)

relates the force (F) on an object to the product of its mass, m, and its acceleration2 
(a). Using Equation 1.1, the motion of an object can be determined if the initial veloc-
ity, u0 5 u(t 5 0), and initial position, x0 5 x(t 5 0), are known.
 Consider, for example, the motion of a cannonball of mass m being fi red through 
the air and subject to the gravitational pull of Earth. The variables that describe the 

1. Quantum mechanics was one of two major discoveries that revolutionized the world of physics at the 
beginning of the twentieth century. The other was the theory of relativity, developed by Albert Einstein, 
which changed the way scientists viewed the behavior of objects that were extremely fast or extremely 
massive. Unlike quantum mechanics, relativity was consistent with classical physics. Trying to reconcile 
the theory of relativity with that of quantum mechanics remains a major scientifi c challenge today.

2. In this and subsequent chapters, boldface type is used to indicate vector quantities, such as force (F) and 
acceleration (a).
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motion of the cannonball are the position and velocity (or momentum) of its center of 
mass. Using Newton’s second law of motion (Equation 1.1), the precise trajectory of 
the ball (neglecting air friction) can be calculated if you know the initial position and 
initial velocity (momentum) of the ball. The position of the cannonball is defi ned by 
specifying the height above the ground h and the forward displacement x (see Figure 
1.1), both of which are functions of the time t. The velocity of the ball is given by the 
corresponding vertical and horizontal velocity components, uh and ux. The gravitational 
force on the ball is given by mg, where g is the gravitational acceleration, which at the 
surface of Earth has the value g 5 9.80665 m s22. For this system, Equation 1.1 can 
be solved as follows to give the trajectory of a cannonball, which is a parabola:

 h(t) 5 h0 1 uh,0 t 2
1

2
 gt 

2

 x(t) 5 x0 1 ux,0t

The velocities corresponding to h(t) and x(t) can also be determined:

 uh(t) 5 uh,0 2 gt
 ux(t) 5 ux,0

Thus, at any given time the position and velocity of the cannonball can be specifi ed 
in terms of the initial values, consistent with the fi rst two assumptions of classical 
physics. The energy of the cannonball is conserved in the motion and can be specifi ed 
as the sum of the initial kinetic energy and the initial potential energy:

E 5 c 1
2

 mu2
x,0 1

1

2
 mu2

h,0 d 1 mgh0

(The term in brackets is the total initial kinetic energy, which is the sum of the kinetic 
energies in the two directions of motion, x and h.) Because we can independently 
choose the initial position (by moving the cannon) and initial momentum (by control-
ling the amount of gunpowder used), the energy can be varied continuously over a 
wide range—a characteristic of classical theory.
 Although a number of generalizations of Newton’s laws of motion were developed 
in the eighteenth and nineteenth centuries, the basic framework of classical mechanics 
that they represent remained largely unchanged and unchallenged until 1900.

Wave Theory of Light
Parallel to the development of classical mechanics, the seventeenth through nineteenth 
centuries also saw tremendous progress in the understanding of light. In the  seventeenth 
century, Isaac Newton performed the fi rst quantitative study of the properties of light. 
He demonstrated that sunlight can be separated by a glass prism into a spectrum of 
distinct colors and that these colors can be recombined by directing this spectrum 

h(t)

x(t)

h(t � 0)

x(t � 0)
x

Figure 1.1 The trajectory of 
a cannonball in terms of the 
height h and the forward 
 displacement x.
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74 Chapter 1 The Quantum Theory of the Submicroscopic World

through a second prism, turned opposite to the fi rst, to reproduce white light. Although 
Newton explained much of this behavior by assuming that light was composed of 
discrete particles moving in straight lines, further work in the eighteenth and nine-
teenth centuries established light as a wave phenomenon.
 Waves are characterized by their wavelength, amplitude, and frequency (Figure 1.2). 
The wavelength (l) is the distance between identical points on successive waves. The 
amplitude of a wave is the vertical distance from the midline of a wave to the peak 
or trough. The frequency (n) is the number of waves that pass through a particular 
point in one second. The speed of the wave (u) is the product of its wavelength and 
its frequency:

 u 5 ln (1.2)

Wavelength is usually expressed in units of meters, centimeters, or nanometers, and 
frequency is measured in hertz (Hz) (after the German physicist Heinrich Rudolf 
Hertz3), where 1 Hz 5 1 s21.
 When two (or more) waves interact, interference occurs. To understand this 
phenomenon, consider the interaction of two waves of equal wavelength, as shown 
in Figure 1.3. If the waves are in phase, that is, the positions the maximum and 
minimum of wave 1 match those of wave 2, as in Figure 1.3(a), then the two waves 
will add to give a wave that has twice the amplitude of the original two waves. 
This is called constructive interference. On the other hand, in Figure 1.3(e) the two 
waves are exactly out of phase, that is, the position of the minimum for wave 1 
corresponds to the maximum of wave 2. When these two waves are added together, 
they exactly cancel one another to give zero. This is called destructive interference. 
If the waves are only partially out of phase, as in Figures 1.3(b)–(d), the waves 

3. Heinrich Rudolf Hertz (1857–1894). German physicist. He performed a number of experiments confi rm-
ing Maxwell’s theory of electromagnetic radiation. His discovery of radio waves led to the development 
of the wireless telegraph and the radio.

Figure 1.2 (a) Wavelength and amplitude. (b) Two waves having different wavelengths and frequencies. The wavelength of the 
top wave is three times that of the lower wave, but if both waves have the same speed, the frequency of the top wave is only 
one-third that of the lower wave. Both waves have the same amplitude.
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Wavelength
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will add to give a wave with an amplitude that is intermediate between the two 
extremes in Figures 1.3(a) and (e). Experimentally, this phenomenon can be 
observed in a two-slit experiment, such as that shown in Figure 1.4. A light source 
emitting a single  wavelength of light (called monochromatic light) is directed at a 
partition with two  openings (slits A and B). These slits are small relative to the 
distance between them and act as two separate light sources. The two light waves 
emerging from slits A and B will interfere both constructively and destructively. 
The resulting interference patterns are observed on a screen as alternating bright 
and dark regions, respectively.

(a)
� �

Wave 2Wave 1 Sum of 1 and 2

(b) � �

Wave 2Wave 1 Sum of 1 and 2

(c)

(d)

(e)

� �

Wave 1 Wave 2 Sum of 1 and 2

� �

Sum of 1 and 2Wave 2Wave 1

� �

Wave 1 Wave 2 Sum of 1 and 2

Figure 1.3 Constructive and destructive interference between two waves of equal wavelength and amplitude: (a) two waves 
completely in phase; (b)–(d) two waves partially out of phase; and (e) two waves exactly out of phase.

Laser

A

B

Figure 1.4 Two-slit experiment 
demonstrating the interference 
phenomenon. The pattern on the 
screen consists of alternating 
bright and dark bands.
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76 Chapter 1 The Quantum Theory of the Submicroscopic World

Electric field component

Magnetic field component

y

x

zFigure 1.5 Electric fi eld com-
ponent and magnetic fi eld 
 component of an electro-
magnetic wave. These two 
components have the same 
wavelength,  frequency, and 
amplitude, but oscillate in two 
mutually perpendicular planes. 
The wave here is traveling 
along the x direction.

4. James Clerk Maxwell (1831–1879). Scottish physicist. Maxwell was one of the great theoretical physi-
cists of the nineteenth century; his work covered many areas of physics, including the kinetic molecular 
theory of gases, thermodynamics, and electricity and magnetism.

 A major breakthrough in understanding the wave nature of light came in the mid-
nineteenth century when James Clerk Maxwell4 developed the unifi ed theory of the elec-
tromagnetic fi eld. This theory, embodied by the Maxwell equations, predicted the existence 
of electromagnetic waves consisting of an electric-fi eld component and a magnetic-fi eld 
component oscillating in mutually perpendicular planes, both perpendicular to the direction 
of travel (see Figure 1.5). The calculated velocity of these waves matched precisely the 
known speed of light (c) in a vacuum (about 3.00 3 108 m s21), leading Maxwell to be 
the fi rst to predict that light is just one form of electromagnetic radiation.
 Maxwell’s theory of electromagnetic radiation fi ts within the classical doctrine 
because the electric and magnetic fi elds (and their rates of change with time) take on 
well-defi ned values at all times and the future values of the fi elds can be predicted with 
arbitrary precision from their initial state using the Maxwell equations. In Maxwell’s 
theory the energy of the electromagnetic wave depends upon the amplitude of the elec-
tromagnetic wave, but not on its frequency, and can be varied continuously.
 Visible light was not the only type of radiation described as electromagnetic waves 
by Maxwell’s theory. Figure 1.6 shows various types of electromagnetic radiation, which 
differ from one another in wavelength and frequency. Long radio waves are those emit-
ted by large antennas, such as those used by broadcasting stations. The motions of 
electrons within atoms and molecules can produce shorter, visible light waves. The short-
est waves, which also have the highest frequency, are associated with g (or gamma)-rays, 
which result from changes within the nucleus of the atom. As we will discuss shortly, 
the higher the frequency, the more energetic the radiation, contrary to Maxwell’s classi-
cal theory. Thus, ultraviolet radiation, X-rays, and g-rays are high-energy radiation.

James Clerk Maxwell

Example 1.1

The wavelength of the green light from a traffi c signal is centered at 522 nm. What is 
the frequency of this radiation?

Strategy We are given the wavelength of an electromagnetic wave and asked to 
calculate its frequency (n). Rearranging Equation 1.2 and replacing u with c (the speed 
of light) gives

n
l

�
c

—Continued

Lai69040_ch01_071-125.indd Page 76  1/7/08  10:04:59 PM teamaLai69040_ch01_071-125.indd Page 76  1/7/08  10:04:59 PM teama /Volumes/108/MHIA037/mhLai1/Lai1ch01%0/Volumes/108/MHIA037/mhLai1/Lai1ch01%0



77

Wavelength (nm)
10–3 10–1 10 103 105 107 109 1011 1013

Frequency (Hz)
1020 1018 1016 1014 1012 1010 108 106 104

Type of radiation

Gamma

rays

X rays Ultra-

violet

Sun lampsX ray Heat

lamps

Microwave ovens,

police radar,

satellite stations

(a)

UHF TV,

cellular

telephones

FM radio,

VHF TV

AM

radio

Infrared

V
is

ib
le

Microwave Radio waves

1 3

4                      

789

*
0#

(b)

Figure 1.6 (a) Types of electromagnetic radiation. Gamma-rays have the shortest wavelength and highest frequency; radio 
waves have the longest wavelength and the lowest frequency. Each type of radiation is spread over a specifi c range of wave-
lengths (and frequencies). (b) Visible light ranges from a wavelength of 400 nm (violet) to 700 nm (red).

Continued—

Solution Because the speed of light is given in meters per second, it is convenient to 
fi rst convert wavelength to meters. Recall that 1 nm 5 1 3 1029 m. We write

n 5
c

l
5

3.00 3 108 m s21

522 nm
3

1 nm

1 3 1029 m
5 5.75 3 1014 s21 5 5.75 3 1014 Hz

Practice Exercise The broadcast frequency of a certain radio station is 91.5 MHz. 
What is the wavelength of these radio waves?

Blackbody Radiation: The Failure of Classical Theory

Any object will radiate energy in the form of electromagnetic radiation purely as 
a consequence of its temperature. The red glow of an electric heater and the bright 
white light of the tungsten fi lament in an incandescent light bulb are familiar exam-
ples. This radiation is referred to as blackbody radiation.5 The physical properties 

5. A blackbody is an idealized object that absorbs 100 percent of the radiation that is incident upon it. No 
real object is a perfect blackbody.

The red glow of an electric 
heater is an example of 
blackbody radiation.

1.1 Classical Physics Does Not Adequately Describe the Interaction of Light with Matter
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78 Chapter 1 The Quantum Theory of the Submicroscopic World

of blackbody radiation depend only on the temperature of the object, not on its 
composition.
 If we measured the intensity of blackbody radiation versus the wavelength emit-
ted at different temperatures, we would obtain a series of curves similar to the ones 
shown in Figure 1.7. Experiments at the end of the nineteenth century by Josef Stefan6 
and Wilhelm Wien7 led to two important empirical laws of blackbody radiation, now 
named the Stefan-Boltzmann law and Wien’s law. (An empirical law is one that is 
formulated purely on the basis of experimental data.)

c Stefan-Boltzmann law: The total intensity of blackbody radiation emitted by an 
object (obtained by integrating the curves in Figure 1.7 over all wavelengths) is 
proportional to the fourth power of the absolute temperature (that is, the 
temperature in kelvins, see Appendix 1):

emitted power

surface area of object
5 sT 

4

 where s 5 5.670 3 1028 W m22 K24 is the Stefan-Boltzmann constant and 
T is the absolute temperature. The law was used by Stefan to estimate the 
surface temperature of the sun. (Ludwig Boltzmann8 is associated with this 
law because he was able to derive it using thermodynamic arguments fi ve 
years after Stefan’s experiments.)

c Wien’s law: The wavelength of maximum intensity (lmax) is inversely 
proportional to the absolute temperature:

Tlmax 5 constant 5 1.44 3 1022 K m

0 500 1000

λ�nm
1500 2000
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5000 K

4000 K

3000 K

Figure 1.7 The intensity 
of blackbody radiation as a 
function of wavelength at 
various temperatures.

6. Josef Stefan (1835–1893). Austrian physicist. In addition to his quantitative experiments on blackbody 
radiation, he made important contributions to the kinetic theory of heat and to the theory of heat conduc-
tion in fl uids.

7. Wilhelm Wien (1864–1928). German physicist. He received the Nobel Prize in Physics in 1911 for his work 
on blackbody radiation and also made important contributions to hydrodynamics and radiation theory.

8. Ludwig Boltzmann (1844–1906). Austrian physicist. Although Boltzmann was one of the greatest theo-
retical physicists of all time, his work was not recognized by other scientists in his lifetime. Suffering from 
poor health and great depression, he committed suicide in 1906.
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 These experimental results caused a sensation among scientists at the time because 
they could not be explained using classical theory. The classical electromagnetic theory 
of light developed by Maxwell predicted that the energy of a light wave is a function 
only of the amplitude of the wave and does not depend on its wavelength (or frequency); 
therefore, the energy emitted by the object should be distributed equally among all pos-
sible electromagnetic waves without regard to frequency. However, for electromagnetic 
waves in three dimensions, there are many more oscillation modes of electromagnetic 
radiation possible at high frequency than exist at low frequency;9 therefore, classical 
theory predicts that the intensity of blackbody radiation should increase with increasing 
frequency (decreasing wavelength). As a result, the classical model predicts that even 
objects at room temperature will emit high intensity ultraviolet, X-ray, and even g-ray 
radiation—in effect, all objects in the universe should be infi nitely bright! (This errone-
ous prediction is referred to as the ultraviolet catastrophe.) Comparing (Figure 1.8) the 
classical intensity with that observed experimentally for an object shows that the clas-
sical model works well at long wavelengths (low frequencies), but it drastically overes-
timates the intensity of high frequency electromagnetic waves in the blackbody radiation 
spectrum. Something fundamental was missing from the laws of classical physics!

Planck’s Quantum Hypothesis

In 1900, Max Planck10 solved the problem of blackbody radiation with an assumption 
that departed drastically from accepted concepts. Classical physics assumed that atoms 
and molecules could emit (or absorb) any arbitrary amount of radiant energy. Planck 
hypothesized that atoms and molecules could emit (or absorb) energy only in discrete 
quantities, like small packages or bundles. Planck gave the name quantum to the small-
est quantity of energy that can be emitted (or absorbed) in the form of electromagnetic 
radiation. The energy E of a single quantum of electromagnetic energy is given by

 E 5 hn (1.3)

where h is called Planck’s constant and n is the frequency of the radiation. The value 
of Planck’s constant has been determined experimentally to be 6.62608 3 10234 J s. 

9. For much the same reason that there are many more ways to write a large integer as the sum of two 
positive integers than there are ways to represent a smaller integer in the same manner.

10. Max Karl Ernest Ludwig Planck (1858–1947). German physicist. Planck received the Nobel Prize in 
Physics in 1918 for his quantum theory. He also made signifi cant contributions in thermodynamics and 
other areas of physics.
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Figure 1.8 Experimental data 
(solid line) versus the classical 
prediction (dotted line) for 
the intensity as a function of 
 frequency of the blackbody 
radiation from an object at a 
temperature of 300 K.

Max Planck
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80 Chapter 1 The Quantum Theory of the Submicroscopic World

According to quantum theory, the energy of electromagnetic radiation of frequency n is 
always emitted in multiples of hn; for example, hn, 2hn, 3hn, . . . but never, for example, 
1.67hn or 4.98hn. At the time Planck presented his theory, he could not explain why 
energies should be fi xed or quantized in this manner. Starting with this hypothesis, 
however, he had no trouble correlating the experimental data for the emission by solids 
over the entire range of wavelengths; they all supported the quantum theory.
 The idea that energy should be quantized or “bundled” may seem strange, but 
the concept of quantization has many analogies. For example, an electric charge is 
quantized; there can be only whole-number multiples of e, the charge of one electron. 
Matter itself is quantized, because the numbers of electrons, protons, and neutrons 
and the numbers of atoms in a sample of matter must also be integers.
 How does the Planck model explain the decrease in the intensity of blackbody radia-
tion at high frequency (short wavelength)? At any given temperature, there is only a fi xed 
average amount of thermal energy that is available to excite a given electromagnetic 
oscillation (light wave). In the classical model, where you can put an arbitrary amount 
of energy into any oscillation, the energy can be distributed evenly among the oscillations, 
regardless of frequency. In the Planck model, however, there is a minimum amount of 
energy that can be transferred into an electromagnetic oscillation from the object and this 
minimum energy (the quantum) increases with increasing frequency. For low-frequency 
electromagnetic waves, the quantum of energy is much smaller than the average amount 
of thermal energy available for the excitation of that electromagnetic wave; therefore, 
this energy can be evenly distributed among these oscillation modes, as in the classical 
model. For high frequencies, however, the quantum of energy is greater than the average 
available thermal energy and excitation into high frequency modes is inhibited.

Example 1.2

Chlorophyll-a is green because it absorbs blue light at about 435 nm and red light at 
about 680 nm, so that mostly green light is transmitted. Calculate the energy per mole 
of photons at these wavelengths.

Strategy Planck’s equation (Equation 1.3) gives the relationship between energy and 
frequency (n). Because we are given wavelength (l), we must use Equation 1.2, in 
which u is replaced with c (the speed of light), to convert wavelength to frequency. 
Finally, the problem asks for the energy per mole, so we must multiply the result we 
get from Equation 1.3 by Avogadro’s number.

Solution The energy of one photon with a wavelength of 435 nm is

 E 5 hn 5 h  a c

l
b 5 (6.626 3 10234 J s) 

3.00 3 108 m s21

435 nm (1 3 1029 m nm21)
 5 4.57 3 10219 J

For one mole of photons, we have

 E 5 (4.57 3 10219 J) (6.022 3 1023 mol21)

 5 2.75 3 105 J mol21

 5 275 kJ mol21

Using an identical approach for the photons at 680 nm, we get E 5 176 kJ mol−1.

Practice Exercise X-rays are convenient to study the structure of crystals because 
their wavelengths are comparable to the distances between near neighbor atoms (on 
the order of a few Ångstroms, where 1Å 5 1 3 10210 m). Calculate the energy of a 
photon of X-ray radiation with a wavelength of 2.00 Å.

Chlorophyll-a
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The Photoelectric Effect

In 1905, only fi ve years after Planck presented his quantum theory, Albert Einstein11 
used the theory to explain the photoelectric effect—a phenomenon in which electrons 
are ejected from the surface of certain metals exposed to electromagnetic radiation 
(Figure 1.9).
 Experimentally, the photoelectric effect is characterized by three primary 
 observations:

1. The number of electrons ejected is proportional to the intensity of the light.

2. No electrons can be ejected if the frequency of the light is lower than a certain 
threshold frequency, which depends upon the identity of the metal.

3. The kinetic energy of the ejected electrons is proportional to the difference 
between the frequency of the incident light and the threshold frequency.

 The photoelectric effect could not be explained by the wave theory of light. In 
the wave theory the energy of a light wave is proportional to the square of the ampli-
tude (intensity) of the light wave, not its frequency. This contradicts the second obser-
vation of the photoelectric effect. Building on Planck’s hypothesis, Einstein was able 
to explain the photoelectric effect by assuming that light consisted of particles (light 
quanta) of energy hn, where n is the frequency of the light. These particles of light 
are called photons. Electrons are held in a metal by attractive forces, and so removing 
them from the metal requires light of a suffi ciently high frequency (which corresponds 
to a suffi ciently high energy) to break them free. We can think of electromagnetic 
radiation (light) striking the metal as a collision between photons and electrons. 
According to the law of conservation of energy, we have energy input equal to energy 
output. If n exceeds the threshold frequency, Einstein’s theory predicts

 hn 5 £ 1
1

2
 meu

2 (1.4)

where £ (called the work function) is the energy needed to extract the electron 
from the metal surface and 1

2 meu
2 is the kinetic energy of the ejected electron. The 

work function measures how strongly the electrons are held in the metal. The 
threshold frequency is the smallest frequency for which Equation 1.4 has a solu-
tion. This occurs when the kinetic energy of the electron is zero, in which case 
Equation 1.4 gives

nthreshold 5
£
h

Substituting this expression for nthreshold into Equation 1.4 gives, after rearrangement,

kinetic energy 5
1

2
 meu

2 5 h(n 2 nthreshold)

Thus, Einstein’s theory predicts that the kinetic energy of the ejected electron is pro-
portional to the difference between the incident and threshold frequencies, as required. 

Albert Einstein

11. Albert Einstein (1879–1955). German-born American physicist. Regarded by many as one of the two 
greatest physicists the world has known (the other is Isaac Newton). The three papers (on special relativity, 
Brownian motion, and the photoelectric effect) that he published in 1905 while employed as a technical 
assistant in the Swiss patent offi ce in Berne have profoundly infl uenced the development of physics. He 
received the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect.

MeterVoltage

source

Incident

light

–

e–

Metal

+

Figure 1.9 An apparatus for 
studying the photoelectric effect. 
Light of a certain frequency 
falls onto a clean metal surface 
and the ejected electrons are 
attracted toward the positive 
electrode. A detecting meter 
 registers the fl ow of electrons.

1.1 Classical Physics Does Not Adequately Describe the Interaction of Light with Matter
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82 Chapter 1 The Quantum Theory of the Submicroscopic World

Figure 1.10 shows a plot of the kinetic energy of ejected electrons versus the fre-
quency of applied electromagnetic radiation.
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Figure 1.10 A plot of the 
kinetic energy of ejected 
 electrons versus the frequency 
of incident radiation.

Example 1.3

When 430-nm wavelength light is shined on a clean surface of sodium metal, electrons 
are ejected with a maximum kinetic energy of 0.83 3 10219 J. Calculate the work 
function for sodium metal and the maximum wavelength of light that can be used to 
eject electrons from sodium.

Strategy We can use Equation 1.4 to fi nd the work function if we know the excess 
kinetic energy and the frequency of the incident light. We are given the wavelength so we 
must use the speed of light (c) in place of u in Equation 1.2 to convert wavelength to 
frequency (remembering also to convert nanometers to meters). The maximum wavelength 
(minimum frequency) light that can be used to eject electrons is that which gives a zero 
electron kinetic energy—that is, all of the energy goes into ejecting the electron.

Solution From Equation 1.4

 £ 5 hn 2 (kinetic energy)

 5
hc

l
2 (kinetic energy)

 5
(6.626 3 10234 J s) (3.00 3 108 m s21)

(430 nm)(1029 m nm21)
2 8.3 3 10220 J

 5 3.8 3 10219 J

To fi nd the maximum wavelength, we combine Equation 1.2 with Equation 1.4 except 
we set the kinetic energy term on the right hand side of Equation 1.4 to zero, giving

 hnmin 5 h 
c

lmax
5 £

 lmax 5
hc

£

 5
(6.626 3 10234 J s) (3.00 3 108 m s21)

3.8 3 10219 J

 lmax 5 5.20 3 1027 m 5 520 nm
—Continued
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 Einstein’s theory posed a dilemma for scientists. On the one hand, it explained 
the photoelectric effect satisfactorily. On the other hand, the particle theory of 
light was inconsistent with the known wave behavior of light. The only way to 
resolve the dilemma was to accept the idea that light possesses both particlelike 
and wavelike properties. Depending on the experiment, light behaves either as a 
wave or as a stream of particles. This concept was totally alien to the way phys-
icists had thought about radiation and its interaction with matter, and it took a 
long time for them to accept it. We will see in Section 1.3 that a dual nature 
(particles and waves) is not unique to light but is characteristic of all matter, 
including electrons.

1.2  The Bohr Model Was an Early Attempt to Formulate 

a Quantum Theory of Matter

The work of Planck and Einstein showed that the energy of electromagnetic radiation 
at a given frequency (v) is quantized in units of hv. The extension of this quantum 
hypothesis to matter paved the way for the solution of yet another nineteenth-century 
mystery in physics: the emission spectra of atoms.

Emission Spectra of Atoms: Evidence of the Energy 

Quantization of Matter

Ever since the seventeenth century, chemists and physicists have studied the charac-
teristics of emission spectra, which are either continuous or line spectra of the radi-
ation emitted by substances. The emission spectrum of a substance can be seen by 
energizing a sample of material either with thermal energy (heating) or with some 
other form of energy (such as a high-voltage electrical discharge). A “red-hot” or 
“white-hot” iron bar freshly removed from a high-temperature source produces a char-
acteristic glow. This visible glow is the portion of its emission spectrum that is sensed 
by eye. The warmth of the same iron bar represents the infrared region of its emission 
spectrum.
 The emission spectra of the sun and of a heated solid are both continuous; that 
is, all wavelengths of visible light are represented in the spectra (see the visible region 
in Figure 1.6). The emission spectra of atoms in the gas phase, on the other hand, do 
not show a continuous spread of wavelengths from red to violet; rather, the atoms 
produce bright lines in different parts of the visible spectrum. These line spectra are 
light emissions at specifi c wavelengths. Figure 1.11 is a schematic diagram of a dis-
charge tube that is used to study emission spectra, and Figure 1.12 shows the wave-
lengths of visible light emitted by a hydrogen atom. Every element has a unique 
emission spectrum.

Continued—

Practice Exercise The work function for Al is 6.54 3 10219 J. Calculate the 
wavelength of light (in nm) that will eject electrons with a maximum kinetic energy of 
1.00 3 10219 J and the maximum wavelength of light (in nm) that can be used to 
eject electrons from Al.

1.2 The Bohr Model Was an Early Attempt To Formulate a Quantum Theory of Matter
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84 Chapter 1 The Quantum Theory of the Submicroscopic World

 The characteristic lines in atomic spectra can be used in chemical analysis to 
identify unknown atoms, much as fi ngerprints are used to identify people. When the 
lines of the emission spectrum of a known element exactly match the lines of the 
emission spectrum of an unknown sample, the identity of the sample is established. 
Although the utility of this procedure had long been recognized in chemical analysis, 
the origin of these lines was unknown until early in the twentieth century. Figure 1.13 
shows the emission spectra of several elements.

The Emission Spectrum of Hydrogen

At the end of the nineteenth century, physicists began exploring the emission spectra 
of atoms in quantitative detail. Of particular interest, because of the simplicity and 
importance of the fi rst element, was the emission spectrum of hydrogen (Figure 1.13). 
The Swedish physicist Johannes Rydberg12 analyzed the existing experimental data 
and formulated the following equation for the frequencies of the lines in the hydrogen 
emission spectrum:

 n 5 RH a 1

n2
1

2
1

n2
2

b (1.5)

where n1 and n2 are positive integers with n2 . n1, and RH is the Rydberg constant, 
which has the experimental value 3.290 3 1015 s21.

Slit

High

voltage

Discharge tube

Photographic plate

Line

spectrumPrism

Light separated into

various components

Figure 1.11 An experimental arrangement for studying the emission spectra of atoms and 
molecules. The gas under study is in a discharge tube containing two electrodes. As electrons 
fl ow from the negative electrode to the positive electrode, they collide with the gas. This 
 collision process eventually leads to the emission of light by the atoms (or molecules). The 
emitted light is separated into its components by a prism. Each component color is focused 
at a defi nite position, according to its wavelength, and forms a colored image of the slit on 
the photographic plate. The colored images are called spectral lines.

400 nm 500 600 700

Figure 1.12 The line emission 
spectrum of hydrogen atoms in 
the visible region.

12. Johannes Robert Rydberg (1854–1919). Swedish mathematician and physicist. Rydberg’s major contri-
bution to physics was his study of the line spectra of many elements.

Color emitted by hydrogen 
atoms in a discharge tube. The 
color observed results from 
the combination of the colors 
emitted in the visible spectrum.
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 Equation 1.5 accurately predicts all of the known lines in the emission spectrum of 
hydrogen. The emission lines are often classifi ed in terms of the value of n1. Table 1.1 
lists the fi rst fi ve series of emission lines of hydrogen, which are named for their 
 discoverers.
 The work of Planck and Einstein showed that the energy of a photon was pro-
portional to its frequency, so the discrete nature of the emission spectrum of atoms 
suggested that atoms may only transfer energy in the form of electromagnetic radia-
tion at certain well-defi ned values, which depend only upon the identity of the ele-
ment. Also, the regularity and simplicity of the Rydberg formula (Equation 1.5) 
suggested that a mathematical theory of the emission spectrum should be possible—
at least for hydrogen.

The Bohr Model of the Hydrogen Atom

The basic building blocks of atoms were fairly well understood at the beginning of 
the twentieth century. Scientists knew that atoms consisted of negatively charged 

Figure 1.13 The emission 
spectra of various elements.

Table 1.1 The First Five Spectral Series in the Emission Spectrum of Hydrogen

Series n1 n2 Spectral Region

Lyman 1 2, 3, 4, . . . UV

Balmer 2 3, 4, 5, . . . visible, UV

Paschen 3 4, 5, 6, . . . IR

Brackett 4 5, 6, 7, . . . IR

Pfund 5 6, 7, 8, . . . IR

1.2 The Bohr Model Was an Early Attempt To Formulate a Quantum Theory of Matter
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86 Chapter 1 The Quantum Theory of the Submicroscopic World

 particles called electrons moving around a much heavier, compact nucleus. The 
nucleus consisted of positively charged particles called protons and some number of 
neutral particles called neutrons (see Section 0.2). In an atom, the number of electrons 
and protons was equal. Scientists thought of an atom as an entity in which electrons 
whirled around the nucleus in circular orbits at high velocities. This was an appealing 
model because it resembled the motions of the planets around the sun. In this model, 
the electrostatic attraction between the positively charged proton and the negatively 
charged electron pulls the electron inward. This force of attraction is balanced exactly 
by the acceleration due to the orbital motion of the electron.
 This classical, planetary view of the atom was at odds with basic physics in two 
very important ways. First, Maxwell’s theory of electromagnetism predicts that a 
charged particle will radiate energy when undergoing acceleration (this, in fact, is how 
radio waves are generated by a transmitter). Because of the electrostatic force of 
attraction between the electron and the protons of the nucleus, an electron revolving 
around a central nucleus is accelerated as it continually changes direction in its orbit. 
(Remember, acceleration is any change in the magnitude or direction of the velocity 
over time.) Thus, the electron would emit electromagnetic radiation with a frequency 
equal to the frequency of its orbital motion and would lose energy to the electromag-
netic fi eld. This continual loss of energy would cause the orbit to decay and the 
electron to quickly spiral into the nucleus. Thus, the classical atom would be inher-
ently unstable and short lived—contrary to reality. Second, classical mechanics puts 
no restrictions on the orbital energy of the electron. Decreasing the orbital energy 
slightly only moves the electron to a slightly lower orbit. Thus, the emission spectrum 
of the classical atom should be continuous, and not discrete, as is observed.
 Extending Planck’s quantum hypothesis to the energies of atoms, the Danish 
physicist Niels Bohr13 presented a new model of the atom that was able to account 
for the emission spectrum of hydrogen. Bohr used as his starting point the planetary 
model of the atom but modifi ed it with restrictions that went beyond classical physics. 
For a single electron orbiting a nucleus containing Z protons, the Bohr model consists 
of the following assumptions:

1. The electron moves in a circular orbit about the nucleus.

2.  The energy of the electron can take on only certain well-defi ned values; that is, 
it is quantized.

3.  The only allowed orbits are those in which the magnitude of the angular momen-
tum of the electron is equal to an integer multiple of h, where h (called h-bar)

 is given by 
h

2p
. The angular momentum of a particle (L) is a vector given by L 5

  r 3 p, where r is the position vector of the particle, measured from the origin, 
p 5 mu is the momentum of the particle (with mass m and velocity u), and “3” 
is the vector cross-product.

4.  The electron can only absorb or emit electromagnetic radiation when it moves 
from one allowed orbit to another. The emitted radiation has an energy hn equal 
to the difference in energy between the two orbits.

The fi rst condition of the Bohr model is consistent with the classical model of the 
atom, but the rest were wholly original. By considering an electron orbiting a nucleus 

Niels Bohr

13. Niels Henrik David Bohr (1885–1962). Danish physicist. One of the founders of modern physics, he 
received the Nobel Prize in Physics in 1922 for his theory explaining the spectrum of the hydrogen atom.

r � p

p

r

The cross product of two vectors 
is perpendicular to both.
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with Z protons, the Bohr model is not limited to the hydrogen atom (Z 5 1), but can 
also describe any one-electron ion, called a hydrogenlike ion, such as He1 (Z 5 2), 
Li21 (Z 5 3), etc.
 From these conditions, the allowed energies of the electron can be calculated. 
Coulomb’s law (Equation 0.5) gives the potential energy, V, due to the interaction of 
two charged particles with charges q1 and q2, separated by a distance r:

 V(r) 5
q1q2

4pe0r
 (1.6)

where e0 is called the permittivity of the vacuum (e0 5 8.854188 3 10212 C2 J21 m21). 
The attractive interaction between a nucleus of charge 1Ze and an electron of charge 
2e at a distance r away is then

 
V(r) 5 2

Ze2

4pe0r 
(1.7)

Given a potential energy function, the force on the object is calculated as the negative 
of the derivative of the potential (see Appendix 1 for the defi nition of a derivative). 
For the electron in the atom, this force is

F(r) 5 2
dV(r)

dr
5 2

Ze2

4pe0r
2

According to Newton’s second law (Equation 1.1), this force is equal to the mass of 
the electron (me) times its acceleration. For an electron in a circular orbit, the accel-
eration can be calculated to be 2u2yr, where u is the magnitude of the electron 
velocity, and the negative sign indicates that the acceleration is directed toward the 
nucleus. Newton’s second law then gives

  F 5 ma

 2
Ze2

4pe0r 
2 5 2

meu
2

r

  

Ze2

4pe0r
5 meu

2

 
(1.8)

The total energy for the electron is the sum of the kinetic (Equation 0.3) and potential 
energies (Equation 1.7).

 
E 5

1

2
 meu

2 2
Ze2

4pe0r 
(1.9)

Substituting the orbit condition (Equation 1.8) into Equation 1.9 gives

 E 5
1

2
 meu

2 2 meu
2 5 2

1

2
 meu

2 (1.10)

At this point, Bohr takes a bold step and postulates the quantum restriction that the 
angular momentum of the electron can only take on positive integer multiple values 
of h or h/2p, For an electron in a circular orbit, the angular momentum is meru, so

 mer u 5 nh,   n 5 1, 2, 3, . . . (1.11)

1.2 The Bohr Model Was an Early Attempt To Formulate a Quantum Theory of Matter
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88 Chapter 1 The Quantum Theory of the Submicroscopic World

where n is referred to as a quantum number. Combining Equation 1.11 and Equation 
1.8 gives

 u 5
Ze2

2he0n
 (1.12)

If we substitute Equation 1.12 for u into the energy equation (Equation 1.10), we get the 
Bohr expression for the quantized energies, or energy levels, of the hydrogen atom.

 En 5 2
Z 2e4me

8h2e2
0

 

1

n2   n 5 1, 2, 3, . . . (1.13)

Because the zero of energy was (arbitrarily) defi ned in Equation 1.7 as the value at 
infi nite separation of the electron from the nucleus (that is, where n 5 q), the nega-
tive sign in Equation 1.13 implies that all of these states are lower in energy than an 
infi nitely separated proton and electron pair. We call such states the bound states of 
the atom. The most stable state is given by the lowest energy level and is called the 
ground state (or ground level), which for the Bohr model corresponds to n 5 1. The 
higher energy levels are referred to as excited states (or excited levels). For the hydrogen 
atom (Z 5 1), the ground-state energy is

E1 5 2
mee

4

8h2e2
0

5 22.185 3 10218 J

The negative of this energy, 12.185 3 10218 J (or 1316 kJ mol21), is the amount of 
energy that is needed to completely remove the electron from a ground-state hydrogen 
atom. This process is called ionization, and the energy required for ionization is called 
the ionization energy.
 Equations 1.11 and 1.12 can also be used to derive the following expression for 
the radius of the Bohr orbits:

 rn 5
e0h

2n2

Zpmee
2 n 5 1, 2, 3, . . . (1.14)

Thus, like the energy, the orbit radius is quantized and can only take on certain values, 
which increase proportional to n2. The value of the radius for the ground state (n 5 1), 
calculated in Example 1.4, is called the Bohr radius (a0).

Example 1.4

Calculate the Bohr radius of the ground state (n 5 1) of the hydrogen atom.

Strategy Use Equation 1.14 with Z 5 1 (for hydrogen) and n 5 1 (for the ground 
state). The other constants in the equation can be found inside the back cover of the 
book.

Solution Start with Equation 1.14 with n 5 Z 5 1:

a0 5
e0h

2

pmee
2

—Continued
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Continued—
Now substitute in the values of e0,  h, m e ,   and  e : 

  a0 5
(8.8542 3 10212C2 J21 m21) (6.626 3 10234 J s)2

p(9.109 3 10231 kg)(1.602 3 10219C)2  

  5 5.29 3 10211 m  

  5 52.9 pm  

 where we have used the conversion factors 1 J 5 1 kg m 2  s 22  and 1 pm 5 10212  m. 
More commonly the Bohr radius is expressed as 0.529 Å. The Bohr radius is generally 
given the symbol  a 0 . 

 Practice Exercise   Calculate the radius for the fi rst excited state ( n 5  2 )  of the 
He 1  ion. 

  How does Equation 1.13 account for the line spectrum of hydrogen? Radiant 
energy absorbed by the atom causes the electron to move from a lower-energy quan-
tum state (characterized by a smaller  n  value) to a higher-energy quantum state (char-
acterized by a larger  n  value). Conversely, radiant energy (in the form of a photon) 
is emitted when the electron moves from a higher-energy quantum state to a lower-
energy quantum state ( Figure 1.14 ). The conservation of energy requires that the 
energy of the photon emitted or absorbed be equal to the change in the energy of the 
electron—that is, equal to the difference in energy (DE) between the initial and fi nal 
energy levels. Consider the case of emission and let  n 2  represent the value of the 
quantum number  n  in the initial state and  n 1  be that of the fi nal state, with  n 2   . n 1 . 
The energy of the emitted photon is given by 

 Ephoton 5 hn 5 ¢E 5 En2
2 En1

 

 Using Equation 1.13, this gives 

  Ephoton 5 hn 5
Z 2e4me

8h2e2
0

 c 1

n2
1

2
1

n2
2

d   (1.15) 

 or 

  
n 5

Z 2e4me

8h3e2
0

c 1

n2
1

2
1

n2
2

d 5 Z 2RH c 1

n2
1

2
1

n2
2

d
  

(1.16)
 

 Setting  Z 5  1, we see that  Equation 1.16  is identical to Rydberg’s empirical equation 
for the hydrogen emission spectrum (Equation 1.5) and gives an expression for the 
Rydberg constant in terms of fundamental physical constants: 

  
RH 5

e4me

8h3e2
0

5 3.289832496 3 1015 s21

 
 (1.17)

 

 The value of  R H  calculated from  Equation 1.17  is nearly 14  identical to the experimen-
tally determined value! Equation 1.16 was derived for the case of emission of a 
photon. For absorption, we have n1 . n2, so the sign of the frequency would be 

n = 1

n = 2

n = 3

Photon

 Figure 1.14  The emission 
 process in an excited hydrogen 
atom, according to Bohr’s 
 theory. An electron originally in 
a higher-energy orbit (n 2  5 3) 
falls back to a lower-energy 
orbit (n 1  5 2). As a result, a 
photon with energy hn is given 
off. The value of hn is equal 
to the difference in energy 
between the initial and fi nal 
electron orbits. For simplicity, 
only three orbits are shown. 

 14 . See Problem 1.60. 

1.2 The Bohr Model Was an Early Attempt To Formulate a Quantum Theory of Matter
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90 Chapter 1 The Quantum Theory of the Submicroscopic World

negative (see Equation 1.15), which is not physically meaningful. To ensure that the 
frequency of transition (whether emission or absorption) is positive, we can take the 
 absolute value  of [(1yn1

2) 2 (1yn2
2)] in Equation 1.15. 

  Figure 1.15  shows the various energy levels of the hydrogen atom and the transi-
tions that correspond to the spectral series shown in Table 1.1. 
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 Figure 1.15  The energy levels 
in the hydrogen atom and the 
various emission series. Each 
energy level corresponds to the 
energy associated with an 
allowed quantum state for an 
orbit, as postulated by Bohr and 
as shown in Figure 1.14. The 
emission lines are labeled 
according to the scheme in 
Table 1.1. 

 Example 1.5 

 What is the wavelength of a photon (in nanometers) emitted during a transition from 
the  n 2  5 5 state to the  n 1  5 2 state in the hydrogen atom? To what region of the 
electromagnetic spectrum does this wavelength correspond? 

 Strategy   We are given the initial and fi nal states in the emission process. We can 
calculate the frequency of the emitted photon using Equation 1.16. From Equation 1.2 
(using the speed of light  c  as the speed of the wave), we can then calculate the 
wavelength from the frequency. The region of the electromagnetic spectrum to which 
the calculated wavelength belongs can be found by consulting Figure 1.6. 

 Solution   From Equation 1.16 we write 

 n 5 RHZ 2 ` 1
n2

1

2
1

n2
2

`  
 where the vertical lines indicate that we have used the absolute value to ensure that 
our frequencies are positive. The Rydberg constant is 3.28983 3 10 15  s 21  and for 
hydrogen  Z  5 1, so 

  n 5 3.28983 3 1015 s21 (1)2 ` 1
22 2

1

52 `  
  n 5 6.90864 3 1014 s21  

—Continued
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  Bohr’s idea that the energy states of matter, like light, are quantized was subse-
quently supported by a series of experiments performed by James Franck 15  and Gustav 
Hertz 16  in the decade following Bohr’s hypothesis. Franck and Hertz collided fast mov-
ing electrons with atoms. ( Figure 1.16 (a) is an illustration of their apparatus.) At low 

Continued—
 From Equation 1.2, we have 

  l 5
c
n

5
2.99879 3 108 m s21

6.90864 3 1014 s21  

  5 4.34064 3 1027 m 3 a1 3 109 nm

1 m
b 

  5 434.064 nm  

 According to Figure 1.6, this wavelength lies in the  visible  region of the electromagnetic 
spectrum, specifi cally in the violet/indigo range of the visible spectrum. 

 Practice Exercise   For He1  ( Z 5  2), calculate the wavelength of light (in nm) 
absorbed when an electron in the  n  5 3 state is excited to the  n 5  6 level. To what 
region of the electromagnetic spectrum does this wavelength correspond? 

 15.  James Franck (1882–1964). German physicist and physical chemist. In addition to his work with  Gustav 
Hertz confi rming the existence of energy levels in atoms, he made numerous contributions to the fi eld of 
photochemistry. He shared the 1925 Nobel Prize in Physics with Gustav Hertz. 

 16.  Gustav Hertz (1887–1975). German physicist. He made major advances in the fi eld of gas-phase spec-
troscopy and in the separation of isotopes. He shared the 1925 Nobel Prize in Physics with Franck for his 
work supporting the Bohr hypothesis of energy quantization in matter. 

Electron beam Electron collector plate

Electron source (cathode) Gas atoms

(a)

(b)

Anode (controls electron energy)

Accelerating voltage

C
u
rr

en
t

Threshold voltage

 Figure 1.16  The Frank-Hertz 
experiment: (a) The apparatus. 
(b) Plot of the current through 
the tube as a function of accel-
erating voltage. 

1.2 The Bohr Model Was an Early Attempt To Formulate a Quantum Theory of Matter
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92 Chapter 1 The Quantum Theory of the Submicroscopic World

collision energies, the electrons were scattered by the collisions with the atoms, but 
experienced no loss of kinetic energy. However, when the initial kinetic energy of the 
electrons was increased beyond a critical value, the electrons exhibited a large loss of 
kinetic energy in the collision with an atom [Figure 1.16(b)]. These experiments showed 
that a certain minimum energy was needed to transfer energy from the electron to the 
atom. Within the Bohr hypothesis these results can be explained as follows: If the kinetic 
energy of the electron is smaller than the difference in energy, ¢E, between the ground 
state and the fi rst excited state of the atom, the atom cannot absorb the energy. However, 
once the kinetic energy of the electron exceeds this value, energy transfer is possible 
and the kinetic energy of the electron is reduced by ¢E. As the initial kinetic energy 
of the electrons is increased further, additional dips in their postcollision kinetic energy 
are expected to appear as the higher excited state energies of the atom are reached—and 
this is exactly what was seen in the Franck-Hertz experiments. 
  In spite of its initial success in explaining the spectrum of the hydrogen atom and 
hydrogenlike ions, the Bohr model had a number of defi ciencies. First, as more accurate 
spectra of the hydrogen atom became available, many of the lines previously seen to be 
single lines turned out on close inspection to be closely spaced pairs of lines (called 
 doublets ). The Bohr model, with its single quantum number  n,  was neither able to account 
for this  fi ne structure  of the atomic spectrum nor able to explain the changes induced in 

 Laser—The Splendid Light 

 L
aser  is an acronym for  l ight  a mplification by  s timulated 
 e mission of  r adiation. It is a special type of emission that 

involves either atoms or molecules. Since the discovery of 
laser in 1960, it has been used in numerous systems designed 
to operate in the gas, liquid, and solid states. These systems 
emit radiation with wavelengths ranging from infrared 
through visible and ultraviolet. The advent of laser has truly 
revolutionized science, medicine, and technology. 

  Ruby laser was the fi rst known laser. Ruby is a deep-red 
mineral containing corundum, Al 2 O 3 , in which some of the 
Al 31  ions have been replaced by Cr 31  ions. A fl ashlamp is 
used to excite the chromium atoms to a higher energy level. 
The excited atoms are unstable, so at a given instant some of 
them return to the ground state by emitting a photon in the red 
region of the spectrum. The photon bounces back and forth 
many times between mirrors at opposite ends of the laser tube. 

Flash lampTotally reflecting mirror

Ruby rod Partially reflecting mirror

Laser beam

λ � 694.3 nm

 The emission of a laser light 
from a ruby laser. 

 The stimulated emission of one 
photon in a cascade event that 
leads to the emission of laser 
light. The synchronization of 
the light waves produces an 
intensely penetrating laser beam. 
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 17.  Arnold Johannes Wilhelm Sommerfeld (1868–1951). German physicist. In addition to his pioneering 
work on the relationship between atomic structure and spectral lines, he made important contributions to 
understanding the electronic properties of metals. 

 State-of-the-art lasers used in the research laboratory of Dr. A. H. Zewail at the California Institute of Technology. 

This photon can stimulate the emission of photons of exactly 
the same wavelength from other excited chromium atoms; 
these photons in turn can stimulate the emission of more pho-
tons, and so on. Because the light waves are  in phase —that is, 
their maxima and minima coincide—the  photons enhance one 
another, increasing their power with each passage between the 
mirrors. One of the mirrors is only partially refl ecting, so that 
when the light reaches a certain intensity it emerges from the 
mirror as a laser beam. Depending on the mode of operation, 
the laser light may be emitted in pulses (as in the ruby laser 
case) or in continuous waves. 
  Laser light is characterized by three properties: It is in-
tense, it has precisely known wavelength and hence energy, 

and it is coherent. By  coherent  we mean that the light waves 
are all in phase. The applications of lasers are numerous. Their 
high intensity and ease of focus make them suitable for doing 
eye surgery, for welding and drilling holes in metals, and for 
carrying out nuclear fusion. Because they are highly direc-
tional and have precisely known wavelengths, they are very 
useful for telecommunications. Lasers are also used in isotope 
separation, in holography (three-dimensional photography), 
in compact disc players, and in supermarket scanners. Lasers 
have played an important role in the spectroscopic investiga-
tion of molecular properties and of many chemical and bio-
logical processes. Laser lights are increasingly being used to 
probe the details of chemical reactions (see Chapter 13).  

the spectrum when a magnetic fi eld was applied. In 1916 the German  physicist Arnold 
Sommerfeld 17  rectifi ed these problems by extending the Bohr model by taking into 
account Einstein’s special theory of relativity and included elliptical orbits through the 
introduction of additional quantization conditions and quantum numbers. This more com-
plete theory is generally referred to as the Bohr-Sommerfeld model of the atom or 
simply as “Old Quantum Theory.” Second, and more serious, was the complete failure 
of the Bohr-Sommerfeld theory to accurately predict spectral lines in atoms with more 
than one electron, even those as simple as helium. It became clear that a more general 
theory was needed to account for atoms other than hydrogen. As we shall see, the prob-
lem with the Bohr-Sommerfeld theory was not that it was “wrong.” Instead, the real 
failings of the theory occured because it did not go far enough in moving away from the 
precepts of classical theory. In the Bohr-Sommerfeld model, the electrons were still 
viewed as classical point particles orbiting the nucleus, with a well-defi ned position and 
a well-defi ned momentum at all times. As we will see in Section 1.3, the electrons in an 

1.2 The Bohr Model Was an Early Attempt To Formulate a Quantum Theory of Matter
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94 Chapter 1 The Quantum Theory of the Submicroscopic World

atom are more accurately described as wavelike objects for which position and momen-
tum cannot be simultaneously defi ned with precision. 
  Despite its shortcomings, however, the Bohr-Sommerfeld model is of enormous 
signifi cance in the development of the quantum theory and, in a broader sense, as an 
illustration of the evolution of scientifi c ideas. 

 1.3  Matter Has Wavelike Properties 

 Physicists were both mystifi ed and intrigued by Bohr’s theory and sought to under-
stand  why  the energy levels would be quantized. That is, why is the electron in a Bohr 
atom restricted to orbiting the nucleus at certain fi xed distances? For a decade no one, 
not even Bohr himself, had a logical explanation. In 1924, though, Louis de Broglie 18  
provided a solution to this puzzle. 

 The Wave-Particle Duality of Matter—The de Broglie Hypothesis 

 De Broglie reasoned that if light waves could behave like a stream of particles (pho-
tons), then perhaps particles such as electrons could possess wavelike properties. To 
quantify this connection, de Broglie began with the expression (from Einstein’s theory 
of special relativity) for the momentum (  p ) of the photon: 

  p 5 E/c  (1.18) 

 where  E  is the energy of the photon and  c  is the speed of light. Combining this equa-
tion with the Einstein–Planck expression for the photon energy in terms of its fre-
quency (Equation 1.3) and the relationship (from Equation 1.2) between frequency 
and wavelength, (n 5 c/l), we obtain, after rearrangement, 

 p 5
hn
c

5
h

l
 

 or

 l 5
h
p

  (1.19) 

 Equation 1.19  was derived using equations applicable to the photon, which is massless 
and has a fi xed velocity  c . De Broglie postulated that the equation should also apply 
to particles of matter with mass  m  and velocity  u . Substituting the expression for the 
momentum of a particle (  p 5 mu)  into Equation 1.19 gives the de Broglie relation 
for the wavelength of a particle: 

  l 5
h

mu
  (1.20) 

 The wavelength defi ned in  Equation 1.20  is called the  de Broglie wavelength  of a 
particle. Equation 1.20 implies that a particle in motion can be treated as a wave and 
that a wave can exhibit the properties of a particle (that is, its momentum). Thus, the 
left side of Equation 1.20 addresses the wavelike properties of matter (wavelength), 
whereas the right side addresses its particle-like properties (mass). 

 18.  Louis Victor Pierre Raymond duc de Broglie (1892–1987). French physicist. Member of an old and 
noble family in France, he held the title of a prince. In his doctoral dissertation, he proposed that matter 
and radiation have the properties of both waves and particles. For this work, de Broglie was awarded the 
Nobel Prize in Physics in 1929. 

 Louis de Broglie 
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  Example 1.6 shows that although de Broglie’s equation can be applied to diverse 
systems, the wave properties become observable only for submicroscopic objects. This 
distinction occurs because Planck’s constant,  h , which appears in the numerator in 
Equation 1.20, is so small. 
  According to de Broglie, an electron bound to the nucleus behaves like a  standing 
wave . Standing waves can be generated by plucking a guitar string ( Figure 1.17 ). The 
waves are described as standing, or stationary, because they do not travel along the 
string. Some points on the string, called  nodes,  do not move at all; that is,  the ampli-
tude of the wave at these points is zero.  There is a node at each end, and there may 
be nodes between the ends. The greater the frequency of vibration, the shorter the 

l = 2–
2
λl = –

2
λ l = 3–

2
λ

 Figure 1.17  The standing 
waves generated by plucking a 
guitar string. Each dot repre-
sents a node. The length of the 
string, l, must be equal to a 
whole number times one-half 
the wavelength (ly2). 

1.3 Matter Has Wavelike Properties

 Example 1.6 

 Calculate the wavelength of the “particle” in the following two cases: (a) A 6.0 3 
10 22  kg tennis ball served at 140 miles per hour (63 m s 21 ). (b) An electron ( m e  5  
9.1094 3 10 231  kg) moving at 63 m s 21 . 

 Strategy   We are given the mass ( m ) and the speed ( u ) of the particle in (a) and 
(b) and asked to calculate the wavelength (l). We can use Equation 1.20 to do this. 
Note, however, that Planck’s constant has units of J s, so  m  and  u  must be in units of 
kg and m s 21 , respectively (1 J 5 1 kg m 2  s 22 ). 

(a)  Solution   Using Equation 1.20 for the tennis ball we write 

  l 5
h

mu
 

  5
6.626 3 10234 J s

(6.0 3 1022 kg)(63 m s21)
 

  5 1.8 3 10234 m  

 Comment   This is an exceedingly small wavelength considering that the size of an 
atom itself is on the order of 1 3 10210  m. For this reason, the wave properties of a 
tennis ball cannot be detected by any existing measuring device. 

(b )  Solution    For the electron, 

  l 5
h

mu
 

  5
6.626 3 10234 J s

(9.1094 3 10231 kg)(63 m s21)
 

  5 1.2 3 1025 m  

 Comment   This wavelength (1.2 3 10 25  m or 1.2 3 10 4  nm) is in the infrared 
region and is much larger than the size of an atom. This calculation shows that only 
submicroscopic particles (such as electrons) have measurable wavelengths. 

 Practice Exercise   Calculate the wavelength (in nanometers) of a hydrogen atom 
(mass 5 1.674 3 10 227  kg) moving at 7.00 3 10 2  cm s 21 . 

Lai69040_ch01_071-125.indd Page 95  1/5/08  8:56:46 PM elhiLai69040_ch01_071-125.indd Page 95  1/5/08  8:56:46 PM elhi /Volumes/108/MHIA037/mhLai1/Lai1ch01%0/Volumes/108/MHIA037/mhLai1/Lai1ch01%0



96 Chapter 1 The Quantum Theory of the Submicroscopic World

wavelength of the standing wave and the greater the number of nodes. As Figure 1.17 
shows, there can be only certain wavelengths in any of the allowed motions of the 
string.  The existence of discrete energy states is the natural consequence of confi ning 
a wavelike object to a fi nite region of space. 
  De Broglie argued that if an electron does behave like a standing wave in the 
hydrogen atom, the length of the wave must fi t the circumference of the orbit exactly 
( Figure 1.18 )—otherwise the wave would partially cancel itself on each successive 
orbit. Eventually the amplitude of the wave would be reduced to zero, and the wave 
would cease to exist. The relation between the circumference of an allowed orbit (2pr) 
and the de Broglie wavelength (l) of the electron is given by 

  2pr 5 n l n 5 1, 2, 3, . . .  (1.21) 

 where  r  is the radius of the orbit and l is the wavelength of the electron wave. Using 
 Equation 1.21  together with the expression for l in Equation 1.20, we obtain 

 2pr 5 n 
h

meu
 

 Upon rearrangement, 

 meur 5
nh

2p
5 nh n 5 1, 2, 3, . . . 

 which is identical to the Bohr angular momentum condition expressed in Equation 1.11. 
Thus, de Broglie’s postulate leads to quantized angular momentum and to the quantized 
energy levels of the hydrogen atom. 
  Shortly after de Broglie introduced his equation, Clinton Davisson 19  and Lester 
Germer 20  in the United States and G. P. Thomson 21  in England demonstrated that 
electrons do indeed possess wavelike properties. By directing a beam of electrons at 
a thin piece of gold foil, Thomson obtained a set of concentric rings on a detector 
screen, similar to the pattern observed when X-rays (which are waves) were used. 
 Figure 1.19  shows the same kind of pattern for aluminum. The wavelike nature of 
electron beams has application in a number of experimental techniques, such as  elec-
tron microscopy  (discussed in the inset on page 109) and  low energy electron diffrac-
tion (LEED),  which is used to study the surfaces of crystalline solids. Another 
technique,  neutron diffraction , uses the wavelike properties of neutrons to study the 
structure and dynamics of dense materials, such as liquids. 

 The Heisenberg Uncertainty Principle 

 One of the assumptions of classical physics is that the dynamical variables (positions and 
momenta) of a particle in motion have well-defi ned, precise values. However, the concept 
of a precise position becomes ill-defi ned when we try to describe a particle as a wavelike 
object. A wave is an object that is extended over some region of space. To describe the 
problem of trying to locate a subatomic particle that behaves like a wave, Werner 

(a)

(b)

 Figure 1.18  (a) The circumfer-
ence of the orbit is equal to an 
integral number of wavelengths. 
This is an allowed orbit. (b) The 
circumference of the orbit is not 
equal to an integral number of 
wavelengths. As a result, the 
electron wave does not close in 
on itself. This is a nonallowed 
orbit. 

 19.  Clinton Joseph Davisson (1881–1958). American physicist. He and G. P. Thomson shared the Nobel 
Prize in Physics in 1937 for demonstrating the wave properties of electrons. 

 20.  Lester Halbert Germer (1896–1972). American physicist. Discoverer (with Davisson) of the wave 
properties of electrons. 

 21.  George Paget Thomson (1892–1975). English physicist. Son of J. J. Thomson, he received the Nobel 
Prize in Physics in 1937, along with Clinton Davisson, for demonstrating the wave properties of electrons. 
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(a) (b)

 Figure 1.19  Left: X-ray dif-
fraction pattern of aluminum 
foil. Right: Electron diffraction 
pattern of aluminum foil. The 
similarity of these two patterns 
shows that electrons can behave 
like X-rays and display wave 
properties. 

 Heisenberg 22  formulated what is now known as the  Heisenberg uncertainty principle:  
 It is impossible to know simultaneously both the momentum p  (defi ned as mass times 
velocity)  and the position of a particle with certainty.  Stated mathematically we have, 

  ¢x ¢p $
h

2
  (1.22) 

 where Dx and Dp are the uncertainties in measuring the position and momentum, 
respectively. Thus, if we measure the momentum of a particle more precisely (that is, 
if we make Dp a small quantity), our knowledge of the position will become corre-
spondingly less precise (that is, Dx will become larger). Similarly, if the position of 
the particle is known more precisely, then its momentum must be known less precisely. 
This inverse relationship arises because the position of a wavelike particle is deter-
mined by the region of space occupied by the wave, but the momentum, through the 
de Broglie relationship, is related to the wavelength of the wave. 
  Figure 1.20  depicts two extreme cases. In Figure 1.20(a) a wave is extended over 
a large region of space; however, the wavelength of the wave is well defi ned. Such a 
particle-wave would have a small uncertainty in the momentum (wavelength), but a 
large uncertainty in the position. In Figure 1.20(b), on the other hand, the wave is  Werner Heisenberg 

 22.  Werner Karl Heisenberg (1901–1976). German physicist. One of the founders of modern quantum 
theory. Heisenberg received the Nobel Prize in Physics in 1932. 

1.3 Matter Has Wavelike Properties

 Figure 1.20  Three illustrations 
of the Heisenberg uncertainty 
principle. (a) A particle-wave 
with a large uncertainty in posi-
tion, but with a well-defi ned 
wavelength (momentum). (b) A 
particle-wave with a well-defi ned 
position, but a large uncertainty 
in wavelength (momentum). 
(c) A particle-wave with inter-
mediate uncertainty in position 
and momentum. 

(a) (c)(b)
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98 Chapter 1 The Quantum Theory of the Submicroscopic World

highly localized in space (giving a small value of Dx). but the wavelength is diffi cult 
to defi ne; that is, it has a large uncertainty in the wavelength. Figure 1.20(c) shows a 
wave that is intermediate between the two extremes in Figure 1.20(a) and 1.20(b). 
  When the Heisenberg uncertainty principle is applied to the hydrogen atom, it is 
found that the electron cannot orbit the nucleus in a well-defi ned path, as Bohr thought. 
If it did, we could determine precisely both the position of the electron (from the 
radius of the orbit) and its momentum (from its kinetic energy) at the same time, a 
violation of the uncertainty principle. 
  The uncertainty principle is negligible in the world of macroscopic objects 
(because of the small size of Planck’s constant), but is very important for objects with 
small masses, such as electrons and protons. 

 Example 1.7 

 Recall from Example 1.4 that the Bohr radius of the hydrogen atom is 52.9 pm (or 
0.529Å). Assuming that we know the position of an electron in this orbit to an 
accuracy of 1 percent of the radius, calculate the uncertainty in the velocity of the 
electron. 

 Strategy   The uncertainty, Dx, in the position of the electron is given. From the 
Heisenberg uncertainty principle ( Equation 1.22 ), we can calculate the minimum 
uncertainty in the momentum, Dp, from which the uncertainty in the velocity can be 
determined. 

 Solution   The uncertainty, Dx, in the position of the electron is 

  ¢x 5
1%

100%
3 52.9 pm 3

1 3 10212 m

1 pm
5 5.29 3 10213 m 

 From the Heisenberg uncertainty principle (Equation 1.22), we have 

  ¢p $
h

2¢x
5

1.054 3 10234 J s

2(5.29 3 10213 m)
 

  $ 9.96 3 10223 kg m s21  

  Because Dp 5 m Du, the uncertainty in the velocity is given by 

 ¢u 5
¢p

m
$

9.96 3 10223 kg m s21

9.1095 3 10231 kg
 

  $ 1.1 3 108 m s21  

 The uncertainty in the velocity of the electron is of the same magnitude as the speed 
of light (3 3 10 8  m s 21 ). At this level of uncertainty, we have virtually no idea what 
the velocity of the electron is. 

 Practice Exercise   Repeat the calculation in Example 1.7 using a proton instead of 
an electron. 

 The Schrödinger Wave Equation 

 The de Broglie relation and the Heisenberg uncertainty principle successfully demon-
strated the major fl aw in the Bohr-Sommerfeld model. Although Bohr went beyond 
classical physics in postulating the quantization of energy levels, his theory still relied 
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on the Newtonian notion of particle trajectories. In the Bohr-Sommerfeld orbits both 
the momentum and position of the electron had specifi c well-defi ned values at all 
times, in violation of the Heisenberg uncertainty principle. De Broglie postulated that 
a particle has wavelike properties, but his theory was incomplete, as it did not provide 
a quantitative determination of the properties of such a system. A general equation 
was needed for quantum systems, one comparable in predictive power to Newton’s 
second law of motion for classical objects. In 1926, the Austrian physicist Erwin 
Schrödinger 23  furnished the necessary equation. 24 
  In classical mechanics, the state of a particle is defi ned uniquely by its position 
and momentum. If you know both of these quantities, then you can predict the future 
motion of the particle based on the forces acting upon it. According to Heisenberg’s 
uncertainty principle, though, this sort of knowledge is unavailable for a quantum 
particle, as the position and momentum cannot be simultaneously specifi ed.  Schrödinger 
postulated that the complete information about the state of a quantum particle was 
contained in a function  c(x), called the  wavefunction , which is a function of the 
position of the particle (given by  x  for a one-dimensional system). One of the most 
important properties of wavelike objects is the ability to exhibit constructive and 
destructive interference. For this to be possible, the wave function must be able to 
take on positive  or  negative values. 
  We know from everyday experience what is meant by the classical state of a 
particle—that is, by position and momentum. But what is meant by c? The currently 
accepted physical interpretation of c, given in 1926 by German physicist Max Born, 25  
is that the wavefunction is related to the  probability  of fi nding the particle in a specifi c 
region of space. Because c can take on negative values, and probability is, by defi ni-
tion, a positive quantity, Born postulated that the probability of fi nding the particle in 
a particular small region of space was proportional to the  square  of the wavefunction. 
Specifi cally, for a one-dimensional system, the probability of fi nding the particle 
between positions  x  and  x 1 dx  is given by c2(x)  dx. 26  As shown in  Figure 1.21 , the 
probability,  P , of fi nding the particle in a specifi c region a , x , b is given by the 
area under the curve, c2(x), between  x 5 a  and  x 5 b  (which can be calculated from 
the integral of c2(x) on this interval): 

  P 5 area under c2(x) from a to b 

   5 eb

a
c2(x)dx  

(1.23) 

 (Because the probability of fi nding the particle in a specifi c region of space is not 
given directly by c2(x), but instead by an integral of c2(x) over the region, we refer 
to c2(x) not as a probability, but as a  probability density ). 

 Erwin Schrödinger 

 23.  Erwin Schrödinger (1887–1961). Austrian physicist. Schrödinger formulated wave mechanics, which 
laid the foundation for modern quantum mechanics. He received the Nobel Prize in Physics in 1933. 

 24.  An alternative formulation of quantum mechanics, based on matrices, was developed independently by 
Heisenberg at about the same time. It was later shown that this “matrix mechanics” is equivalent to 
Schrödinger’s theory. 

 25.  Max Born (1882–1970). German physicist. In addition to being one of the pioneers in modern quantum 
mechanics, he made major contributions to electrodynamics and the theory of crystals. He received the 
Nobel Prize in Physics in 1953. 

 26.  Mathematically, the wavefunction can be a complex number, such as  A  1  i B  where i 5 121. To be 
physically meaningful, this probability should be given as c*(x)c(x), where c*(x) is the  complex conjugate  
of c(x). If c(x) is written as  A 1 i B , where  A  and  B  are real, then c*(x) is defi ned as  A  2  i B  and 
c*(x)c(x) 5 (A 1 i B)(A 2 i B) 5 A2 1 B2. This is necessary to ensure that the probability density 
c*(x)c(x) is always positive. If c(x) is a real number, then c*(x) 5 c(x) and c*(x)c(x) 5 c2(x), the usual 
square. 

1.3 Matter Has Wavelike Properties
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100 Chapter 1 The Quantum Theory of the Submicroscopic World

  In quantum mechanics, we  cannot  specify the exact position of the particle, only 
the probability that it will be found in some region of interest. This has nothing to 
do with the inadequacy of our measuring devices—it is a fundamental property of 
matter! 
  By analogy with the laws of optics, Schrödinger proposed that the wavefunction 
for a particle of mass  m  in one dimension is the solution to the equation 

  2
h 2

2m
 

d 2c(x)

dx2 1 V(x)c(x) 5 Ec(x)  (1.24) 

 where  V ( x ) is the potential energy function and  E  is the total energy. Like Newton’s 
second law of classical mechanics, the Schrödinger equation ( Equation 1.24 ) is a 
 postulate  and cannot be derived. The Schrödinger equation marked the beginning of 
a new era in physics—that of wave mechanics or  quantum mechanics . 
  Equation 1.24 does not contain time as a variable and is referred to as the  time-
independent Schrödinger equation . The wavefunctions that are the solutions to Equa-
tion 1.24 do not change with time and are called  stationary-state  wavefunctions. 27  For 
a specifi c system, the Schrödinger equation can be solved only for certain values of 
 E;  that is, the energy of the system is quantized. 
  To describe a physical system, the wavefunction (c) must also be “well-behaved”; 
that is, it must satisfy the following conditions:

 1.  c must be single-valued at all points. 

 2. The total area under  c 2 (x ) must be equal to unity; that is, e∞
2∞c

21x2 dx 5 1. 

 3.   c must be “smooth”; that is,  c  and its fi rst derivative (slope),  dcydx,  must be 
continuous at all points. 

 The fi rst condition ensures that the probability of fi nding the particle in a given region 
of space has a unique value. The second condition is a statement that the probability 
of fi nding the particle somewhere is equal to one; that is, the particle exists. The third 
condition is necessary so that the second derivative of  c , which appears in Equation 
1.24, is physically meaningful. 

c
(x

)

0

x

c
2 (

x)

0

xa b

(a) (b)

 Figure 1.21  (a) An example of 
a wavefunction [c(x)] for a par-
ticle in a one-dimensional system 
as a function of position (x). 
(b) The probability density [c 2 (x)] 
defi ned by the wavefunction in 
(a). The probability of the par-
ticle being in the interval (a , x 
, b) is given by the area under 
the curve over this interval 
(shaded). 

 27.  A more general equation containing time as a variable was also formulated by Schrödinger and is useful 
in the description of spectroscopic techniques. However, many problems of chemical interest can be 
 adequately described using only the stationary-state wavefunctions. 
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  For an arbitrary system, the solution to the Schrödinger equation can be quite 
complex. However, it is possible by examining the form of the Schrödinger equation 
to deduce some qualitative aspects of the wavefunction. The left-hand side of Equation 
1.24 contains two terms. The fi rst term, 

   2
h2

2m
 

d 
2c(x)

dx 
2  

  represents the  kinetic energy  part of the equation. This term is proportional to the 
second derivative of the wave function (d2cydx2), which describes the  curvature  of 
the wavefunction (see Appendix 1). Thus, wavefunctions with high curvature have 
high kinetic energy and those that are relatively fl at (low curvature) have low kinetic 
energy. The second term on the left-hand side of Equation 1.24, 

 V(x)c(x) 

 describes the potential energy of the system. Consider the wavefunction for the ground 
state (lowest energy state) of a given system .  ( Figure 1.22 ) The wavefunction of 
minimum potential energy would be one in which the probability density (and, thus, 
the wavefunction) for the particle is narrowly peaked in the vicinity of the potential 
energy minimum [ Figure 1.22 (b)]. Such a wavefunction, however, would have a high 
curvature and thus a high kinetic energy. Lowering the kinetic energy involves decreas-
ing the curvature of the wavefunction (that is, spreading it out more over space), which 
allows the particle to exist in regions that have high potential energy. [ Figure 1.22 (c)] 
The true ground-state wavefunction of a particle represents a  compromise  between 
these two extremes [ Figure 1.22 (d)]. 

 The Particle in a One-Dimensional Box: A Simple Model 

 For most problems in nature, the Schrödinger wave equation cannot be solved exactly, 
and we must use sophisticated computer algorithms to obtain even approximate 
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 Figure 1.22  (a) A model 
potential energy function V(x). 
(b) An example of a ground-
state wavefunction that mini-
mizes the potential energy but 
has a large kinetic energy (high 
curvature). (c) A ground-state 
wavefunction that minimizes 
kinetic energy (low curvature) 
but has high potential energy (is 
nonzero in regions where the 
potential energy is large). 
(d) The exact ground-state 
wavefunction. 
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102 Chapter 1 The Quantum Theory of the Submicroscopic World

 solutions. However, there exist a small number of model systems for which an exact 
solution is possible. One of these is the particle in a one-dimensional box. Although 
this system represents a highly idealized situation, the  particle-in-a-box model  pos-
sesses many of the features of realistic quantum-mechanical systems, and its solution 
can be applied to real problems of chemical and biological interest. 
  Consider a particle of mass  m  confi ned to a one-dimensional region (or line) 
of length  L . The potential energy inside the box is zero ( V 5  0 )  and infi nite outside 
(V 5 ∞). If we denote the position of the particle on the line by  x , this potential 
energy can be written as 

 
V(x) 5 e0 0 # x # L

∞ x 6 0 or x 7 L

 

 This potential energy function is shown in  Figure 1.23 . 
  Because the potential energy is zero inside the box, the energy of the particle is 
entirely kinetic. For the region 0 # x # L, the Schrödinger equation (Equation 1.24) 
becomes 

 2
h2

2m
 
d 2c(x)

dx2 5 Ec(x) 

 or   
d2c(x)

dx2 5 2
2mE

h2  c(x)  (1.25) 

  The solution to this equation can be obtained because the function we are after 
yields the original function times a negative constant when it is differentiated twice. 
The only real functions with this property are the trigonometric functions sine and 
cosine (see Appendix 1), so a  general  solution is then 

  c(x) 5 A sin(kx) 1 B cos(kx)  (1.26) 

 where  A, B,  and  k  are constants to be determined. To fi nd the particular solution cor-
responding to the wavefunction of the particle, we need additional information. 
Because the probability of fi nding the particle outside of the box is zero, the wave-
function must also be zero at the boundaries (that is,  c ( x ) 5 0 at  x 5  0 and  x 5 L ) 
for the wavefunction to be continuous. (Conditions that specify the value of a function 
at certain points, such as  c ( 0 ) 5 0 and  c ( L ) 5 0, are called  boundary conditions. ) 
Because sin(0) 5 0 and cos(0) 5 1,  Equation 1.26 , evaluated at  x 5  0, yields 

  c(0) 5 A  sin (0) 1 B  cos (0) 5 0 
  A(0) 1 B(1) 5 0 

x � 0 x � L

x

V � ∞ V � ∞V � 0

V(x) � 
0   0 � x � L
∞  x � 0 or x � L

⎧
⎨
⎩

E
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 Figure 1.23  The potential 
energy for a one-dimensional 
particle in a box with infi nite 
energy barriers at x 5 0 and 
x 5 L. 
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 Therefore,  B  5 0, and we have 

 c(x) 5 A sin(kx) 

 Substituting this expression into  Equation 1.25  gives 

  
d 

2

dx2 3A  sin (kx) 4 5 2
2mE

h2  A  sin (kx)  

  2Ak2
  sin (kx) 5 2

2mE

h2  A  sin (kx) 

 Solving for  k  gives 

 k 5 a2mE

h2 b
1y2

 

 Finally, we have 

  c(x) 5 A  sin c a2mE

h2 b
1y2

x d   (1.27) 

 We have yet to use the boundary condition at  x 5 L.  Requiring  c ( L ) 5 0 in  Equation 
1.27  gives 

  c(L) 5 A  sin c a2mE

h2 b
1y2

L d 5 0  (1.28) 

 One solution to  Equation 1.28  is obtained when  A  is zero; however, this yields a 
wavefunction that is zero everywhere (that is, it describes a system in which no par-
ticle is present), which is trivial, unphysical, and uninteresting. Real, physical solu-
tions are obtained by noting that sin( x ) is zero only when  x  is a multiple of p (that 
is, when x 5 np, where  n  is an integer). Thus, the second boundary condition will 
be satisfi ed if the energy  E  is restricted to values that satisfy 28 

  a2mE

h2 b
1y2

L 5 np, n 5 1, 2, 3, . . .  (1.29) 

 If we defi ne  E n  to be the value of  E  that satisfi es  Equation 1.29  for a given allowed 
value of  n,  we have 

 En 5
n2p2h 2

2mL2  

 Using h 5
h

2p
, we have 

  En 5
n2h2

8mL2, n 5 1, 2, 3, . . .  (1.30) 

  Because the allowed values of the energy are discrete (not continuous), we say 
that the energy of this system is  quantized.  This quantization is a direct result of 

 28.  The value  n  5 0 was excluded because it gives the trivial and unphysical solution that c is zero 
 everywhere. 
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104 Chapter 1 The Quantum Theory of the Submicroscopic World

imposing the boundary conditions. In the absence of the confi ning walls (which gen-
erate the boundary conditions), the system describes a  free particle . The energy of a 
free particle is not quantized, but can take on any desired positive value. Thus, we 
see again that quantization of energy arises when a particle (or wave) is confi ned to 
a fi nite region of space. 
  The difference between successive energy levels can also be calculated from  Equa-
tion 1.30 . For example, the difference between the energy levels  n  and ( n 1  1) is 

  ¢E 5 En11 2 En 5
h2

8mL2 3(n 1 1)2 2 n2 4  
  5

h2

8mL2 3n2 1 2n 1 1 2 n2 4  

 which, after simplifi cation, gives 

  
¢EnSn11 5

h2

8mL2 (2n 1 1)
  (1.31) 

 The spacing between successive energy levels is inversely proportional to both the 
particle mass ( m ) and  L 2 , the square of the size of the confi ning region. The energy- 
level spacing for this problem also increases with increasing  n. 
  The wavefunctions corresponding to the energy level  E n  are 

  cn(x) 5 A sin anpx

L
b  (1.32) 

 Because c2
n(x)dx represents the probability of fi nding the particle in the interval defi ned 

by  x  and  x 1 dx , the integral of c2
n(x) over all possible values of  x  must equal 1. Thus, 

we require that 

  #
L

0

c2
n(x)dx 5 1  (1.33) 

 Requiring that the wavefunction given in  Equation 1.32  satisfi es  Equation 1.33  makes 
it possible to specify the value of  A . Substituting Equation 1.32 into Equation 1.33 
gives 

  #
L

0

A2
  sin 

2 anpx

L
 xb dx 5 1  (1.34) 

 The integral in  Equation 1.34  can be obtained from any decent table of integrals. It 
equals  Ly 2, so  A 2  ( L  y2) 5 1 or  A 5 (2yL)1y2 . A wavefunction that satisfi es Equation 
1.33 is said to be  normalized,  and the preceding process used to fi nd  A  (the  normal-
ization constant)  is called  normalization.  The properly normalized wavefunctions for 
the particle in a box are then 

  cn1x2 5 a2

L
b1y2

 sin anpx

L
b n 5 1, 2, 3, . . .  (1.35) 

 The wavefunctions, probability densities [given by  c 2 ( x )], and energies for the fi rst 
four energy levels for the particle in a one-dimensional box are plotted in  Figure 1.24 . 
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Note that the wavefunctions for the one-dimensional particle in a box look just like 
the standing waves set up in a vibrating string (Figure 1.17). This similarity is not a 
coincidence—the mathematics that describes the wave behavior of these two seem-
ingly different physical systems is very similar. 
  The particle in a one-dimensional box illustrates the following points that are true 
in general about quantum systems:

c  The quantization of the energy levels of a system is a direct result of the 
localization of the particle in a fi nite region of space by the potential energy. 
In the particle in a one-dimensional box, the infi nite potential energy barriers 
enforce this localization. In an atom, the negatively charged electrons are 
confi ned to a small region around the positively charged nucleus by the strong 
Coulombic attraction between oppositely charged particles. As a result, their 
energies are also quantized. For the particle in a one-dimensional box, there is 
one quantum number  n  that indexes the allowed quantum states.  In general, the 
number of quantum numbers necessary to describe the quantum state of a 
particle is equal to the number of dimensions . For example, the quantum states 
of a particle in a two-dimensional box require two quantum numbers. We will 
see in  Section 1.4  that the electron in a hydrogen atom, which is an object 
moving in three dimensions, requires three quantum numbers to specify its 
wavefunction. 

c  The spacing between successive energy levels is inversely proportional to both 
the particle mass ( m ) and  L 2 . For macroscopic objects, both  m  and  L  are large 
and the resulting spacing between energy levels is vanishingly small, so that 
the energy spectrum appears continuous, in agreement with the observed 
classical mechanical behavior of macroscopic objects. 
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 Figure 1.24  Plots of (a) c   and 
(b) c 2  for the fi rst four energy 
levels (together with their rela-
tive energies) of the particle in 
a one-dimensional box.  The “1” 
and “2” symbols indicate posi-
tive and negative regions of the 
wavefunction, respectively.
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106 Chapter 1 The Quantum Theory of the Submicroscopic World

c  The lowest energy level is not zero. In the particle in a one-dimensional box, 
the energy of the ground state is  h 2 y 8 mL 2 . This  zero-point energy  can be 
accounted for by the Heisenberg uncertainty principle. If the lowest energy 
were zero, then the kinetic energy (and thus, the velocity) of the particle would 
also be zero. There would be no uncertainty in the momentum of the particle; 
consequently, the uncertainty in the position would be infi nite (according to 
Heisenberg). However, we know that the particle is in the box, so the maximum 
uncertainty in  x  is  L . As a result, a zero value of the energy would violate the 
Heisenberg uncertainty principle. The zero-point energy means, too, that the 
particle can never be at rest because its lowest energy is not zero. 

c  For a given value of  n,   Equation 1.35  describes the wave behavior of the particle, 
but the probability density is given by c2

n(x), which is always positive. For  n 5  1, 
the maximum probability density is at  x  5  Ly 2 (see Figure 1.24); for  n 5  2, the 
maxima occur at  x 5 Ly 4 and  x 5  3 Ly4. Generally, the number of nodes (points 
at which c,  and hence  c 2 , is zero) increases with increasing energy. 

  One property of the particle in a box that is not general is the increase in the  spacing 
between successive energy levels with increasing quantum number  n.  For example, we 
will see in Section 1.4 that the energy levels in the hydrogen atom become  closer  together 
for the higher energy levels. In another important model, the  harmonic oscillator,  which 
is used to describe molecular vibration, the energy-level spacing between successive 
levels is constant. The dependence of the energy spacing on the quantum number in a 
one-dimensional problem is a function of the  shape  of the potential energy function. 

 Example 1.8 

 Consider an electron confi ned within a one-dimensional box of length 0.10 nm, which 
is close to the size of an atom. (a) Calculate the difference in energy between the  n 5  2 
and  n 5  1 states of the electron. (b) Repeat the calculation in (a) for a N 2  molecule in 
a one-dimensional box of length 10.0 cm. (c) Calculate the probability of fi nding the 
electron in (a) between  x 5  0 and  x 5  0.05 nm for the  n  5 1 state. 

 Strategy   In (a) and (b) we are interested in the energy difference between two 
successive energy levels, a quantity described by Equation 1.31. In (c), we are 
interested in the probability of fi nding the particle in a given region. To do this we 
need to fi nd  c 2 ( x ) and apply Equation 1.23. 

 Solution   (a) Use Equation 1.31 with  n  5 1: 

  ¢En S n11 5
h2

8mL2 (2n 1 1)  

  5
(6.626 3 10234 J/s)2 32(1) 1 1 4

8(9.109 3 10231 kg) 3 10.10 nm)(1 3 1029 m/nm2 4 2 

  5 1.8 3 10217 J  

 This energy difference is similar in magnitude to the difference between the  n 5  1 and 
 n 5  2 states of the hydrogen atom (see Equation 1.16).  
(b) The mass of a single N 2  molecule ( m  in Equation 1.31) is calculated by dividing the 
molar mass of nitrogen by Avogadro’s number (see Section 0.5), then converting to kg: 

 m(N2) 5
28.02 g mol21

6.0221 3 1023 mol21 3
1 kg

1000 g
5 4.65 3 10226 kg 

—Continued
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 Quantum-Mechanical Tunneling 

 What would happen if the potential walls surrounding the particle in a one-dimensional 
box were not infi nitely high ( Figure 1.25 )? The particle could escape the box if 
the kinetic energy of the particle became greater than the potential energy of the 
walls. What is more surprising, however, is that we might fi nd the particle outside 
the box even if its kinetic energy is insuffi cient to reach the top of the barrier! This 
phenomenon, called  quantum-mechanical tunneling , has no analog in classical 
physics. It arises as a consequence of the wave nature of particles. Quantum-
mechanical tunneling has many profound consequences in chemistry, physics, and 
biology. 

Continued—
 Substituting this value into Equation 1.31, and using  L 5  10.0 cm, gives 

  ¢En S n11 5
h2

8mL2 (2n 1 1)  

  5
(6.626 3 10234 J/s)2 32(1) 1 1 4

8(4.65 3 10226 kg) 3 (10.0 cm)(1 3 1022 m cm21) 4 2 

  5 3.5 3 10240 J  

 This result is 23 orders of magnitude smaller than the energy difference calculated in 
(a). Compared to the electron, the energy levels of the nitrogen molecule in the box are 
so closely spaced that they appear almost continuous and would be well approximated 
by classical mechanics. This is an example of the general rule that quantum mechanical 
effects become smaller as the size of the confi ning region increases.   
(c) The probability ( P ) that the electron will be found in the region 0 # x # Ly2 is 
given by Equation 1.23 (with  a  5 0 and  b  5  Ly 2): 

 P 5 #
L/2

0

c2(x)dx 

 Using the normalized wavefunction in Equation 1.35 and setting  n  5 1, 

  P 5
2

L #
L/2

0

sin 
2 apx

L
b dx  

  5
2

L
 c x

2
2

 sin (2px/L)

4p/L
d L/2

0
 

  5
1

2
 

 which is not an unexpected result, classically or quantum mechanically. We could have 
also done this problem without having to solve the integral by noting that the  n  5 1 
probability density is symmetric about  x 5 Ly 2. 

 Practice Exercise   The highest-energy electrons in the molecule butadiene (H 2 CP
CHOCHPCH 2 ) can be approximated by a particle in a one-dimensional box with a 
value of  L  of approximately 580 pm. Calculate the wavelength of light corresponding 
to an  n 5  2 to  n 5  3 transition in this molecule using the particle-in-a-box model. 
How does this compare to the experimental value of 217 nm? 

1.3 Matter Has Wavelike Properties
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108 Chapter 1 The Quantum Theory of the Submicroscopic World

  The phenomenon of quantum-mechanical tunneling was introduced in 1928 by 
the Russian-American physicist George Gamow, 29  and others, to explain a decay, a 
process in which a nucleus spontaneously decays by emitting an a particle (a helium 
nucleus, He 21 ); for example, 

  238
 
 
92U ¡ 234

  90Th 1 a  

 Physicists faced a dilemma: For U-238 decay, the measured kinetic energy of the emitted 
a particle is about 6 3 10 213  J, whereas the potential barrier to escape from the nucleus 
is on the order of 4 3 10 211  J, or about 70 times greater than the kinetic energy. How 
does the a particle overcome the barrier and leave the nucleus? Gamow suggested that 
the a particle, being a quantum-mechanical object, had wavelike properties that allowed 
it to penetrate a potential barrier. This explanation turned out to be correct. In general, for 
fi nite potential barriers, there is some probability of fi nding the particle outside the box. 
  Figure 1.26  illustrates this phenomenon for a particle in a one-dimensional box 
with fi nite potential walls. In fact, the probability densities for the ground states for 
three systems with differing particle masses and barrier heights are shown. In general, 
the effect of tunneling increases with decreasing particle mass and with decreasing 
height of the potential barrier. 
  One important practical application of quantum mechanical tunneling is the scan-
ning tunneling microscope described in the inset on page 109. 

 Figure 1.25  The potential 
energy for a particle in a one-
dimensional box with fi nite 
potential walls of height V0  . 
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 29.  Georgy (“George”) Antonovich Gamow (1904–1968). Russian-American physicist. In addition to his work 
on the theoretical nuclear physics, Gamow made important contributions in cosmology and biochemistry. 
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 Figure 1.26  Probability densities for the ground state of a particle in a one-dimensional box 
of length 2 Å with fi nite potential barriers (as pictured in Figure 1.25). (a) The particle has the 
mass of an electron and the potential barrier V is equal to the ionization energy of the hydro-
gen atom. (b) The value of V is the same as in (a), but the mass is that of a hypothetical par-
ticle with 10 times the mass of the electron. (c) The particle is an electron, but the potential 
barrier is twice the hydrogen ionization energy (equal to the ionization energy of He1 ). Note 
that, the total probability outside of the box is signifi cantly less in (b) and (c) than in (a), illus-
trating that the effect of tunneling is reduced with increasing particle mass and barrier height. 
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 Important Experimental Technique: Electron Microscopy 

 T 
he electron microscope is an extremely valuable applica-
tion of the wavelike properties of electrons because it pro-

duces images of objects that cannot be seen with the naked 
eye or with light microscopes. According to the laws of op-
tics, it is impossible to form an image of an object that is 
smaller than half the wavelength of the light used for the ob-
servation. Because the range of visible light wavelengths 
starts at around 400 nm, or 4 3 10 27  m, we cannot see any-
thing smaller than 2 3 10 27  m. In principle, we can see ob-
jects on the atomic and molecular scale by using X-rays, 
whose wavelengths range from about 0.01 nm to 10 nm. X-
rays cannot be focused easily, however, so they do not pro-
duce crisp images. Electrons, on the other hand, are charged 
particles, which can be focused in the same way the image on 
a TV screen is focused (that is, by applying an electric field or 
a magnetic field). According to Equation 1.20, the wavelength 
of an electron is inversely proportional to its velocity. By ac-
celerating electrons to very high velocities, we can obtain 
wavelengths as short as 0.004 nm. 
  A different type of electron microscope, called the  scan-
ning tunneling microscope (STM ),  uses quantum mechanical 

tunneling to produce an image of the atoms on the surface of 
a sample. Because of its extremely small mass, an electron is 
able to move or “tunnel” through an energy barrier (instead of 
going over it). The STM consists of a metal needle with a very 
fi ne point (the source of the tunneling electrons). A voltage is 
maintained between the needle and the surface of the sample 
to induce electrons to tunnel through space to the sample. As 
the needle moves over the sample at a distance of a few atomic 
diameters from the surface, the tunneling current is measured. 
This current decreases with increasing distance from the sam-
ple. By using a feedback loop, the vertical position of the tip 
can be adjusted to a constant distance from the surface. The 
extent of these adjustments, which profi le the sample, is re-
corded and displayed as a three-dimensional false-colored 
image. Both the electron microscope and the STM are among 
the most powerful tools in chemical and biological research. 

  An electron micrograph showing a normal red blood cell 
and a sickled red blood cell from the same person .

 STM image of iron atoms arranged to display the 
Chinese characters for atom on a copper surface. 

1.4   The Hydrogen Atom Is an Exactly Solvable 

Quantum-Mechanical System 

 The simplest atomic system is the hydrogen atom, with its single electron interacting 
with a positively charged nucleus containing a single proton. Unlike that for the 
heavier elements, the Schrödinger equation for the electron wavefunctions of a hydro-
gen atom is exactly solvable. Because the wavefunctions of many-electron atoms 

1.4 The Hydrogen Atom Is an Exactly Solvable Quantum-Mechanical System
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110 Chapter 1 The Quantum Theory of the Submicroscopic World

(atoms with more than one electron) share many qualitative properties with those of 
hydrogen, it is useful to study the hydrogen atom fi rst in some detail. 

 The Schrödinger Equation for the Hydrogen Atom 

 By analogy with the one-dimensional Schrödinger equation given in Equation 1.24, 
the Schrödinger equation for the wavefunction c( x, y, z ) of a single electron interact-
ing in  three  dimensions with a nucleus of charge  1Ze  is 30 

  2
h2

2me
 c 0

2c

0x2 1
02c

0y2 1
02c

0z2 d 1 V(x, y, z)c 5 Ec  (1.36) 

 where  V(x, y, z)  was defi ned previously in Equation 1.7, 

 
V(r) 5 2

Ze2

4pe0r 

 and where r 5 2x2 1 y2 1 z2 is the distance between the electron and the nucleus. 
(The symbol 0 in Equation 1.36 denotes the  partial derivative  and is defi ned in 
Appendix 1.) 
  Because the potential energy depends only on the distance between the nucleus 
and the electron (that is, it has  spherical symmetry ), Equation 1.36 is most conve-
niently solved in  spherical polar coordinates.  The relation between Cartesian coordi-
nates ( x, y, z)  and spherical polar coordinates (r, u, f) is shown in  Figure 1.27 . In 
this coordinate system, the wavefunction is  separable ; that is, it can be written as a 
product of separate one-dimensional functions of  r,  u, and f: c(r, u, f) 5 
R(r)Q(u)F(f). The exact solution to Equation 1.36 in spherical polar coordinates 
gives rise to three quantum numbers that index the allowed quantum states. (Remem-
ber that the number of quantum numbers is generally equal to the dimensionality of 
the system. In the particle in a one-dimensional box, for instance, there was only one 
quantum number.) These quantum numbers and their allowed ranges are

c  The  principal quantum number :  n  5 1, 2, 3, . . . 

c  The  angular momentum quantum number :  l 5  0, 1, . . . ,  n  2 1 

c  The  magnetic quantum number :  m l 5 2 l , . . . , 21, 0, 1, . . . ,  l 

 For each value of  n,  there are  n  possible values of  l,  and for each value of  l,  there 
are 2 l  1 1 possible values of  m l . 

 30. Actually, because the nucleus is not of infi nite mass and is not stationary, the electron mass  m e  in 
 Equation 1.36  should be replaced with the  reduced mass  m 5 memNy(me 1 mN), where  m e  and  m N  are the 
electron and nuclear masses, respectively. However, because me ,, mN, the difference between the reduced 
mass and the electron mass is very small (see Problem 1.60). 

z

r

x � r sin� cos�
y � r sin� sin�
z � r cos�

x

y




�

 Figure 1.27  The relation 
between Cartesian coordinates 
and spherical polar coordinates. 
For the hydrogen atom, the 
nucleus is at the origin (r 5 0), 
and the electron is at the 
 surface of a sphere of 
radius r. 
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1111.4 The Hydrogen Atom Is an Exactly Solvable Quantum-Mechanical System

  Each set of these three quantum numbers ( n, l, m l ) represents a valid wavefunction 
for the electron in a hydrogen atom. The wavefunction for a single electron in an atom 
is called an  atomic   orbital . In quantum mechanics, the position of an electron is 
described not in terms of orbits, as defi ned in the Bohr-Sommerfeld model, but in terms 
of its orbital. 
  As a result of the spherical symmetry of the potential energy, the energy of the 
atomic orbitals for hydrogen and hydrogenlike ions depends only upon the value of 
the principal quantum number ( n ), and is given by 

  En 5 2
Z 2e4me

8h2e2
0

 
1

n2 n 5 1, 2, 3, . . . (1.37) 

 which is identical to Equation 1.13, derived using the Bohr model. Note, however, 
that although the Schrödinger equation for the hydrogen atom is somewhat more 
complicated than that of the particle in a one-dimensional box, the basic physical 
origin of the quantization is the same:  Quantization of energy arises when the par-
ticle is confi ned  (“localized”)  to a fi nite region of space . In the hydrogen atom, the 
localization of the electron is due to the attractive interaction between the negatively 
charged electron and the positively charged nucleus. 
  For n . 1, there are multiple orbitals for each value of  n , corresponding to dif-
ferent values of  l  and  m l .  Although these combinations of  l  and  m l  represent distinct 
quantum states of the electron, they have the same energy and are referred to as 
 degenerate   orbitals . ( Equation 1.37  shows that the energy depends only on the prin-
cipal quantum number  n .) Collectively, the set of degenerate orbitals at a particular 
energy is called an  energy shell . For example, the orbitals corresponding to ( n  5 2 , 
l 5  0 , m l  5 0) and ( n 5  2 , l 5  1 , m l  5 21) are degenerate and are both members 
of the second ( n  5 2 )  energy shell of the hydrogen atom. Within a given energy shell, 
a set of distinct orbitals that all possess the same value of  l  form a  subshel l.  The 
subshells are generally designated by the letters  s, p, d, . . . , as follows: 

  l   0     1    2    3    4    5 

 Name of Subshell  s   p d  f   g h 

 Thus, the set of orbitals with  n  5 2 and  l  5 1 is referred to as a 2 p  subshell and its 
three orbitals (corresponding to  m 1   5  21, 0, and 11, respectively) are called the 2 p  
orbitals. The unusual sequence of letters ( s ,  p , and  d ) has an historical origin that 
predates quantum mechanics. Physicists who studied atomic emission spectra tried to 
correlate the observed spectral lines with the particular quantum states involved in the 
transitions. They noted that some of the lines were  s harp; some were rather spread 
out, or  d iffuse; and some were very strong and hence were referred to as  p rincipal 
lines. Subsequently, the initial letters of each adjective were assigned to the quantum 
states. However, after the letter  d  and starting with the letter  f  (for  f undamental), the 
orbital designations follow alphabetical order. 

 Hydrogenlike Atomic Orbitals 

 The electron wavefunctions (or atomic orbitals) for the hydrogen atom (and hydrogen-
like ions, such as He 1 , Li 21 , and so on) are given by 

  cnlm(r, u, f) 5 Rnl(r) Ylml
(u, f)  (1.38) 
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112 Chapter 1 The Quantum Theory of the Submicroscopic World

 where  R nl (r)  is the radial ( r  dependent) part of the wavefunction and the angular func-
tions Ylml

 (u, f) are called  spherical harmonics. 31  These radial and angular functions 
for the fi rst three energy shells are shown in Tables 1.2 and 1.3, respectively. A  specifi c 

 31.  The spherical harmonics can be written as a product of a function of u and a function of 
f: Ylml

 (u,f) 5 Slml
 (u)Fm(f), so the wavefunction in Equation 1.38 is separable. 

 Table 1.3  Angular Part of Hydrogenlike Atomic Orbitals 

 l   m l   Suborbital Name   Ylml
 (u, f)* 

 0   0   s   a 1

4p
b

1
2

 

 1   0   p z   a 3

4p
b

1
2

 cos u 

  61   p x   a 3

4p
b

1
2

 sin u cos f 

  61   p y   a 3

4p
b

1
2

 sin u sin f 

 2   0   dz2    a 15

16p
b

1
2 33 cos 

2 u 2 1 4   
   61   dxz  a 15

16p
b

1
2

 sin u cos u cos f  

   61   dyz   a 15

16p
b

1
2

 sin u cos u sin f 

   62   dxy    a 15

16p
b

1
2

 sin 
2u sin 2f 

   62   dx22y2   a 15

16p
b

1
2

 sin 
2u cos 2f 

 *For ml . 0, the orbitals shown here are the real orbitals constructed by combining the complex orbitals corresponding 
to 1 ml and 2 m l . 

 Table 1.2  Radial Part of Hydrogenlike Atomic Orbitals †

  n  l   Orbital Name   Rnl(r
–
); r

–
 � Zr/a0 

  1   0   1 s   2 a Z

a0
b

3
2

e 
2r 

  2   0   2 s   
12

4
 a Z

a0
b

3
2

(2 2 r)e 
2r/2 

   1   2 p   
16

12
 a Z

a0
b

3
2

re 
2r/2 

  3   0   3 s   
213

243
 a Z

a0
b

3
2

(27 2 18r 1 2r2)e 
2r/3 

   1   3 p   
216

243
 a Z

a0
b

3
2

(6r 2 r2)e2r/3 

   2   3 d   
4130

2430
 a Z

a0
b

3
2

r 
2e 

2r/3 

†a0
 is the Bohr radius (see section 1.2).
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113

orbital ( n, l, m l )  is constructed by multiplying the radial factor  R nl  ( r ) in  Table 1.2  by 
the angular function Ylml

 (u, f) in  Table 1.3 . 
  The actual orbitals with ml $ 1 are complex, making visualization inconvenient. 
However, because they are equal in energy, the orbitals with  1m l  and 2 m l  within a 
given subshell can be combined to form two alternate orbitals that are entirely real. 
It is the real orbitals that are given in Table 1.3. For  n 5  2, for example, the two 
complex orbitals with  l  5 1 and ml 5 61, are 

  c2,1,1(r, u, f) 5 a 3

8p
b1y2

R21(r) cos (u)e1if 

  c2,1,21(r, u, f) 5 a 3

8p
b1y2

R21(r) cos (u)e2if 

 where i 5 121 and the complex exponentials are given by eif 5  cos (f) 1 i sin (f) 
and e2if 5  cos (f) 2 i sin (f). Adding and subtracting these two complex orbitals 
gives the real 2 p x  and 2 p y  orbitals: 

  c(2px) 5
1

12
 3c2,1,1 1 c2,1,21 4 5 a 1

12
b a 3

8p
b1y2

R21(r) cos (u) 3eif 1 e2if 4   
 5 a 3

4p
b1y2

R21(r) cos (u) cos (f)  

  c(2py) 5
1

12
 3c2,1,1 2 c2,1,21 4 5 a 1

12
b a 3

8p
b1y2

R21(r) cos (u) 3eif 2 e2if 4  
  5 a 3

4p
b1y2

R21(r) cos (u) sin (f)  

 (The factor 1/12 is included to ensure proper normalization.) The 2 p z  orbital cor-
responds directly to the orbital with ( n  5 2 , l  5 1 , m l  5 0), which is real. 
  Table 1.4  summarizes the relationship between quantum numbers and hydrogen-
like atomic orbitals. When  l  5 0, (2 l 1  1) 5 1 and there is only one value of  m l , 
so we have an  s  orbital. When  l  5 1, (2 l 1  1) 5 3, so there are three values of  m l , 
giving rise to three  p  orbitals, labeled  p x ,  p y , and  p z . When  l  5 2, (2 l  1 1) 5 5, so 
there are fi ve values of  m l , and the corresponding fi ve  d  orbitals are labeled with 
more elaborate subscripts. In the following sections we discuss the  s ,  p , and  d  orbit-
als separately. 

1.4 The Hydrogen Atom Is an Exactly Solvable Quantum-Mechanical System

 Table 1.4  Relationship between Quantum Numbers and Atomic Orbitals 

           Number of   Atomic Orbital 

 n   l   m l   Orbitals   Designations 

 1   0   0   1   1 s 

 2   0   0   1   2 s 

  1   21, 0, 1   3   2 p x ,  2 p y ,  2 p z 

 3   0   0   1   3 s 

  1   21, 0, 1   3   3 p x ,  3 p y ,  3 p z 

  2   22, 21, 0, 1, 2   5   3 d xy ,  3 d yz ,  3 d xz ,

    3dx22y2, 3dz2 

(1.39)

(1.40)
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114 Chapter 1 The Quantum Theory of the Submicroscopic World

 s  Orbitals 
 What are the shapes of the orbitals? Strictly speaking, an orbital does not have a 
well-defi ned shape because the wavefunction characterizing the orbital extends from 
the nucleus to infi nity. In that sense, it is diffi cult to say what an orbital looks like. 
On the other hand, it is convenient to think of orbitals as having specifi c shapes, 
particularly when discussing the formation of chemical bonds between atoms, as we 
will do in Chapters 3 and 4. 
  According to Table 1.3, an  s  orbital, defi ned as any atomic orbital with  l  5 0, 
has no dependence on u or f. It depends only on  r.  Such a function is said to be 
 spherically symmetric  and is defi ned by the radial function  R n 0 ( r ). To get a sense of 
where the electrons are likely to be in these orbitals, we plot the probability of fi nd-
ing the electron in a spherical shell of thickness  dr  at a distance of  r  from the nucleus 
(see Figure 1.27). This probability, denoted by  P ( r ), is given by the expression 

  P(r) 5 r2 3R(r) 42  (1.41) 

 which is called the  radial probability function . (The factor  r 2  in  Equation 1.41  comes 
from the fact that the surface area of the sphere 32  of radius  r  increases as  r 2 .)  Figure 
1.28  illustrates the radial probability function for the 1 s  orbital. 
  The wavefunctions and radial distribution functions for the 1 s,  2 s , and 3 s  hydro-
genlike atomic orbitals are shown in  Figure 1.29  as functions of  r.  Note that the 
wavefunctions for the 1 s , 2 s , and 3 s  orbitals have 0, 1, and 2  nodes  (points where the 
wavefunction is zero), respectively. For a general  s  orbital with principal quantum 
number  n , the number of nodes is  n  2 1. This increase in the number of nodes as 
the energy of the particle increases was also seen in the particle in a one-dimensional 
box and is a general feature of quantum systems. 
  Also shown in Figure 1.29(c) for the 1 s,  2 s , and 3 s  orbitals are the corresponding 
 boundary surface diagrams , defi ned as a surface containing 90 percent of the total 
electron density (defi ned as  c 2 ) in the orbital. The boundary surface diagram serves 
as a useful representation of the shape of the orbital. All  s  orbitals are spherical but 
differ in size, which increases as the principal quantum number increases. 

 p  Orbitals 
 The  p  orbitals come into existence starting with the principal quantum number  n 5  2. 
If  n  5 1, then the angular momentum quantum number can only assume the value of 
zero; therefore, there are no 1 p  orbitals, just a 1 s  orbital. As we saw earlier, the mag-
netic quantum number  m l  can have values of 21, 0, and 1 when  l  5 1. Starting with 

A representation of the electron 
density distribution surrounding 
the nucleus in the hydrogen 
atom. It shows a high probability 
of fi nding the electron closer to 
the nucleus.

 32.  The surface area of a sphere of radius  r  is 4pr2. 
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 Figure 1.28  (a) A useful mea-
sure of the electron density in a 
1s orbital is obtained by fi rst 
dividing the orbital into succes-
sive thin spherical shells of 
thickness dr. (b) A plot of the 
probability of fi nding a 1s elec-
tron in each shell, called the 
radial probability function, as a 
function of distance from the 
nucleus shows a maximum at 
52.9 pm from the nucleus. 
Interestingly, this is equal to the 
Bohr radius. 
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 n  5 2 and  l 5  1, the three values of  m l  correspond to the three 2 p  orbitals: 2 p x , 2 p y , 
and 2 p z .  The shapes of orbitals are determined by the angular parts of the wavefunction 
given in Table 1.3 and Equations 1.39 and 1.40. For  p  orbitals, the angular part depends 
on u and f, so the  p  orbitals are not spherically symmetric. The letter subscripts  x, y,  
and  z  in the orbital name indicate the axes along which the orbitals are oriented. The 
“dumbbell” shape of the three  p  orbitals is represented in  Figure 1.30 , where the “1” 
and “2” signs on the orbital lobes indicate the sign of the wavefunction. 
  For the wavefunction to change sign, it must go through zero. Each  p  orbital has 
a  nodal plane , defi ned as a  plane in which the wavefunction is zero , in the plane 
perpendicular to the orientation axis. For example, the  y-z  plane (where  x  5 0 )  is 
the nodal plane for the  p x  orbital. The three  p  orbitals are identical in size, shape, 
and energy; they differ from one another only in orientation. The radial parts of the 

1.4 The Hydrogen Atom Is an Exactly Solvable Quantum-Mechanical System
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 Figure 1.29  (a) The wavefunc-
tions for the 1s, 2s, and 3s orbit-
als plotted as functions of r in 
units of the Bohr radius, a 0  5 
52.9 pm (see Example 1.4). 
(b) The radial probability func-
tions for the same orbitals. 
(c) The 90% boundary surfaces 
for the orbitals in (a). The radii 
of the boundary surfaces are 
2.65 a 0 , 9.20 a 0 , and 19.5 a 0 , 
for  the 1s, 2s and 3s orbitals, 
respectively. Roughly speaking 
the size of an orbital is propor-
tional to n 2 , where n is the 
principal quantum number. 
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 Figure 1.30  The shapes of the 
three p orbitals showing the 
sign of the wavefunction and 
the nodal planes. 
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116 Chapter 1 The Quantum Theory of the Submicroscopic World

wavefunctions for the 2 p  and 3 p  orbitals are shown in  Figure 1.31 , together with the 
corresponding radial probability functions. 33  Like  s  orbitals,  p  orbitals increase in 
size with increasing principal quantum number  n. 

 d  Orbitals and Beyond 
 When  l 5  2, there are fi ve values of  m l  (22, 21, 0, 1, and 2), which correspond to 
fi ve  d  orbitals. The lowest value of  n  for a  d  orbital is 3. When  n  5 3 and  l 5  2, we 
have fi ve 3 d  orbitals, which in their real representations are denoted 3 d xy ,  3 d xz,   3 d yz , 
3dx22y2, and 3dz2  (the subscripts contain information about their shape and orientation). 
Representations of the various 3 d  orbitals indicating the shape, sign, and nodal planes 
are shown in  Figure 1.32 . Each  d  orbital has two nodal planes. All the 3 d  orbitals in 
a hydrogen atom are identical in energy. The  d  orbitals corresponding to  n  greater 
than 3 (4 d , 5 d , . . .) have similar shapes but are more extended in space (that is, they 
are larger). 
  Orbitals with  l  greater than 2 are labeled  f ,  g , and so on. The  f  orbitals ( l  5 3) 
are important in accounting for the behavior of elements with atomic numbers greater 
than 57, but their shapes are diffi cult to represent. In general chemistry we are not 
concerned with orbitals having  l  values greater than 3 (the  g  orbitals and beyond). 
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 Figure 1.31  (a) The radial part of the wavefunction for the 2p and 3p hydrogen atomic orbitals. (b) The radial probability 
function for the orbitals shown in (a). 

 33.  From Figure 1.31 you can see that the radial part of the 3 p  orbital has one node, whereas that for 2 p  
has no nodes. Nodes in the radial part of the wavefunction are called  radial nodes.  For the hydrogen atom, 
the number of radial nodes is equal to ( n  2  l  2 1). The nodal planes, for which a  p  orbital has one and an 
 s  orbital has none, are called  angular nodes . The number of angular nodes is equal to  l . The total number 
of nodes in a hydrogen atom orbital (angular 1 radial) is then given by ( n  2  l  2 1) 1  l  5  n  2 1. 

 Example 1.9 

 List the values of  n ,  l , and  ml    for orbitals in the 4 d  subshell. 

 Strategy   Use the relationships between  n ,  l , and  m l  to solve this problem. What, for 
example, do the “4” and “ d  ” represent in 4 d ? 

—Continued
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 Figure 1.32  The shapes of the 
fi ve d orbitals showing the sign 
of the wavefunction and the 
nodal surfaces. 

Continued—

 Solution  The number given in the designation of the subshell is the principal 
quantum number, so in this case  n  5 4. The letter designates the type of orbital. 
 Because we are dealing with  d  orbitals,  l  5 2. The values of  m l  can vary from 2 l  to 
1 l  (that is, from 22 to 2). Therefore,  m l  can be 22, 21, 0, 1, or 2. 

 Check   The values of  n  and  l  are fi xed for 4 d , but  m l  can have any one of the fi ve 
values that correspond to the fi ve  d  orbitals. 

 Practice Exercise   Give the values of the quantum numbers associated with the 
orbitals in the 5 f  subshell. 

 Electron Spin and the Electron Spin Quantum Number  ( m s ) 

 Experiments on the emission spectra of hydrogen and sodium atoms indicated that 
lines in the emission spectra could be split by the application of an external magnetic 
fi eld. In 1925 Samuel Goudsmit 34  and George Uhlenbeck 35  postulated that these 
magnetic properties could be explained if electrons possessed an intrinsic angular 
momentum—as if they were spinning on their own axes, as Earth does. According 
to electromagnetic theory, a spinning charge generates a magnetic fi eld, and it is this 
motion that causes an electron to behave like a magnet. These electron magnets are 

 34.  Samuel Abraham Goudsmit (1902–1978). Dutch-American physicist. While a student of Paul Ehrenfest 
at the University of Leiden in 1925, he and fellow student George Uhlenbeck postulated the existence of 
intrinsic electron spin. Goudsmit was the scientifi c leader of Operation Alsos at the end of World War II, 
whose mission was to determine the progress of German efforts toward an atomic bomb. 

 35.  George Eugène Uhlenbeck (1900–1988). Dutch-American physicist. Born in Indonesia (then a Dutch 
colony), Uhlenbeck studied at the University of Leiden with Paul Ehrenfest, where he, with fellow 
student Samuel Goudsmit, postulated the existence of intrinsic electron spin. In addition to his work on 
quantum mechanics, Uhlenbeck made fundamental advances in statistical mechanics and the theory of 
random processes. 

1.4 The Hydrogen Atom Is an Exactly Solvable Quantum-Mechanical System
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118 Chapter 1 The Quantum Theory of the Submicroscopic World

highly quantum mechanical and are quantized so that only two possible spinning 
motions of an electron are possible, clockwise and counterclockwise ( Figure 1.33 ). 
To take this  electron spin  into account, it is necessary to introduce a fourth quantum 
number, the  electron spin   quantum number ( m s ), which has a value of 11

2 or 21
2. It 

is customary to refer to a value ms 5 11
2 as “spin up” and to a value ms 5 21

2 as 
“spin down.” 
  One major piece of evidence that led Goudsmit and Uhlenbeck to postulate the 
existence of electron spin came from an experiment performed by Otto Stern 36  and 
Walther Gerlach 37  in 1922.  Figure 1.34  shows their basic experimental arrangement. 
In such an experiment, a beam of gaseous hydrogen atoms generated in a hot furnace 
passes through a nonhomogeneous magnetic fi eld. The interaction between this elec-
tron in each atom and the magnetic fi eld causes the atom to be defl ected from its 
straight-line path. Because the spin of each electron can be either “up” or “down,” 
with equal probability, one half of the atoms are defl ected in one way; and the other 
half of the atoms are defl ected in the other direction. Thus, two spots of equal inten-
sity are observed on the detecting screen. 
  It must be noted that the picture of the electron as a tiny spinning magnet, although 
useful and convenient as a visualization tool, should not be taken literally. On a fun-
damental level, the electron “spin” can only be understood by going beyond the 
Schrödinger equation to include the effects of Einstein’s theory of special relativity. 
  To summarize, the quantum state of an electron in hydrogen (or a hydrogenlike 
ion) is  completely  specifi ed by the four quantum numbers  n, l, m l , and  m s .  The energy 
of this electron is determined only by the value of the  principal quantum number n  
(according to Equation 1.37). The  angular momentum quantum number l  determines 
the basic shape of the orbital, and the  magnetic quantum number m l  determines its 
orientation in space. The  electron spin quantum number  m s  determines the intrinsic 
“spin” of the electron. We will see in Chapter 2 that although an exact solution to the 
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 Figure 1.33  The (a) clockwise 
and (b) counterclockwise spins 
of an electron. The magnetic 
fi elds generated by these two 
spinning motions are analogous 
to those from the two magnets. 
The upward and downward 
arrows are used to denote the 
direction of “spin.” 

 36.  Otto Stern (1888–1969). German physicist. He made important contributions to the study of the 
magnetic properties of atoms and to the kinetic theory of gases. Stern was awarded the Nobel Prize in 
Physics in 1943. 

 37.  Walther Gerlach (1889–1979). German physicist. Gerlach’s main area of research was in quantum theory. 
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 Figure 1.34  Experimental arrangement for demonstrating the existence of electron spin. A 
beam of atoms is directed through a magnetic fi eld. When a hydrogen atom with a single 
electron passes through the fi eld, it is defl ected in one direction or the other, depending on 
the direction of the spin of its electron. In a stream consisting of many atoms, there will be 
equal distribution of the two kinds of spins, so that two spots of equal intensity are detected 
on the screen. 
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 Summary of Facts and Concepts 

 Section 1.1 

 c  At the end of the nineteenth century, scientists began to 
realize that the laws of classical physics were incompat-
ible with a number of new experiments that probed the 
nature of atoms and molecules and their interaction 
with light. Through the work of a number of scientists 
over the fi rst three decades of the twentieth century, a 
new theory—quantum mechanics—was developed that 
was able to explain the behavior of objects on the atomic 
and molecular scale. 

 c  The quantum theory developed by Planck successfully 
explains the emission of radiation by heated solids. The 
quantum theory states that radiant energy is emitted by 
atoms and molecules in small discrete amounts (quanta), 
rather than over a continuous range. This behavior is 
governed by the relationship E 5 hn, where  E  is the 
energy of the radiation,  h  is Planck’s constant, and n is 
the frequency of the radiation. Energy is always emitted 
in whole-number multiples of hn (1 hn, 2 hn, 3 hn, . . .). 

 c  Using quantum theory, Einstein solved another mystery 
of physics—the photoelectric effect. Einstein proposed 
that light can behave like a stream of particles (photons). 

 Section 1.2 

 c  The line spectrum of hydrogen, yet another mystery to 
nineteenth-century physicists, was also explained by 
applying an early version of quantum theory. Bohr de-
veloped a model of the hydrogen atom in which the 
energy of its single electron is quantized, limited to cer-
tain energy values determined by an integer called the 
quantum number. 

 c  The lowest energy state of an electron is its ground 
state, and states with energies higher than the ground-
state energy are excited states. In the Bohr model, an 
electron emits a photon when it drops from a higher-
energy state to a lower-energy state. The release of spe-
cifi c amounts of energy in the form of photons accounts 
for the lines in the hydrogen emission spectrum. 

 c  In spite of its success with the hydrogen atom, the Bohr 
model was defi cient because it was unable to account for 
the emission spectra of heavier atoms, such as helium. 

 Section 1.3 

 c  De Broglie extended Einstein’s wave-particle descrip-
tion of light to all matter in motion. The wavelength of 

a  moving particle of mass  m  and velocity  u  is given by 
the de Broglie equation l 5 h/mu (Equation 1.20). 

 c  The realization that matter at the atomic and subatomic 
scale possesses wavelike properties lead to the develop-
ment of the Heisenberg uncertainty principle, which 
states that it is impossible to know simultaneously both 
the position ( x ) and the momentum ( p ) of a particle with 
certainty (see Equation 1.22). 

 c  The Schrödinger equation (Equation 1.24) describes the 
motions and energies of submicroscopic particles. This 
equation, in which the state of a quantum particle is 
described by its wavefunction, launched modern quan-
tum mechanics and a new era in physics. The wavefunc-
tion contains information about the probability of 
fi nding a particle in a given region of space. 

 c  The Schrödinger equation can be exactly solved for a 
“particle in a one-dimentional box,” an idealized model, 
which, despite its simplicity, can be applied to under-
stand the behavior of a number of real systems of chem-
ical and biological interest. 

 c  Because of the wave nature of matter, a quantum particle 
can sometimes overcome energy barriers that the particle, 
if behaving classically, would have insuffi cient energy to 
cross. This phenomenon, called quantum tunneling, is 
the basis for a number of scientifi c applications, such as 
the scanning tunneling microscope (STM). 

 Section 1.4 

 c  The Schrödinger equation tells us the possible energy 
states of the electron in a hydrogen atom and the prob-
ability of its location in a particular region surrounding 
the nucleus. 

 c  The quantum state of an electron in a hydrogen atom is 
given by its wavefunction (or atomic orbital) [c(r, u, f)] 
and the distribution of electron density in space is given 
by c2(r, u, f). The sizes and shapes of atomic orbitals 
can be represented by electron density diagrams or 
boundary surface diagrams. 

 c  Four quantum numbers characterize the electron wave-
function (atomic orbital) in a hydrogen atom: The prin-
cipal quantum number  n  identifi es the main energy 
level, or shell, of the orbital; the angular momentum 
quantum number  l  indicates the shape of the orbital; the 
magnetic quantum number  m l   specifi es the orientation 
of the orbital in space; and the electron spin quantum 

Schrödinger equation for many-electron atoms is not possible, the four hydrogen 
quantum numbers, and the basic orbital shapes they represent, retain their usefulness 
in describing the quantum state of the electrons in those atoms . Most importantly, the 
mathematical properties of these four quantum numbers form the basis for the buildup 
of the elements in the periodic table. 

Summary of Facts and Concepts
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120 Chapter 1 The Quantum Theory of the Submicroscopic World

 Problems 

 Classical Physics Does Not Adequately 
Describe the Interaction of 
Light with Matter 

  1.1  (a) What is the wavelength (in nanometers) of light 
having a frequency of 8.6 3 10 13  Hz? (b) What is 
the frequency (in Hz) of light having a wavelength 
of 566 nm? 

  1.2  (a) What is the frequency of light having a wavelength 
of 456 nm? (b) What is the wavelength (in nanometers) 
of radiation having a frequency of 2.45 3 10 9  Hz? 
(This is the type of radiation used in microwave 
ovens.) 

  1.3  The SI unit of time is the second, which is defi ned as 
9,192,631,770 cycles of radiation associated with a 
certain emission process in the cesium atom. Calculate 
the wavelength of this radiation (to three signifi cant 
fi gures). In which region of the electromagnetic 
spectrum is this wavelength found? 

  1.4  The SI unit of length is the meter, which is defi ned 
as the length equal to 1,650,763.73 wavelengths of 
the light emitted by a particular energy transition in 
krypton atoms. Calculate the frequency of the light 
to three signifi cant fi gures. 

  1.5  A photon has a wavelength of 624 nm. Calculate the 
energy of the photon in joules. 

  1.6  The blue of the sky results from the scattering of 
sunlight by air molecules. The blue light has a 
frequency of about 7.5 3 10 14  Hz. (a) Calculate the 

wavelength, in nm, associated with this radiation, 
and (b) calculate the energy, in joules, of a single 
photon associated with this frequency. 

  1.7  A photon has a frequency of 6.0 3 10 4  Hz. (a) 
Convert this frequency into wavelength (nm). Into 
what region of the electromagnetic spectrum does 
this frequency fall? (b) Calculate the energy (in 
joules) of this photon . (c)  Calculate the energy (in 
joules) of 1 mol of photons all with this frequency. 

  1.8  What is the wavelength, in nm, of radiation that has 
an energy content of 1.0 3 10 3  kJ mol 21 ? In which 
region of the electromagnetic spectrum is this 
radiation found? 

  1.9  When copper is bombarded with high-energy 
electrons, X-rays are emitted. Calculate the energy 
(in joules) associated with the photons if the 
wavelength of the X-rays is 0.154 nm. 

  1.10  A particular form of electromagnetic radiation has a 
frequency of 8.11 3 10 14  Hz. (a) What is its 
wavelength in nanometers? In meters? (b) To what 
region of the electromagnetic spectrum would you 
assign it? (c) What is the energy (in joules) of one 
quantum of this radiation? 

  1.11  The retina of the human eye can detect light when 
the radiant energy incident on it exceeds a minimum 
value of 4.0 3 10 −17  J. How many photons does this 
energy correspond to if the light has a wavelength 
of 600 nm? 
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number  m s  indicates the direction of the electron’s spin 
on its own axis. 

 c  The single  s  orbital for each energy level is spherical 
and centered on the nucleus. There are three  p  orbitals 
present at  n  5 2 and higher; each has two lobes, and the 

pairs of lobes are arranged at right angles to one an-
other. Starting with  n  5 3, there are fi ve  d  orbitals, with 
more complex shapes and orientations. 

 c  The energy of the electron in a hydrogen atom is deter-
mined solely by its principal quantum number. 
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  1.12  A microwave oven operating at a wavelength of 
1.22 3 10 8  nm is used to heat 150 mL of water 
(roughly the volume of a tea cup) from 20°C 
to 100°C. Given that it takes 4.186 J of energy to heat 
1 mL of water by 1°C, calculate the number of 
photons needed if 92.0 percent of the microwave 
energy is converted into the thermal energy of water. 

  1.13  Careful spectral analysis shows that the familiar 
yellow light of sodium vapor lamps (used in some 
streetlights) is made up of photons of two 
wavelengths, 589.0 nm and 589.6 nm. What is the 
difference in energy (in joules) between photons 
with these wavelengths? 

  1.14  Explain how scientists are able to measure the 
temperature of the surface of stars. ( Hint:  Treat 
stellar radiation like radiation from a blackbody.) 

  1.15  Using Wien’s law, calculate the temperatures for 
which the values of lmax for blackbody radiation are 
100 nm, 300 nm, 500 nm, and 800 nm. To what 
region of the electromagnetic spectrum does each 
of these wavelengths correspond? Using your 
results, speculate as to how night vision goggles 
might work. 

  1.16  A photoelectric experiment was performed by 
separately shining a laser at 450 nm (blue light) 
and a laser at 560 nm (yellow light) on a clean 
metal surface and measuring the number and 
kinetic energy of the ejected electrons. Which light 
would generate more electrons? Which light would 
eject electrons with the greatest kinetic energy? 
Assume that the same number of photons is 
delivered to the metal surface by each laser and that 
the frequencies of the laser lights exceed the 
threshold frequency. 

  1.17  In a photoelectric experiment, a student uses a light 
source whose frequency is greater than that needed 
to eject electrons from a certain metal. However, 
after continuously shining the light on the same 
area of the metal for a long period, the student 
notices that the maximum kinetic energy of ejected 
electrons begins to decrease, even though the 
frequency of the light is held constant. How would 
you account for this behavior? 

  1.18  The maximum wavelength of light that can be used 
to eject electrons from a clean sodium metal surface 
is 520 nm. (a) Calculate the photoelectric work 
function (in joules) for sodium. (b) If 450-nm light 
is used, what is the kinetic energy of the ejected 
electrons? 

  1.19  The threshold frequency for dislodging an electron 
from a clean zinc metal surface is 8.54 3 10 14  Hz. 
Calculate the minimum amount of energy (in joules) 
required to remove an electron from the zinc surface 
(that is, calculate the work function for zinc). 

 The Bohr Model Was an Early Attempt to 
Formulate a Quantum Theory of Matter

  1.20  Some copper compounds emit green light when 
they are heated in a fl ame. How would you determine 
whether the light is of one wavelength or a mixture 
of two or more wavelengths? 

  1.21  How is it possible for a fl uorescent material to emit 
radiation in the ultraviolet region after absorbing 
visible light. Explain your answer. 

  1.22  Explain how astronomers are able to tell which 
elements are present in distant stars by analyzing 
the electromagnetic radiation emitted by the stars. 

  1.23  Consider the following energy levels of a 
hypothetical atom:

   E 4 : 21.0 3 10 219  J 

   E 3 : 25.0 3 10 219  J 

   E 2 : 210 3 10 219  J 

   E 1 : 215 3 10 219  J  

  (a) What is the wavelength of the photon needed to 
excite an electron from  E 1  to  E 4 ?  (b) What is the 
energy (in joules) a photon must have to excite an 
electron from  E 2  to  E 3 ?  (c) When an electron drops 
from the  E 3  level to the  E 1  level, the atom is said to 
undergo emission. Calculate the wavelength of the 
photon emitted in this process. 

  1.24  The fi rst line of the Balmer series occurs at a 
wavelength of 656.3 nm. What is the energy 
difference between the two energy levels involved 
in the emission that results in this spectral line? 

  1.25  Calculate the wavelength (in nm) of a photon that 
must be absorbed by the electron in a hydrogen 
atom to excite it from the  n  5 3 to the  n 5  5 energy 
level. 

  1.26  Calculate the frequency (in Hz) and wavelength (in 
nm) of the emitted photon when an electron drops 
from the  n  5 4 to the  n  5 2 energy level in a 
hydrogen atom. 

  1.27  The He 1  ion contains only one electron and is 
therefore a hydrogenlike ion that can be described 
by the Bohr model. Calculate the wavelengths, in 
increasing order, of the fi rst four transitions in the 
Balmer series of the He 1  ion. Compare these 
wavelengths with the same transitions in a hydrogen 
atom. Comment on the differences. 

  1.28  Calculate the radii for the Bohr orbits of a hydrogen 
atom with  n 5  2 and  n 5  3. 

  1.29  Scientists have found interstellar hydrogen with 
quantum number  n  in the hundreds. Calculate the 
wavelength of light emitted when a hydrogen atom 
undergoes a transition from  n 5  236 to  n  5 235. In 
what region of the electromagnetic spectrum does 
this wavelength fall? 

Problems
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122 Chapter 1 The Quantum Theory of the Submicroscopic World

  1.30  Calculate the frequency of light necessary to eject an 
electron from the ground state of a hydrogen atom. 

 Matter Has Wavelike Properties 

  1.31  What are the wavelengths associated with (a) an 
electron moving at 1.50 3 10 8  cm s 21  and (b) a 
60.0-g tennis ball moving at 1500 cm s 21 ? 

  1.32  Thermal neutrons are neutrons that move at speeds 
comparable to those of air molecules at room 
temperature. These neutrons are most effective in 
initiating a nuclear chain reaction among  235 U 
isotopes. Calculate the wavelength (in nm) associated 
with a beam of neutrons moving at 7.00 3 10 2  m s 21 . 
(The mass of a neutron is 1.675 3 10 227  kg.) 

  1.33  Protons can be accelerated to speeds near that of light 
in particle accelerators. Estimate the wavelength (in 
nm) of such a proton moving at 2.90 3 10 8  m s 21 . 
(The mass of a proton is 1.673 3 10 227  kg.) 

  1.34  What is the de Broglie wavelength, in cm, of a 
12.4-g hummingbird fl ying at 1.20 3 10 2  mph? 
(1 mile 5 1.61 km.) 

  1.35  What is the de Broglie wavelength (in nm) associated 
with a 2.5-g Ping-Pong ball traveling 35 mph? 

  1.36  Suppose that the uncertainty in determining the 
position of an electron circling an atom in an orbit 
is 0.4 Å. What is the uncertainty in the velocity? 

  1.37  Sketch the probability densities for the fi rst three 
energy levels of the particle in a one-dimensional box. 
Without doing any calculations, determine the average 
value of the position of the particle  (x ) corresponding 
to each distribution. 

  1.38  Calculate the frequency of light required to 
promote a particle from the  n 5  2 to the  n  5 3 
levels of the particle in a one-dimensional box, 
assuming that  L  5 5.00 Å and that the mass is 
equal to that of an electron. 

  1.39  Suppose we used the particle in a one-dimensional 
box as a crude model for the electron in a hydrogen 
atom. What value of  L  would you have to use so that 
the energy of the  n 5 1 to  n  5 2 transitions in both 
models would be the same? Is this a reasonable 
value for the size of a hydrogen atom? 

  1.40  Consider an electron in a one-dimensional box 
subject to an electric fi eld  E . The potential energy of 
this system is now 

predict about the average value of the position of 
the particle  x? 

 The Hydrogen Atom Is an Exactly Solvable 
Quantum-Mechanical System 

  1.41  Give the values of the quantum numbers associated 
with the following orbitals: (a) 3 s , (b) 4 p , and (c) 3 d . 

  1.42  Give the values of the quantum numbers associated 
with the following orbitals: (a) 2 p , (b) 6 s , and (c) 5 d . 

  1.43  List all the possible subshells and orbitals associated 
with the principal quantum number  n  5 5. 

  1.44  List all the possible subshells and orbitals associated 
with the principal quantum number  n  5 6. 

  1.45  Calculate the total number of electrons that can 
occupy (a) one  s  orbital, (b) three  p  orbitals, (c) fi ve 
 d  orbitals, (d) seven  f  orbitals. 

  1.46  Discuss the similarities and differences between a 
1 s  and a 2 s  hydrogenlike orbital. 

  1.47  What are the similarities and differences between a 
2 p x  and a 3 p y  hydrogenlike orbital? 

  1.48  The ionization energy is the energy required to 
completely remove an electron from the ground 
state of an atom or ion. Calculate the ionization 
energies (in kJ mol 21 ) of the He 1  and Li 21  ions. 

  1.49  An electron in the hydrogen atom makes a transition 
from an energy state of principal quantum number 
 n 1  to the  n  5 2 state. If the photon emitted has a 
wavelength of 434 nm, what is the value of  n 1 ? 

  1.50  An electron in a hydrogen atom is excited from the 
ground state to the  n  5 4 state. Which of the 
following statements are true and which are false?
 (a) The  n  5 4 state is the first excited state.  
(b) It takes more energy to ionize (remove) the 

electron from  n 5  4 than from the ground state.  
(c) The electron is farther from the nucleus 

(on average) in  n  5 4 than in the ground state.
 (d) The wavelength of light emitted when the 

electron drops from  n  5 4 to  n  5 1 is longer 
than that from  n  5 4 to  n  5 2.  

(e) The wavelength of light the atom absorbs in 
going from  n  5 1 to  n 5  4 is the same as that 
emitted as it goes from  n  5 4 to  n 5  1. 

 Additional Problems 

  1.51  The radioactive Co-60 isotope is used in nuclear 
medicine to treat certain types of cancer. Calculate the 
wavelength and frequency of emitted gamma radiation 
photons having energy equal to 1.29 3 10 11  J mol 21 . 

  1.52  When a compound containing cesium ion is heated 
in a Bunsen burner fl ame, photons of energy of 
4.30 3 10 219  J are emitted. What color is a cesium 
fl ame? 
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   Using what you know about the Schrödinger 
equation, sketch the wavefunctions for the fi rst 
three energy levels of this system. What can you 
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  1.53  A ruby laser produces radiation of wavelength 
633 nm in pulses whose duration is 1.00 3 10 29  s. 
(a) If the laser produces 0.376 J of energy per pulse, 
how many photons are produced in each pulse? (b) 
Calculate the power (in watts) delivered by the laser 
per pulse. (1 W 5 1 J s 21 .) 

  1.54  A 368-g sample of water absorbs infrared radiation 
at 1.06 3 10 4  nm from a carbon dioxide laser. 
Suppose all the absorbed radiation is converted to 
energy in the form of heat. Calculate the number of 
photons at this wavelength required to raise the 
temperature of the water by 5.00°C. (It takes 4.184 J 
of heat energy to raise the temperature of 1.00 g of 
water by 1.00°C.) 

  1.55  Photodissociation of water 

 H2O(l) 1 hn ¡ H2(g) 1 
1

2
 O2(g) 

   has been suggested as a source of hydrogen. The 
energy for the reaction is 285.8 kJ per mole of water 
decomposed. Calculate the maximum wavelength 
(in nm) that would provide the necessary energy. In 
principle, is it feasible to use sunlight as a source of 
energy for this process? 

  1.56  Spectral lines of the Lyman and Balmer series do 
not overlap. Verify this statement by calculating the 
longest wavelength associated with the Lyman 
series and the shortest wavelength associated with 
the Balmer series (in nm). 

  1.57  Only a fraction of the electrical energy supplied to 
a tungsten lightbulb is converted to visible light. 
The rest of the energy shows up as infrared radiation 
(that is, heat). A 75-W light bulb converts 15.0 
percent of the energy supplied to it into visible light 
(assume the wavelength to be 550 nm). How many 
photons are emitted by the light bulb per second? 
(1 W 5 1 J s 21 .) 

  1.58  Certain sunglasses have small crystals of silver 
chloride (AgCl) incorporated in the lenses. When 
the lenses are exposed to light of the appropriate 
wavelength, the following reaction occurs: 

 AgCl ¡ Ag 1 Cl 

   The Ag atoms formed produce a uniform gray color 
that reduces the glare. If the energy required for the 
preceding reaction is 248 kJ mol 21 , calculate the 
maximum wavelength of light that can induce this 
process. 

  1.59  A student carried out a photoelectric experiment by 
shining visible light on a clean piece of cesium 
metal. She determined the kinetic energy of the 
ejected electrons by applying a retarding voltage 
such that the current due to the electrons read 
exactly zero. The condition was reached when  eV 5  
(1y2) m e  u 2 , where  e  is the electron charge,  V  is the 

retarding voltage, and  u  is the velocity of the 
electron. Her results were as follows: 

 l (nm)   405.0   435.5   480.0   520.0   577.7   650.0 

 V  (volt)   1.475   1.268   1.027   0.886   0.667   0.381 

   Rearrange Equation 1.4 to read 

 n 5 
F

h  
1 

e

h  
V 

   then determine the values of  h  and F graphically. 
  1.60  Equations 1.13 and 1.16 were derived assuming that 

the electron orbits a stationary nucleus; however, 
this would only be true if the nucleus were of infi nite 
mass. Although the nucleus is much more massive 
than the electron, it is not infi nitely so, and both the 
nucleus and the electron orbit a common point 
centered very close to the nuclear position. To 
correct for this you must replace the mass of the 
electron in Equations 1.13 and 1.16 with the quantity

  m 5 
memN

me 1 mN

, called the  reduced mass, where mN is

  the mass of the nucleus.  Calculate the percent 
change in the Rydberg constants ( R H ) for H and 
He1 using this correction. 

  1.61  From the exact solution to the Schrödinger equation, 
the square of the orbital angular momentum of the 
electron in a hydrogen atom is equal to l(l 1 1)h2. 
(a) What is the orbital angular momentum for an 
electron in an  s  orbital? (b) How does this value 
compare to the Bohr model prediction? 

  1.62  The sun is surrounded by a white circle of gaseous 
material called the corona, which becomes visible 
during a total eclipse of the sun. The temperature of 
the corona is in the millions of degrees Celsius, which 
is high enough to break up molecules and remove 
some or all of the electrons from atoms. One method 
by which astronomers can estimate the temperature of 
the corona is by studying the emission lines of ions of 
certain elements. For example, the emission spectrum 
of Fe 141  ions has been recorded and analyzed. 
Knowing that it takes 3.5 3 10 4  kJ mol 21  to convert 
Fe 131  to Fe 141 , estimate the temperature of the sun’s 
corona. ( Hint:  The average kinetic energy of 1 mol of 
a gas is 3y2 RT, where the gas constant R 5 8.314 J 
mol21 K21  and T is the absolute temperature in kelvin.

  1.63  An electron in an excited state in a hydrogen atom can 
return to the ground state in two different ways: 
(a) via a direct transition in which a photon of wave-
length l1 is emitted and (b) via an intermediate excited 
state reached by the emission of a photon of wavelength 
l2. This intermediate excited state then decays to the 
ground state by emitting another photon of wavelength 
l 3 . Derive an equation that relates  l 1 ,  l 2 , and  l 3 . 

  1.64  Alveoli are the tiny sacs of air in the lungs whose 
average diameter is 5.0 3 10 25  m. Consider an 

Problems
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124 Chapter 1 The Quantum Theory of the Submicroscopic World

oxygen molecule (mass 5 5.3 3 10 226  kg) trapped 
within a sac. Calculate the uncertainty in the velocity 
of the oxygen molecule. ( Hint:  The maximum 
uncertainty in the position of the molecule is given 
by the diameter of the sac.) 

  1.65  How many photons at 660 nm must be absorbed to 
melt 5.0 3 10 2  g of ice? On average, how many H 2 O 
molecules does one photon convert from ice to water? 
( Hint:  It takes 334 J to melt 1 g of ice at 0°C.) 

  1.66  The UV light that is responsible for tanning human 
skin falls in the 320- to 400-nm region. Calculate 
the total energy (in joules) absorbed by a person 
exposed to this radiation for 2.0 h, given that there 
are 2.0 3 10 16  photons hitting the surface of Earth 
per square centimeter per second over an 80-nm 
(320 nm to 400 nm) range and that the exposed 
body area is 0.45 m 2 . Assume that only half of the 
radiation is absorbed and that the remainder is 
refl ected by the body. ( Hint:  Use an average 
wavelength of 360 nm when calculating the energy 
of a photon.) 

  1.67  In 1996 physicists created an antiatom of hydrogen. 
In such an atom, which is the antimatter equivalent 
of an ordinary atom, the electrical charges of all the 
component particles were reversed. Thus, the 
nucleus of an antiatom is made of an antiproton, 
which has the same mass as a proton but bears a 
negative charge, and the electron is replaced by an 
antielectron (also called positron), which has the 
same mass as an electron, but bears a positive 
charge. Would you expect the energy levels, 
emission spectra, and atomic orbitals of an anti–
hydrogen atom to be different from those of a 
hydrogen atom? What would happen if an antiatom 
of hydrogen collided with a hydrogen atom? 

  1.68  In Chapter 5 we will see that the mean velocity of a
  gas molecule is given by 13RTym where  T  is the
  absolute temperature,  m  is the molar mass, and  R  is 

the gas constant ( R  5 8.314 J mol 21  K 21 ). Using 
this information, calculate the de Broglie wavelength 
of a nitrogen (N 2 ) molecule at 300 K. 

  1.69  When an electron makes a transition between 
energy levels of a hydrogen atom by absorbing or 
emitting a photon, there are no restrictions on the 
initial and fi nal values of the principal quantum 
number  n.  However, there is a quantum mechanical 
rule that restricts the initial and fi nal values of the 
orbital angular momentum quantum number  l . 
This is the  selection rule,  which states that Dl 5 

61, that is, in a transition, the value of  l  can only 
increase or decrease by one. According to this 
rule, which of the following transitions are allowed: 
(a) 1 s  ¡ 2 s , (b) 2 p  ¡ 1 s , (c) 1 s  ¡ 3 d , 
(d) 3 d  ¡ 4 f , (e) 4 d  ¡ 3 s ? 

  1.70  In an electron microscope, electrons are accelerated 
by passing them through a voltage difference. The 
kinetic energy thus acquired by the electrons is 
equal to the voltage times the charge on the electron. 
Thus, a voltage difference of 1 volt (V) imparts a 
kinetic energy of 1.602 3 10 219  volt-coulomb or 
1.602 3 10 219  J. Calculate the wavelength associated 
with electrons accelerated by 5.00 3 10 3  V. 

  1.71  (a) An electron in the ground state of the hydrogen 
atom moves at an average speed of 5 3 10 6  m s 21 . 
If the speed of the electron is known to an uncertainty 
of 1 percent, what is the uncertainty in knowing its 
position? Given that the radius of the hydrogen 
atom in the ground state is 5.29 3 10 211  m, comment 
on your result. (b) A 0.15-kg baseball thrown at 100 
mph has a momentum of 6.7 kg m s 21 . If the 
uncertainty in measuring the momentum is 1.0 3 
10 27  times the momentum, calculate the uncertainty 
in the baseball’s position. 

  1.72  When two atoms collide, some of their kinetic 
energy may be converted into electronic energy in 
one or both atoms. If the average kinetic energy is 
about equal to the energy for some allowed electronic 
transition, an appreciable number of atoms can 
absorb enough energy through an inelastic collision 
to be raised to an excited electronic state. 
(a) Calculate the average kinetic energy per atom in 
a gas sample at 298 K. (b) Calculate the energy 
difference between the  n  5 1 and  n  5 2 levels in 
hydrogen. (c) At what temperature is it possible to 
excite a hydrogen atom from the  n  5 1 level to the  n  
5 2 level by collision? (The average kinetic energy 
of 1 mol of a gas at low pressures is 3y2  RT , where 
the gas constant  R  5 8.314 J mol 21  K 21  and T is the 
absolute temperature in kelvin.) 

  1.73  Calculate the energies needed to remove an electron 
from the  n  5 1 state and the  n  5 5 state in the Li 21  
ion. What is the wavelength (in nm) of the emitted 
photon in a transition from  n  5 5 to  n  5 1? 

  1.74  In the beginning of the twentieth century, some 
scientists thought that the nucleus contained both 
electrons and protons. Use the Heisenberg uncertainty 
principle to show that an electron cannot be confi ned 
within a nucleus. Repeat your calculation for a proton. 
Comment on your results. Assume the radius of a 
nucleus to be 1.0 3 10 215  m. The masses of an 
electron and proton are 9.109 3 10 231  kg and 1.673 3 
10 227  kg, respectively. ( Hint : Treat the radius of the 
nucleus as the uncertainty in position.) 

  1.75  Given a one-dimensional probability density  p(x),  
the average value, f , of any function of  x, f (x),  is 
given by 

 
f 5 #

b

a  
f (x) p(x) dx

 

Lai69040_ch01_071-125.indd Page 124  1/5/08  8:57:04 PM elhiLai69040_ch01_071-125.indd Page 124  1/5/08  8:57:04 PM elhi /Volumes/108/MHIA037/mhLai1/Lai1ch01%0/Volumes/108/MHIA037/mhLai1/Lai1ch01%0



125

10 4  m s 21   1.8  222 nm   1.9  n  5 5,  l  5 3,  m l  5 23, 22, 21, 
0, 11, 12, 13 

 Answers to Practice Exercises 

 1.1  3.28 m   1.2  9.94 3 10 216  J   1.3  264 nm, 304 nm   
1.4  105.9 pm   1.5  273 nm, UV   1.6  56.54 nm   1.7  5.95 3 

   For the particle in a one-dimensional box,  a  and  b  
are 0 and  L , respectively, and p(x) 5 |c(x)|2. For the 
fi rst three energy levels of the particle in a one-
dimensional box, calculate the average values of  x  
and  x 2 . ( Hint:  You will need to consult a standard 
table of integrals for this problem.) 

  1.76  Using the radial probability function, calculate the 
average values of  r  for the 1 s  and 2 s  orbitals of 
the hydrogen atom. How do these compare with 
the most probable values? ( Hint:  You will need to 
consult a standard table of integrals for this 
problem.) 

  1.77  An important property of the wavefunctions of the 
particle in a one-dimensional box is that they are 
 orthogonal ; that is, 

 #
L

0

 cn(x) cm(x) dx 5 0 for n ? m 

    Show that the wavefunctions defi ned in Equation 
1.35 have this property. 

  1.78  In the particle in a two-dimensional box, the particle 
is confi ned to a rectangular box with side dimensions 
 L x  and L y.   The energy levels for this system are 
given by 

 E(nx, ny, nz) 5
h2

8m
c n2

x

L2
x

1
n2

y

L2
y

d  
   where the three quantum numbers ( n x and n y) can 

be any set of two strictly positive integers. The 
wavefunction corresponding to the state ( n x,  n y ) is 

 c(x, y, z) 5 a 4

Lx 
Ly 

b
1
2

sin anx 
px

Lx
b sin any 

py

Ly
b  

   If the box is a square ( L x  5 L y ), determine the set of 
two quantum numbers for the fi ve lowest energy 
levels. (Some energy levels may consist of several 
degenerate quantum states.) Try to represent the 
corresponding wavefunctions graphically. 

Answers to Practice Exercises 

Lai69040_ch01_071-125.indd Page 125  1/5/08  8:57:05 PM elhiLai69040_ch01_071-125.indd Page 125  1/5/08  8:57:05 PM elhi /Volumes/108/MHIA037/mhLai1/Lai1ch01%0/Volumes/108/MHIA037/mhLai1/Lai1ch01%0


