
23-1

23C H A P T E R

Additional Special Types of Linear
Programming Problems

Chapter 3 emphasized the wide applicability of linear programming. Chapters 8 and 9
then described some of the special types of linear programming problems that often

arise, including the transportation problem (Sec. 8.1), the assignment problem (Sec. 8.3),
the shortest-path problem (Sec. 9.3), the maximum flow problem (Sec. 9.5), and the min-
imum cost flow problem (Sec. 9.6). These latter chapters also presented streamlined ver-
sions of the simplex method for solving these problems very efficiently.

We continue to broaden our horizons in this chapter by discussing some additional
special types of linear programming problems. These additional types often share several
key characteristics in common with the special types presented in Chapters 8 and 9. The
first is that they all arise frequently in a variety of contexts. They also tend to require a
very large number of constraints and variables, so a straightforward computer application
of the simplex method may require an exorbitant computational effort. Fortunately, another
characteristic is that most of the aij coefficients in the constraints are zeroes, and the rela-
tively few nonzero coefficients appear in a distinctive pattern. As a result, it has been pos-
sible to develop special streamlined versions of the simplex method that achieve dramatic
computational savings by exploiting this special structure of the problem. Therefore, it is
important to become sufficiently familiar with these special types of problems so that you
can recognize them when they arise and apply the proper computational procedure.

To describe special structures, we shall again use the table (matrix) of constraint
coefficients, first shown in Table 8.1 and repeated here in Table 23.1, where aij is the co-
efficient of the jth variable in the ith functional constraint. Later, portions of the table
containing only coefficients equal to zero will be indicated by leaving them blank, whereas
blocks containing nonzero coefficients will be shaded darker.

The first section presents the transshipment problem, which is both an extension of
the transportation problem and a special case of the minimum cost flow problem.

Sections 23.2 to 23.5 discuss some special types of linear programming problems that
can be characterized by where the blocks of nonzero coefficients appear in the table of con-
straint coefficients. One type frequently arises in multidivisional organizations. A second
arises in multitime period problems. A third combines the first two types. Section 23.3 de-
scribes the decomposition principle for streamlining the simplex method to efficiently solve
either the first type or the dual of the second type.
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23-2 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

One of the practical problems involved in the application of linear programming is the
uncertainty about what the values of the model parameters will turn out to be when the adopted
solution actually is implemented. Occasionally, the degree of uncertainty is so great that some
or all of the model parameters need to be treated explicitly as random variables. Sections 23.6
and 23.7 present two special formulations, stochastic programming and chance-constrained
programming, for this problem of linear programming under uncertainty.

� 23.1 THE TRANSSHIPMENT PROBLEM

One requirement of the transportation problem presented in Sec. 8.1 is advance knowl-
edge of the method of distribution of units from each source i to each destination j, so
that the corresponding cost per unit (cij) can be determined. Sometimes, however, the best
method of distribution is not clear because of the possibility of transshipments, whereby
shipments would go through intermediate transfer points (which might be other sources
or destinations). For example, rather than shipping a special cargo directly from port 1 to
port 3, it may be cheaper to include it with regular cargoes from port 1 to port 2 and then
from port 2 to port 3.

Such possibilities for transshipments could be investigated in advance to determine
the cheapest route from each source to each destination. However, this might be a very
complicated and time-consuming task if there are many possible intermediate transfer
points. Therefore, it may be much more convenient to let a computer algorithm solve
simultaneously for the amount to ship from each source to each destination and the route
to follow for each shipment so as to minimize the total shipping cost.

This extension of the transportation problem to include the routing decisions is referred
to as the transshipment problem. This problem is the special case of the minimum cost flow
problem presented in Sec. 9.6 where there are no restrictions on the amount that can be shipped
through each shipping lane (unlimited arc capacities). The network representation of such a
problem is displayed in Fig. 23.1, where each two-sided arrow indicates that a shipment can
be sent in either direction between the corresponding pair of locations. To avoid undue clut-
ter, this network shows only the first two sources, destinations, and junctions (intermediate
transfer points that are neither sources nor destinations), and the unit shipping cost associated
with each arrow has been deleted. (As in Figs. 8.2 and 8.3, the quantity in square brackets next
to each location is the net number of units to be shipped out of that location). Even when
showing only these few locations, note that there now are many possible routes for a shipment
from any particular source to any particular destination, including through other sources or
destinations en route. With a large network, finding the cheapest such route is not an easy task.

Fortunately, there is a simple way to reformulate the transshipment problem to fit it
back into the format of the transportation problem. Thus, the transportation simplex method
presented in Sec. 8.2 can be used to solve the transshipment problem. (As a special case
of the minimum cost flow problem, the transshipment problem also can be solved by the
network simplex method described in Sec. 9.7.)

� TABLE 23.1 Table of constraint
coefficients for linear 
programming
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23.1 THE TRANSSHIPMENT PROBLEM 23-3

To clarify the structure of the transshipment problem and the nature of this reformu-
lation, we shall now extend the prototype example for the transportation problem to include
transshipments.

Prototype Example

After further investigation, the P & T COMPANY (see Sec. 8.1) has found that it can cut
costs by discontinuing its own trucking operation and using common carriers instead to
truck its canned peas. Since no single trucking company serves the entire area containing
all the canneries and warehouses, many of the shipments will need to be transferred to
another truck at least once along the way. These transfers can be made at intermediate
canneries or warehouses, or at five other locations (Butte, Montana; Boise, Idaho;
Cheyenne, Wyoming; Denver, Colorado; and Omaha, Nebraska) referred to as junctions,
as shown in Fig. 23.2. The shipping cost per truckload between each of these points is
given in Table 23.2, where a dash indicates that a direct shipment is not possible.

For example, a truckload of peas can still be sent from cannery 1 to warehouse 4 by
direct shipment at a cost of $871. However, another possibility, shown below, is to ship the
truckload from cannery 1 to junction 2, transfer it to a truck going to warehouse 2, and then
transfer it again to go to warehouse 4, at a cost of only ($286 � $207 � $341) � $834.

S1

S2

J1

J2 D2

D1

Junctions DestinationsSources

[0]

[0]

[s1]

[s2]

[−d1]

[−d2]

� FIGURE 23.1
The network representation
of the transshipment
problem.

J.2 W.4C.1 W.2
286 207 341

871
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23-4 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

JUNCTION 1
Butte

WAREHOUSE 3
Rapid City

JUNCTION 3
Cheyenne

JUNCTION 4
Denver

WAREHOUSE 4
Albuquerque

WAREHOUSE 2
Salt Lake City

JUNCTION 2
Boise

CANNERY 2
Eugene

WAREHOUSE 1
Sacramento

CANNERY 1
Bellingham

CANNERY 3
Albert Lea

JUNCTION 5
Omaha

� FIGURE 23.2
Location of canneries, warehouses, and junctions for the P & T Co.

� TABLE 23.2 Independent trucking data for P & T Co.

Shipping Cost per Truckload

To Cannery Junction Warehouse
From 1 2 3 1 2 3 4 5 1 2 3 4 Output

1 $146 — $324 $286 — — — $452 $505 — $871 75
Cannery 2 $146 — $373 $212 $570 $609 — $335 $407 $688 $784 125

3 — — $658 — $405 $419 $158 — $685 $359 $673 100

1 $322 $371 $656 $262 $398 $430 — $503 $234 $329 —
2 $284 $210 — $262 $406 $421 $644 $305 $207 $464 $558

Junction 3 — $569 $403 $398 $406 $ 81 $272 $597 $253 $171 $282
4 — $608 $418 $431 $422 $ 81 $287 $613 $280 $236 $229
5 — — $158 — $647 $274 $288 $831 $501 $293 $482

1 $453 $336 — $505 $307 $599 $615 $831 $359 $706 $587
Warehouse 2 $505 $407 $683 $235 $208 $254 $281 $500 $357 $362 $341

3 — $687 $357 $329 $464 $171 $236 $290 $705 $362 $457
4 $868 $781 $670 — $558 $282 $229 $480 $587 $340 $457

Allocation 80 65 70 85
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23.1 THE TRANSSHIPMENT PROBLEM 23-5

This possibility is only one of many indirect ways of shipping a truckload from can-
nery 1 to warehouse 4 that needs to be considered, if indeed this cannery should send any-
thing to this warehouse. The overall problem is to determine how the output from all the
canneries should be shipped to meet the warehouse allocations and minimize the total
shipping cost.

Now let us see how this transshipment problem can be reformulated as a transporta-
tion problem. The basic idea is to interpret the individual truck trips (as opposed to
complete journeys for truckloads) as being the shipment from a source to a destination,
and so label all 12 locations (canneries, junctions, and warehouses) as being both poten-
tial destinations and potential sources for these shipments. To illustrate this interpretation,
consider the above example where a truckload of peas is shipped from cannery 1 to ware-
house 4 by being transshipped through junction 2 and then warehouse 2. The first truck
trip for this shipment has cannery 1 as its source and junction 2 as its destination, but then
junction 2 becomes the source for the second truck trip with warehouse 2 as its destina-
tion. Finally, warehouse 2 becomes the source for the third trip with this same shipment,
where warehouse 4 then is the destination. In a similar fashion, any of the 12 locations
can become a source, a destination, or both, for truck trips.

Thus, for the reformulation as a transportation problem, we have 12 sources and 12
destinations. The cij unit costs for the resulting parameter table shown in Table 23.3 are
just the shipping costs per truckload already given in Table 23.2. The impossible ship-
ments indicated by dashes in Table 23.2 are assigned a huge unit cost of M. Because each
location is both a source and a destination, the diagonal elements in the parameter table
represent the unit cost of a shipment from a given location to itself. The costs of these fic-
tional shipments going nowhere are zero.

To complete the reformulation of this transshipment problem as a transportation prob-
lem, we now need to explain how to obtain the demand and supply quantities in Table 23.3.
The number of truckloads transshipped through a location should be included in both the
demand for that location as a destination and the supply for that location as a source. Since
we do not know this number in advance, we instead add a safe upper bound on this num-
ber to both the original demand and supply for that location (shown as allocation and output

� TABLE 23.3 Parameter Table for the P & T Co. transshipment problem formulated as a transportation problem

Destination

(Canneries) (Junctions) (Warehouses)
1 2 3 4 5 6 7 8 9 10 11 12 Supply

1 0 146 M 324 286 M M M 452 505 M 871 375
(Canneries) 2 146 0 M 373 212 570 609 M 335 407 688 784 425

3 M M 0 658 M 405 419 158 M 685 359 673 400

4 322 371 656 0 262 398 430 M 503 234 329 M 300
5 284 210 M 262 0 406 421 644 305 207 464 558 300

Source (Junctions) 6 M 569 403 398 406 0 81 272 597 253 171 282 300
7 M 608 418 431 422 81 0 287 613 280 236 229 300
8 M M 158 M 647 274 288 0 831 501 293 482 300

9 453 336 M 505 307 599 615 831 0 359 706 587 300
10 505 407 683 235 208 254 281 500 357 0 362 341 300

(Warehouses) 11 M 687 357 329 464 171 236 290 705 362 0 457 300
12 868 781 670 M 558 282 229 480 587 340 457 0 300

Demand 300 300 300 300 300 300 300 300 380 365 370 385
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23-6 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

in Table 23.2) and then introduce the same slack variable into its demand and supply con-
straints. This single slack variable thereby serves the role of both a dummy source and a
dummy destination.) Since it would never pay to return a truckload to be transshipped
through the same location more than once, a safe upper bound on this number for any lo-
cation is the total number of truckloads (300), so we shall use 300 as the upper bound.
The slack variable for both constraints for location i would be xii, the (fictional) number
of truckloads shipped from this location to itself. Thus, (300 � xii) is the real number of
truckloads transshipped through location i.

Adding 300 to each of the allocation and demand quantities in Table 23.2 (where
blanks are zeros) now gives us the complete parameter table shown in Table 23.3 for the
transportation problem formulation of our transshipment problem. Therefore, using the
transportation simplex method to obtain an optimal solution for this transportation prob-
lem provides an optimal shipping plan (ignoring the xii) for the P & T Company.

General Features

Our prototype example illustrates all the general features of the transshipment problem and
its relationship to the transportation problem. Thus, the transshipment problem can be de-
scribed in general terms as being concerned with how to allocate and route units (truck-
loads of canned peas in the example) from supply centers (canneries) to receiving centers
(warehouses) via intermediate transshipment points (junctions, other supply centers, and
other receiving centers). (The network representation in Fig. 23.1 ignores the geographical
layout of these locations by lining up all the supply centers in the first column, all the junc-
tions in the second column, and all the receiving centers in the third column.) In addition
to transshipping units, each supply center generates a given net surplus of units to be dis-
tributed, and each receiving center absorbs a given net deficit, whereas each junction nei-
ther generates nor absorbs any units. (The net number of units generated at each location
is shown in square brackets next to that location in Fig. 23.1.) The problem has feasible
solutions only if the total net surplus generated at the supply centers equals the total net
deficit to be absorbed at the receiving centers.

A direct shipment may be impossible (cij � M) for certain pairs of locations. In ad-
dition, certain supply centers and receiving centers may not be able to serve as trans-
shipment points at all. In the reformulation of the transshipment problem as a transporta-
tion problem, the easiest way to deal with any such center is to delete its column (for a
supply center) or its row (for a receiving center) in the parameter table, and then add noth-
ing to its original supply or demand quantity.

A positive cost cij is incurred for each unit sent directly from location i (a supply cen-
ter, junction, or receiving center) to another location j. The objective is to determine the
plan for allocating and routing the units that minimizes the total cost.

The resulting mathematical model for the transshipment problem (see Prob. 23.1-4)
has a special structure slightly different from that for the transportation problem. As in
the latter case, it has been found that some applications that have nothing to do with trans-
portation can be fitted to this special structure. However, regardless of the physical context
of the application, this model always can be reformulated as an equivalent transportation
problem in the manner illustrated by the prototype example.

This reformulation is not necessary to solve a transshipment problem. Another al-
ternative is to apply the network simplex method (see Sec. 9.7) to the problem directly
without any reformulation. Even though the transportation simplex method (see Sec. 8.2)
is a little more efficient than the network simplex method for solving transportation prob-
lems, the great efficiency of the network simplex method in general makes this a rea-
sonable alternative.
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23.2 MULTIDIVISIONAL PROBLEMS 23-7

Another important class of linear programming problems having an exploitable special
structure consists of multidivisional problems. Their special feature is that they involve
coordinating the decisions of the separate divisions of a large organization. Because the
divisions operate with considerable autonomy, the problem is almost decomposable into
separate problems, where each division is concerned only with optimizing its own oper-
ation. However, some overall coordination is required in order to best divide certain or-
ganizational resources among the divisions.

As a result of this special feature, the table of constraint coefficients for multidivisional
problems has the block angular structure shown in Table 23.4. (Recall that shaded blocks
represent the only portions of the table that have any nonzero aij coefficients.) Thus, each
smaller block contains the coefficients of the constraints for one subproblem, namely, the
problem of optimizing the operation of a division considered by itself. The long block at
the top gives the coefficients of the linking constraints for the master problem, namely,
the problem of coordinating the activities of the divisions by dividing organizational re-
sources among them so as to obtain an overall optimal solution for the entire organization.

Because of their nature, multidivisional problems frequently are very large, contain-
ing many thousands of constraints and variables. Therefore, it may be necessary to ex-
ploit the special structure in order to be able to solve such a problem with a reasonable
expenditure of computer time, or even to solve it at all! The decomposition principle
(described in Sec. 23.3) provides an effective way of exploiting the special structure.

Conceptually, this streamlined version of the simplex method can be thought of as
having each division solve its subproblem and sending this solution as its proposal to
“headquarters” (the master problem), where negotiators then coordinate the proposals from
all the divisions to find an optimal solution for the overall organization. If the subprob-
lems are of manageable size and the master problem is not too large (not more than 50
to 100 constraints), this approach is successful in solving some extremely large multidi-
visional problems. It is particularly worthwhile when the total number of constraints is
quite large (at least several thousand) and there are more than a few subproblems.

Prototype Example

The GOOD FOODS CORPORATION is a very large producer and distributor of food prod-
ucts. It has three main divisions: the Processed Foods Division, the Canned Foods Divi-
sion, and the Frozen Foods Division. Because costs and market prices change frequently

� 23.2 MULTIDIVISIONAL PROBLEMS

A � � �
� TABLE 23.4 Constraint coefficients for multidivisional problems

Coefficients of Decision Variables for:

1st Division 2d Division . . . Last Division

…

� Constraints on organizational
resources needed by divisions

� Constraints on resources
available only to 1st division

� Constraints on resources
available only to 2d division

� Constraints on resources
available only to last division
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23-8 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

in the food industry, Good Foods periodically uses a corporate linear programming model
to revise the production rates for its various products in order to use its available pro-
duction capacities in the most profitable way. This model is similar to that for the Wyndor
Glass Co. problem (see Sec. 3.1), but on a much larger scale, having thousands of con-
straints and variables. (Since our space is limited, we shall describe a simplified version
of this model that combines the products or resources by types.)

The corporation grows its own high-quality corn and potatoes, and these basic food
materials are the only ones currently in short supply that are used by all the divisions.
Except for these organizational resources, each division uses only its own resources and
thus could determine its optimal production rates autonomously. The data for each divi-
sion and the corresponding subproblem involving just its products and resources are given
in Table 23.5 (where Z represents profit in millions of dollars per month), along with the
data for the organizational resources.

The resulting linear programming problem for the corporation is

Maximize Z � 8x1 � 5x2 � 6x3 � 9x4 � 7x5 � 9x6 � 6x7 � 5x8,

subject to

5x1 � 3x2 � 2x4 � 3x6 � 4x7 � 6x8 � 30
2x1 � 4x3 � 3x4 � 7x5 � x7 � 20
2x1 � 4x2 � 3x3 � 10
7x1 � 3x2 � 6x3 � 15
5x1 � 3x3 � 12

3x4 � x5 � 2x6 � 7
2x4 � 4x5 � 3x6 � 9

8x7 � 5x8 � 25
7x7 � 9x8 � 30
6x7 � 4x8 � 20

and

xj � 0, for j � 1, 2, . . . , 8.

Note how the corresponding table of constraint coefficients shown in Table 23.6 fits
the special structure for multidivisional problems given in Table 23.4. Therefore, the Good
Foods Corp. can indeed solve this problem (or a more detailed version of it) by the stream-
lined version of the simplex method provided by the decomposition principle.

Important Special Cases

Some even simpler forms of the special structure exhibited in Table 23.4 arise quite fre-
quently. Two particularly common forms are shown in Table 23.7.

The first form occurs when some or all of the variables can be divided into groups
such that the sum of the variables in each group must not exceed a specified upper bound
for that group (or perhaps must equal a specified constant). Constraints of this form,

xj1 � xj2 � . . . � xjk � bi

(or xj1 � xj2 � . . . � xjk � bi),

usually are called either generalized upper-bound constraints (GUB constraints for short)
or group constraints. Although Table 23.7 shows each GUB constraint as involving con-
secutive variables, this is not necessary. For example,

x1 � x5 � x9 � 1

is a GUB constraint, as is

x8 � x3 � x6 � 20.

hil61217_ch23.qxd  5/14/04  16:00  Page 23-8



23.2 MULTIDIVISIONAL PROBLEMS 23-9

The second form shown in Table 23.7 occurs when some or all of the individual vari-
ables must not exceed a specified upper bound for that variable. These constraints,

xj � bi,

normally are referred to as upper-bound constraints. For example, both

x1 � 1 and x2 � 5

are upper-bound constraints. A special technique for dealing efficiently with such constraints
has been described in Sec. 7.3.

� TABLE 23.5 Data for the Good Foods Corp. multidivisional problem

Divisional Data Subproblem

Processed Foods Division

Product Resource
Usage/Unit Amount

Resource 1 2 3 Available

1 2 4 3 10
2 7 3 6 15
3 5 0 3 12

�Z/unit 8 5 6
Level x1 x2 x3

Frozen Foods Division

Product Resource
Usage/Unit Amount

Resource 7 8 Available

6 8 5 25
7 7 9 30
8 6 4 20

�Z/unit 6 5
Level x7 x8

Canned Foods Division

Product Resource
Usage/Unit Amount

Resource 4 5 6 Available

4 3 1 2 7
5 2 4 3 9

�Z/unit 9 7 9
Level x4 x5 x6

Data for Organizational Resources

Product
Resource Usage/Unit Amount

Resource 1 2 3 4 5 6 7 8 Available

Corn 5 3 0 2 0 3 4 6 30
Potatoes 2 0 4 3 7 0 1 0 20

Maximize Z1 � 8x1 � 5x2 � 6x3,

subject to 2x1 � 4x2 � 3x3 � 10
7x1 � 3x2 � 6x3 � 15
5x1 � 3x3 � 12

and x1 � 0, x2 � 0, x3 � 0.

Maximize Z3 � 6x7 � 5x8,

subject to 8x7 � 5x8 � 25
7x7 � 9x8 � 30
6x7 � 4x8 � 20

and x7 � 0, x8 � 0.

Maximize Z2 � 9x4 � 7x5 � 9x6,

subject to 3x4 � x5 � 2x6 � 7
2x4 � 4x5 � 3x6 � 9

and x4 � 0, x5 � 0, x6 � 0.
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23-10 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

A � � � A � � �
� TABLE 23.7 Constraint coefficients for important special cases of the structure

for multidivisional problems given in Table 23.4

Generalized Upper Bounds Upper Bounds

. . .

Either GUB or upper-bound constraints may occur because of the multidivisional na-
ture of the problem. However, we should emphasize that they often arise in many other
contexts as well. In fact, you already have seen several examples containing such con-
straints as summarized below.

Note in Table 8.6 that all supply constraints in the transportation problem actually are
GUB constraints. (Table 8.6 fits the form in Table 23.7 by placing the supply constraints
below the demand constraints.) In addition, the demand constraints also are GUB con-
straints, but ones not involving consecutive variables.

In the Southern Confederation of Kibbutzim regional planning problem (see Sec. 3.4),
the constraints involving usable land for each kibbutz and total acreage for each crop all
are GUB constraints.

The technological limit constraints in the Nori & Leets Co. air pollution problem (see
Sec. 3.4) are upper-bound constraints, as are two of the three functional constraints in the
Wyndor Glass Co. product mix problem (see Sec. 3.1).

Because of the prevalence of GUB and upper-bound constraints, it is very helpful to have
special techniques for streamlining the way in which the simplex method deals with them.

A � � �
� TABLE 23.6 Constraint coefficients

for the Good Foods Corp.
multidivisional problem

. . .
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23.3 THE DECOMPOSITION PRINCIPLE FOR MULTIDIVISIONAL PROBLEMS 23-11

(The technique for GUB constraints1 is quite similar to the one for upper-bound constraints
described in Sec. 7.3.) If there are many such constraints, these techniques can drastically re-
duce the computation time for a problem.

� 23.3 THE DECOMPOSITION PRINCIPLE FOR 
MULTIDIVISIONAL PROBLEMS

In Sec. 23.2, we discussed the special class of linear programming problems called
multidivisional problems and their special block angular structure (see Table 23.4). We also
mentioned that the streamlined version of the simplex method called the decomposition
principle provides an effective way of exploiting this special structure to solve very large
problems. (This approach also is applicable to the dual of the class of multitime period
problems presented in Sec. 23.4.) We shall describe and illustrate this procedure after re-
formulating (decomposing) the problem in a way that enables the algorithm to exploit its
special structure.

A Useful Reformulation (Decomposition) of the Problem

The basic approach is to reformulate the problem in a way that greatly reduces the num-
ber of functional constraints and then to apply the revised simplex method (see Sec. 5.2).
Therefore, we need to begin by giving the matrix form of multidivisional problems:

Maximize Z � cx,

subject to

Ax � b† and x � 0,

where the A matrix has the block angular structure

A � � �
where the Ai (i � 1, 2, . . . , 2N) are matrices, and the 0 are null matrices. Expanding,
this can be rewritten as

Maximize Z � �
N

j � 1
cjxj,

subject to

[A1, A2, . . . , AN, I]� � � b0, � � � 0,

AN�jxj � bj and xj � 0, for j � 1, 2, . . . , N,

x
xs

x
xs

A1 A2 � � � AN

AN�1 0 � � � 0
0 AN�2 � � � 0

0 0 � � � A2N

1G. B. Dantzig, and R. M. Van Slyke, “Generalized Upper Bounded Techniques for Linear Programming,”
Journal of Computer and Systems Sciences, 1: 213–226, 1967.

†The following discussion would not be changed substantially if Ax � b.

. 
. 

.

. 
. 

.

. 
. 

.
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23-12 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

where cj, xj, b0, and bj are vectors such that c � [c1, c2, . . . , cN],

x � � �, b � � �,

and where xs is the vector of slack variables for the first set of constraints.
This structure suggests that it may be possible to solve the overall problem by doing

little more than solving the N subproblems of the form

Maximize Zj � cjxj,

subject to

AN�jxj � bj and xj � 0,

thereby greatly reducing computational effort. After some reformulation, this approach
can indeed be used.

Assume that the set of feasible solutions for each subproblem is a bounded set (i.e.,
none of the variables can approach infinity). Although a more complicated version of the
approach can still be used otherwise, this assumption will simplify the discussion.

The set of points xj such that xj � 0 and AN�jxj � bj constitutes a convex set with a
finite number of extreme points (the CPF solutions for the subproblem having these con-
straints.)1 Therefore, under the assumption that the set is bounded, any point in the set can
be represented as a convex combination of the extreme points. To express this mathemat-
ically, let nj be the number of extreme points, and denote these points by x*

jk for k � 1,
2, . . . , nj. Then any solution xj to subproblem j that satisfies the constraints AN�jxj � bj

and xj � 0 also satisfies the equation

xj � �
nj

k�1
�jkx

*
jk

for some combination of �jk such that

�
nj

k�1
�jk � 1

and �jk � 0 (k � 1, 2, . . . , nj). Furthermore, this is not true for any xj that is not a fea-
sible solution for subproblem j. (You may have shown these facts for Prob, 4.5-5.)

Therefore, this equation for xj and the constraints on the �jk provide a method for rep-
resenting the feasible solutions to subproblem j without using any of the original constraints.
Hence, the overall problem can now be reformulated with far fewer constraints as

Maximize Z � �
N

j�1
�
nj

k�1
(cjx

*
jk)�jk,

subject to

�
N

j�1
�
nj

k�1
(Ajx

*
jk)�jk � xs � b0, xs � 0, �

nj

k�1
�jk � 1, for j � 1, 2, . . . , N,

b0

b1

bN

x1

x2

xN

�
� 

�

�
� 

�

1See Appendix 2 for a definition and discussion of convex sets and extreme points.
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and

�jk � 0, for j � 1, 2, . . . , N and k � 1, 2, . . . , nj.

This formulation is completely equivalent to the one given earlier. However, since it has
far fewer constraints, it should be solvable with much less computational effort. The fact
that the number of variables (which are now the �jk and the elements of xs) is much larger
does not matter much computationally if the revised simplex method is used. The one ap-
parent flaw is that it would be tedious to identify all the x*

jk. Fortunately, it is not neces-
sary to do this when using the revised simplex method. The procedure is outlined below.

The Algorithm Based on This Decomposition

Let A′ be the matrix of constraint coefficients for this reformulation of the problem, and let
c′ be the vector of objective function coefficients. (The individual elements of A′ and c′ are
determined only when they are needed.) As usual, let B be the current basis matrix, and let
cB be the corresponding vector of basic variable coefficients in the objective function.

For a portion of the work required for the optimality test and step 1 of an iteration,
the revised simplex method needs to find the minimum element of (cBB�1A′ � c′), the
vector of coefficients of the original variables (the �jk in this case) in the current Eq. (0).
Let (zjk � cjk) denote the element in this vector corresponding to �jk. Let m0 denote the
number of elements of b0. Let (B�1)1;m0

be the matrix consisting of the first m0 columns
of B�1, and let (B�1)i be the vector consisting of the ith column of B�1. Then (zjk � cjk)
reduces to

zjk � cjk � cB(B�1)1;m0
Ajx

*
jk � cB(B�1)m0�j�cjx

*
jk

� (cB(B�1)1;m0
Aj � cj)x

*
jk � cB(B–1)m0�j.

Since cB(B�1)m0�j is independent of k, the minimum value of (zjk � cjk) over k � 1,
2, . . . , nj can be found as follows. The x*

jk are just the CPF solutions for the set of con-
straints, xj � 0 and AN�jxj � bj, and the simplex method identifies the CPF solution that
minimizes (or maximizes) a given objective function. Therefore, solve the linear pro-
gramming problem

Minimize Wj � (cB(B�1)1;m0
Aj � cj)xj � cB(B�1)m0�j,

subject to

AN�j xj � bj and xj � 0.

The optimal value of Wj (denoted by Wj
*) is the desired minimum value of (zjk � cjk) over k.

Furthermore, the optimal solution for xj is the corresponding x*
jk.

Therefore, the first step at each iteration requires solving N linear programming prob-
lems of the above type to find Wj

* for j � 1, 2, . . . , N. In addition, the current Eq. (0)
coefficients of the elements of xs that are nonbasic variables would be found in the usual
way as the elements of cB(B�1)1;m0

. If all these coefficients [the Wj
* and the elements of

cB(B�1)1;m0
] are nonnegative, the current solution is optimal by the optimality test.

Otherwise, the minimum of these coefficients is found, and the corresponding variable is
selected as the new entering basic variable. If that variable is �jk, then the solution to the
linear programming problem involving Wj has identified x*

jk, so that the original constraint
coefficients of �jk are now identified. Hence, the revised simplex method can complete
the iteration in the usual way.

Assuming that x � 0 is feasible for the original problem, the initialization step would
use the corresponding solution in the reformulated problem as the initial BF solution. This
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involves selecting the initial set of basic variables (the elements of xB) to be the elements of
xs and the one variable �jk for each subproblem j ( j � 1, 2, . . . , N) such that x*

jk � 0. Fol-
lowing the initialization step, the above procedure is repeated for a succession of iterations
until an optimal solution is reached. The optimal values of the �jk are then substituted into the
equations for the xj for the optimal solution to conform to the original form of the problem.

Example. To illustrate this procedure, consider the problem

Maximize Z � 4x1 � 6x2 � 8x3 � 5x4,

subject to

x1 � 3x2 � 2x3 � 4x4 � 20
2x1 � 3x2 � 6x3 � 4x4 � 25

x1 � x2 � 5
x1 � 2x2 � 8

4x3 � 3x4 � 12

and

xj � 0, for j � 1, 2, 3, 4.

Thus, the A matrix is

A � � �,
so that N � 2 and

A1 � � �, A2 � � �, A3 � � �, A4 � [4, 3].

In addition,

c1 � [4, 6], c2 � [8, 5],

x1 � � �, x2 � � �, b0 � � �, b1 � � �, b2 � [12].

To prepare for demonstrating how this problem would be solved, we shall first ex-
amine its two subproblems individually and then construct the reformulation of the over-
all problem. Thus, subproblem 1 is

Maximize Z1 � [4, 6]� �,

subject to

� � � � � � � and � � � � �,

so that its set of feasible solutions is as shown in Fig. 23.3.
It can be seen that this subproblem has four extreme points (n1 � 4), namely, the four

CPF solutions shown by dots in Fig. 23.3. One of these is the origin, considered the “first”
of these extreme points, so

x*
11 � � �, x*

12 � � �, x*
13 � � �, x*

14 � � �,0
4

2
3

5
0

0
0

0
0

x1

x2

5
8

x1

x2

1 1
1 2

x1

x2

5
8

20
25

x3

x4

x1

x2

1 1
1 2

2 4
6 4

1 3
2 3

1 3 2 4
2 3 6 4
1 1 0 0
1 2 0 0
0 0 4 3
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where �11, �12, �13, �14 are the respective weights on these points.
Similarly, subproblem 2 is

Maximize Z2 � [8, 5] � �,

subject to

[4, 3] � � � [12] and � � � � �,

and its set of feasible solutions is shown in Fig. 23.4. Thus, its three extreme points are

x*
21 � � �, x*

22 � � �, x*
23 � � �,

where �21, �22, �23 are the respective weights on these points.
By performing the cjx

*
jk vector multiplications and the Ajx

*
jk matrix multiplications,

the following reformulated version of the overall problem can be obtained:

Maximize Z � 20�12 � 26�13 � 24�14 � 24�22 � 20�23,

0
4

3
0

0
0

0
0

x3

x4

x3

x4

x3

x4

x2

x10 2 4 5 6

2

4

(2, 3)

Feasible region

� FIGURE 23.3
Subproblem 1 for the
example illustrating the
decomposition principle.

x4

x30 2 3 4 5

2

4

Feasible region
� FIGURE 23.4
Subproblem 2 for the
example illustrating the
decomposition principle.
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subject to

5�12 � 11�13 � 12�14 � 6�22 � 16�23 � xs1 � 20
10�12 � 13�13 � 12�14 � 18�22 � 16�23 � xs2 � 25

�11 � �12 � �13 � �14 � 1
�21 � �22 � �23 � 1

and

�1k � 0, for k � 1, 2, 3, 4,
�2k � 0, for k � 1, 2, 3,
xsi � 0, for i � 1, 2.

However, we should emphasize that the complete reformulation normally is not constructed
explicitly; rather, just parts of it are generated as needed during the progress of the re-
vised simplex method.

To begin solving this problem, the initialization step selects xs1, xs2, �11, and �21 to
be the initial basic variables, so that

xB � � �.
Therefore, since A1x*

11 � 0, A2x*
21 � 0, c1x*

11 � 0, and c2x*
21 � 0, then

B � � � � B�1, xB � b′ � � �, cB � [0, 0, 0, 0]

for the initial BF solution.
To begin testing for optimality, let j � 1, and solve the linear programming problem

Minimize W1 � (0 � c1)x1 � 0 � �4x1 � 6x2,

subject to

A3x1 � b1 and x1 � 0,

so the feasible region is that shown in Fig. 23.3. Using Fig. 23.3 to solve graphically, the
solution is

x1 � � � � x*
13,

so that W*
1 � �26.

Next let j � 2, and solve the problem

Minimize W2 � (0 � c2)x2 � 0 � �8x3 � 5x4,

subject to

A4x2 � b2 and x2 � 0,

so Fig. 23.4 shows this feasible region. Using Fig. 23.4, the solution is

x2 � � � � x*
22,

3
0

2
3

20
25
1
1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

xs1

xs2

�11

�21
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so W*
2 � �24. Finally, since none of the slack variables are nonbasic, no more coefficients

in the current Eq. (0) need to be calculated. It can now be concluded that because both W*
1

	 0 and W*
2 	 0, the current BF solution is not optimal. Furthermore, since W*

1 is the
smaller of these, �13 is the new entering basic variable.

For the revised simplex method to now determine the leaving basic variable, it is first
necessary to calculate the column of A′ giving the original coefficients of �13. This col-
umn is

A′k� � � � � �.
Proceeding in the usual way to calculate the current coefficients of �13 and the right-side
column,

B�1A′k � � �, B�1b′ � � �.
Considering just the strictly positive coefficients, the minimum ratio of the right side to
the coefficient is the 1/1 in the third row, so that r � 3; that is, �11 is the new leaving ba-
sic variable. Thus, the new values of xB and cB are

xB � � �, cB � [0, 0, 26, 0].

To find the new value of B�1, set

E � � �,
so

B�1
new � EBold

�1 � � �.
The stage is now set for again testing whether the current BF solution is optimal. In

this case

W1 � (0 � c1)x1 � 26 � �4x1 � 6x2 � 26,

so the minimum feasible solution from Fig. 23.3 is again

x1 � � � � x*
13,

with W*
1 � 0. Similarly,

W2 � (0 � c2)x2 � 0 � �8x3 � 5x4,

2
3

1 0 �11 0
0 1 �13 0
0 0 1 0
0 0 0 1

1 0 �11 0
0 1 �13 0
0 0 1 0
0 0 0 1

xs1

xs2

�13

�21

20
25
1
1

11
13
1
0

11
13
1
0

A1x*
13

1
0
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so the minimizing solution from Fig. 23.4 is again

x2 � � � � x*
22,

with W*
2 � �24. Finally, there are no nonbasic slack variables to be considered. Since

W*
2 	 0, the current solution is not optimal, and �22 is the new entering basic variable.

Proceeding with the revised simplex method,

A′k � � � � � �,
so

B�1A′k � � �, B�1b′ � � �.
Therefore, the minimum positive ratio is 


1
1
2
8

 from the second row, so r � 2; that is, xs2

is
the new leaving basic variable. Thus

E � � �,

B�1
new � EBold

�1 � � �, xB � � �,
and cB � [0, 24, 26, 0].

Now test whether the new BF solution is optimal. Since

W1 � �[0, 24, 26, 0] � �� � � [4, 6]�� � � [0, 24, 26, 0] � �
� �[0, 


4
3


] � � � [4, 6]�� � � 

2
3
6



� �

4
3


x1 � 2x2 � 

2
3
6

.

Fig. 23.3 indicates that the minimum feasible solution is again

x1 � � � � x*
13,2

3

x1

x2

1 3
2 3

�

2
3
0



�

1
1
3
8



1


1
1
3
8



x1

x2

1 3
2 3

1 �

1
3




0 1
1
8



0 0
0 �


1
1
8



xs1

�22

�13

�21

1 �

1
3


 �

2
3
0

 0

0 

1
1
8

 �


1
1
3
8

 0

0 0 1 0
0 �


1
1
8

 


1
1
3
8

 1

1 �

1
3


 0 0
0 


1
1
8

 0 0

0 0 1 0
0 �


1
1
8

 0 1

9
12
1
1

6
18
0
1

6
18
0
1

A2x*
22

0
1

3
0

hil61217_ch23.qxd  5/14/04  16:00  Page 23-18



23.4 MULTITIME PERIOD PROBLEMS 23-19

so W*
1 � 


2
3


. Similarly,

W2 � �[0, 

4
3


]� � � [8, 5]� � � � 0

� 0x3 � 

1
3


x4,

so the minimizing solution from Fig. 23.4 now is

x2 � � � � x*
21,

and W*
2 � 0. Finally, cB(B�1)1;m0

� [�, 

4
3


]. Therefore, since W*
1 � 0, W *

2 � 0, and
cB(B�1)1;m0

� 0, the current BF solution is optimal. To identify this solution, set

xB � � � � B�1b′ � � � � � � � �,
so

x1 � � � � �
4

k�1
�1kx

*
1k � x*

12 � � �,

x2 � � � � �
3

k�1
�2kx

*
2k � 


1
3


� � � 

2
3


� � � � �.

Thus, an optimal solution for this problem is x1 � 2, x2 � 3, x3 � 2, x4 � 0, with Z � 42.

2
0

3
0

0
0

x3

x4

2
3

x1

x2
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1
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20
25
1
1

1 �

1
3


 �
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0

 0

0 

1
1
8

 �


1
1
3
8

 0

0 0 1 0
0 �


1
1
8

 


1
1
3
8

 1

xs1

�22

�13

�21

0
0

x3

x4

2 4
6 4

� 23.4 MULTITIME PERIOD PROBLEMS

Any successful organization must plan ahead and take into account probable changes in its
operating environment. For example, predicted future changes in sales because of seasonal
variations or long-run trends in demand might affect how the firm should operate currently.
Such situations frequently lead to the formulation of multitime period linear programming
problems for planning several time periods (e.g., days, months, or years) into the future.
Just as for multidivisional problems, multitime period problems are almost decomposable
into separate subproblems, where each subproblem in this case is concerned with opti-
mizing the operation of the organization during one of the time periods. However, some
overall planning is required to coordinate the activities in the different time periods.

The resulting special structure for multitime period problems is shown in Table 23.8.
Each approximately square block gives the coefficients of the constraints for one sub-
problem concerned with optimizing the operation of the organization during a particular
time period considered by itself. Each oblong block then contains the coefficients of the
linking variables for those activities that affect two or more time periods. For example,
the linking variables may describe inventories that are retained at the end of one time pe-
riod for use in some later time period, as we shall illustrate in the prototype example.

As with multidivisional problems, the multiplicity of subproblems often causes mul-
titime period problems to have a very large number of constraints and variables, so again
a method for exploiting the almost decomposable special structure of these problems is
needed. Fortunately, the same method can be used for both types of problems! The idea
is to reorder the variables in the multitime period problem to first list all the linking vari-
ables, as shown in Table 23.9, and then to construct its dual problem. This dual problem
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exactly fits the block angular structure shown in Table 23.4. (For this reason the special
structure in Table 23.9 is referred to as the dual angular structure.) Therefore, the
decomposition principle presented in the preceding section for multidivisional problems
can be used to solve this dual problem. Since directly applying even this streamlined
version of the simplex method to the dual problem automatically identifies an optimal
solution for the primal problem as a by-product, this provides an efficient way of solving
many large multitime period problems.

A �� �
� TABLE 23.8 Constraint coefficients for multitime period problems

Coefficients of Activity Variables for:

First Time Second Time Last Time
Period Period

. . .
Period

�
Constraints
on resources
available
during first
time period

�
Constraints
on resources
available
during second
time period

�
Constraints
on resources
available
during last
time period

Li
n

k
in

g

Li
n

k
in

g

Li
n

k
in

g

� �

.
. 

.

. . .

�

A �� �

� TABLE 23.9 Table of constraint coefficients for multitime period problems after
reordering the variables

Coefficients of Activity Variables for:

First Time Second Time Last Time
Period Period

. . .
Period

�
Constraints on resources
available during first time
period

�
Constraints on resources
available during second
time period

�
Constraints on resources
available during last time
period

Li
n

k
in

g

� �

.
. 

.. . .

�
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Prototype Example

The WOODSTOCK COMPANY operates a large warehouse that buys and sells lumber.
Since the price of lumber changes during the different seasons of the year, the company
sometimes builds up a large stock when prices are low and then stores the lumber for sale
later at a higher price. The manager feels that there is considerable room for increasing
profits by improving the scheduling of purchases and sales, so he has hired a team of op-
erations research consultants to develop the most profitable schedule.

Since the company buys lumber in large quantities, its purchase price is slightly less
than its selling price in each season. These prices are shown in Table 23.10, along with
the maximum amount that can be sold during each season. The lumber would be pur-
chased at the beginning of a season and sold throughout the season. If the lumber pur-
chased is to be stored for sale in a later season, a handling cost of $7 per 1,000 board feet
is incurred, as well as a storage cost (including interest on capital tied up) of $10 per 1,000
board feet for each season stored. A maximum of 2 million board feet can be stored in
the warehouse at any one time. (This includes lumber purchased for sale in the same pe-
riod.) Since lumber should not age too long before sale, the manager wants it all sold by
the end of autumn (before the low winter prices go into effect).

The team of OR consultants concluded that this problem should be formulated as a
linear programming problem of the multitime period type. Numbering the seasons (1 �
winter, 2 � spring, 3 � summer, 4 � autumn) and letting xi be the number of 1,000 board
feet purchased in season i, yi be the number sold in season i, and zij be the number stored
in season i for sale in season j, this formulation is

Maximize Z � �410x1 � 425y1 � 17z12 � 27z13 � 37z14 � 430x2 � 440y2

�17z23 � 27z24 � 460x3 � 465y3 � 17z34 � 450x4 � 455y4,

subject to

x1 �y1 � z12 � z13 � z14 � 0
x1 � 2000

y1 � 1000
z12 � x2 � y2 � z23 � z24 � 0
z12 � y2 � 0
z12 � z13 � z14 � x2 � 2000

y2 � 1400
z13 � z23 � x3 � y3 � z34 � 0
z13 � z23 � y3 � 0
z13 � z14 � z23 � z24 � x3 � 2000

y3 � 2000
z14 � z24 � z34 � x4 � y4 � 0

y4 � 1600

� TABLE 23.10 Price data for the Woodstock Company

Purchase Selling Maximum
Season Price* Price* Sales†

Winter 410 425 1,000
Spring 430 440 1,400
Summer 460 465 2,000
Autumn 450 455 1,600

*Prices are in dollars per thousand board feet.

†Sales are in thousand board feet.
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and

xi � 0, yi � 0, zij � 0, for i � 1, 2, 3, 4, and j � 2, 3, 4.

Thus, this formulation contains four subproblems, where the subproblem for season i is
obtained by deleting all variables except xi and yi from the overall problem. The storage
variables (the zij) then provide the linking variables that interrelate these four time peri-
ods. Therefore, after reordering the variables to first list these linking variables, the cor-
responding table of constraint coefficients has the form shown in Table 23.11, where all
blanks are zeros. Since this form fits the dual angular structure given in Table 23.9, the
streamlined solution procedure for this kind of special structure can be used to solve the
problem (or much larger versions of it).

� �
� TABLE 23.11 Table of constraint coefficients for the Woodstock Company

multitime period problem after reordering the variables

Coefficient of:

z12 z13 z14 z23 z24 z34 x1 y1 x2 y2 x3 y3 x4 y4

� 23.5 MULTIDIVISIONAL MULTITIME PERIOD PROBLEMS

You saw in the preceding two sections how decentralized decision making can lead to mul-
tidivisional problems and how a changing operating environment can lead to multitime pe-
riod problems. We discussed these two situations separately to focus on their individual
special structure. However, we should now emphasize that it is fairly common for prob-
lems to possess both characteristics simultaneously. For example, because costs and mar-
ket prices change frequently in the food industry, the Good Foods Corp. might want to ex-
pand their multidivisional problem to consider the effect of such predicted changes several
time periods into the future. This would allow the model to indicate how to most profitably
stock up on materials when costs are low and store portions of the food products until
prices are more favorable. Similarly, if the Woodstock Co. also owns several other ware-
houses, it might be advisable to expand their model to include and coordinate the activi-
ties of these divisions of their organization. (Also see Prob. 23.5-2 for another way in which
the Woodstock Co. problem might expand to include the multidivisional structure.)

The combined special structure for such multidivisional multitime period problems is
shown in Table 23.12. It contains many subproblems (the approximately square blocks),
each of which is concerned with optimizing the operation of one division during one of
the time periods considered in isolation. However, it also includes both linking constraints
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and linking variables (the oblong blocks). The linking constraints coordinate the divisions
by making them share the organizational resources available during one or more time pe-
riods. The linking variables coordinate the time periods by representing activities that af-
fect the operation of a particular division (or possibly different divisions) during two or
more time periods.

One way of exploiting the combined special structure of these problems is to apply an
extended version of the decomposition principle for multidivisional problems. This involves
treating everything but the linking constraints as one large subproblem and then using this
decomposition principle to coordinate the solution for this subproblem with the master
problem defined by the linking constraints. Since this large subproblem has the dual an-
gular structure shown in Table 23.9, it would be solved by the special solution procedure
for multitime period problems, which again involves using this decomposition principle.

Other procedures for exploiting this combined special structure also have been de-
veloped.1 More experimentation is still needed to test the relative efficiency of the avail-
able procedures.

A �� �
� TABLE 23.12 Constraint coefficients for multidivisional multitime period

problems

Linking
Variables

�Linking
Constraints

�
. . .

� 23.6 STOCHASTIC PROGRAMMING

One of the common problems in the practical application of linear programming is the
difficulty of determining the proper values of the model parameters (the cj, aij, and bi).
The true values of these parameters may not become known until after a solution has been
chosen and implemented. This can sometimes be attributed solely to the inadequacy of
the investigation. However, the values these parameters take on often are influenced by
random events that are impossible to predict. In short, some or all of the model parame-
ters may be random variables.

When these random variable parameters have relatively small variances, the standard
approach is to perform sensitivity analysis as described in Chap. 6. However, if some of
the parameters have relatively large variances, this approach is not very adequate. What

1For further information, see Chap. 5 of Selected Reference 7 at the end of this chapter.
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is needed is a way of formulating the problem so that the optimization will directly take
the uncertainty into account.

Some such approaches for linear programming under uncertainty have been devel-
oped. These formulations can be classified into two types, stochastic programming and
chance-constrained programming, which are described in this and the next section, re-
spectively. The main distinction between these types is that stochastic programming requires
all constraints to hold with probability 1, whereas chance-constrained programming per-
mits a small probability of violating any functional constraint. The former type was given
its name because it is particularly applicable when the values of the decision variables are
chosen at two or more different points in time (i.e., stochastically), although the latter type
also can be adapted to this kind of multistage problem. The general approach for dealing
with both types is to reformulate them as new equivalent linear programming problems
where the certainty assumption is satisfied, and then solve by the simplex method. This
clever reformulation for each type is the key to its practicality.

Focusing now on stochastic programming, we will introduce its main ideas only, largely
through simple illustrative examples, rather than developing a complete formal description.

If some or all of the cj are random variables, then

Z � �
n

j�1
cjxj

also is a random variable for any given solution. Since it is meaningless to maximize a
random variable, Z must be replaced by some deterministic function. There are many pos-
sible choices for this function, each of which may be very reasonable under certain cir-
cumstances. Perhaps the most natural choice, and certainly the most widely used, is the
expected value of Z,

E(Z) � �
n

j�1
E(cj)xj.

Similarly, the functional constraints

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m

must be reinterpreted if any of the aij and bi are random variables. One interpretation is
that a solution is considered feasible only if it satisfies all the constraints for all possible
combinations of the parameter values. This is the interpretation assumed in this section,
although it is soon modified to allow certain random variable parameters to become known
before values are assigned to certain xj.

One danger with this strict interpretation of feasibility is that there may well not ex-
ist any solution that satisfies all the constraints for every possible combination of the pa-
rameter values. If so, a more liberal interpretation can be used, such as the one given in
the next section.

The remainder of the section is devoted to elaborating on how stochastic program-
ming implements its interpretation of feasibility for two categories of problems.

One-Stage Problems

A one-stage problem is one where the values for all the xj must be chosen simultaneously
(i.e., at one stage) before learning which value has been taken on by any of the random
variable parameters. This is in contrast to the multistage problems considered later, where
the decision making is done over two or more stages while observing the values taken on
by some of the random variable parameters.

The formulation for one-stage problems is relatively straightforward. Consider first
the case where aij and bi that are random variables are mutually independent. Then each
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of these aij and bi with multiple possible values would be replaced by its most restrictive
value for its constraint; i.e., functional constraint i becomes

�
n

j�1
(max aij)xj � min bi,

where max aij is the largest value that the random variable aij can take on and min bi is
the smallest value that the random variable bi can take on. By replacing the random vari-
ables with these constants, the new constraint ensures that the original constraint will be
satisfied for every possible combination of values for the random variable parameters. Fur-
thermore, the new constraint satisfies the certainty assumption of linear programming dis-
cussed in Sec. 3.3, so the reformulated problem can be solved by the simplex method.

For example, consider the constraint,

a11x1 � a12x2 � b1,

where a11, a12, and b1 all are independent random variables having the following ranges
of possible values:

1 � a11 � 2, 2 � a12 � 3, 4 � b1 � 5.

To reformulate to satisfy the certainty assumption of linear programming, this constraint
should be replaced by

2x1 � 3x2 � 4.

Reformulating a constraint in this manner is more restrictive than necessary if the
random variable parameters are jointly dependent in a way that prevents the parameters
from simultaneously achieving their most restrictive values. A case of special interest is
where, at least as an approximation, the problem can be described as having a relatively
small number of possible scenarios for how the problem will unfold over time, where each
scenario provides certain fixed values for all the parameters. Which scenario will occur
may depend on some exogenous factor, such as the state of the economy, or the market’s
reception to new products, or the extent of progress on new technological advances.

For this kind of situation, the original constraint with random variables would be re-
placed by a set of new constraints, where each new constraint would have the parameter
values that correspond to one of the scenarios. For example, consider again the constraint,

a11x1 � a12x2 � b1,

but suppose now that a11, a12, and b1 each are random variables that have just the two
possible values shown below:

a11 � 1 or 2, a12 � 2 or 3, b1 � 4 or 5.

Further suppose that there are just two scenarios, where each one dictates which of the
two values each random variable will take on, as follows:

Scenario 1: a11 � 1, a12 � 3, b1 � 4.
Scenario 2: a11 � 2, a12 � 2, b1 � 5.

In this case, the original constraint with random variables would be replaced by the two
new constraints,

x1 � 3x2 � 4
2x1 � 2x2 � 5.

This approach does have the drawback of increasing the number of functional con-
straints, which substantially increases the computation time for the simplex method. This
drawback can become quite serious if a large number of scenarios need to be considered.
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Multistage Problems

We now consider problems where the decisions on the values of the xj are made at two
or more points in time (stages). That is, some of the xj are first-stage variables, others are
second-stage variables, and so on. For example, this occurs when scheduling the pro-
duction of some products over several time periods, where each xj gives the production
level for one of the products in one of the time periods.

Although the decisions are made in stages, they still need to be considered jointly in
one model because the activities involved are consuming the same limited resources. How-
ever, the overall optimization makes the decisions for later stages conditional upon what
happens at preceding stages, namely, the values taken on by some of the random variable
parameters (typically the constraint coefficients for the variables associated with the pre-
ceding stages). Therefore, the stochastic programming approach enables adjusting the de-
cisions for later stages based on unfolding circumstances.

The key idea for the stochastic programming formulation here is to replace each orig-
inal decision variable beyond the first stage by a set of new decision variables, where each
new decision variable represents the original decision under one of the possible circum-
stances that could prevail at the point.

To illustrate this approach, consider the problem,

Maximize Z � 3x1 � 7x2 � 11x3,

subject to

a11x1 � a12x2 � a13x3 � 100

and

x1 � 0, x2 � 0, x3 � 0,

where a11, a12, and a13 are independent random variables such that

a11 � �
a12 � �
a13 � �

and where x1, x2, and x3 are the decision variables for stages 1, 2, and 3, respectively. The
value taken on by a11 will be known before the value of x2 must be chosen, and the value
taken on by a12 will be known before the value of x3 must be chosen.

The stochastic programming formulation for this example replaces x2 by the set of
new decision variables,

x21 � value chosen for x2 if a11 � 1
x22 � value chosen for x2 if a11 � 2,

and then replaces x3 by the set of new decision variables,

x31 � value chosen for x3 if a11 � 1, a12 � 3
x32 � value chosen for x3 if a11 � 1, a12 � 4
x33 � value chosen for x3 if a11 � 2, a12 � 3
x34 � value chosen for x3 if a11 � 2, a12 � 4.

5, with probability 

1
2




6, with probability 

1
2




3, with probability 

1
2




4, with probability 

1
2




1, with probability 

1
2




2, with probability 

1
2
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The resulting reformulated problem is

Maximize E(Z) � 3x1 � 7(

1
2


)(x21 � x22) � 11(

1
4


)(x31 � x32 � x33 � x34),

subject to

x1 � 3x21 � 6x31 � 100
x1 � 4x21 � 6x32 � 100

2x1 � 3x22 � 6x33 � 100
2x1 � 4x22 � 6x34 � 100

and

x1 � 0 and all xij � 0,

which is an ordinary linear programming problem that can be solved by the simplex
method. Note that each of the four functional constraints represents one of the four pos-
sible combinations of values for a11 and a12. The reason that all four constraints have
a13 � 6 and there are not four additional constraints with a13 � 5 is that 6 is the most re-
strictive value of a13 for this last-stage parameter. In the objective function, the multipli-
ers of 


1
2


 and 

1
4


 arise because these are the probabilities of the combinations of parameter
values that result in using the respective variables (x21, x22, and then x31, x32, x33, x34) for
determining the value of x2 or x3.

This example also illustrates how the stochastic programming approach greatly in-
creases the size of the model to be solved, especially if the number of stages and the num-
ber of possible combinations of values for the random variable parameters are large. This
problem is avoided by the approach described in the next section.

� 23.7 CHANCE-CONSTRAINED PROGRAMMING

Section 23.6 presented the stochastic programming approach to linear programming un-
der uncertainty. Chance-constrained programming provides another way of dealing with
this problem. This alternative approach may be used when it is highly desirable, but not
absolutely essential, that the functional constraints hold.

When some or all of the parameters of the model are random variables, the stochas-
tic programming formulation requires that all the functional constraints must hold for all
possible combinations of values for these random variable parameters. By contrast, the
chance-constrained programming formulation requires only that each constraint must hold
for most of these combinations. More precisely, this formulation replaces the original lin-
ear programming constraints,

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

by

P ��
n

j�1
aijxj � bi� � αi, for i � 1, 2, . . . , m,

where the αi are specified constants between zero and one (although they are normally
chosen to be reasonably close to one). Therefore, a nonnegative solution (x1, x2, . . . , xn)
is considered to be feasible if and only if

P ��
n

j�1
aijxj � bi� � αi, for i � 1, 2, . . . , m.

hil61217_ch23.qxd  5/14/04  16:00  Page 23-27



23-28 CHAPTER 23 ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

Each complementary probability, 1 � αi, represents the allowable risk that the random
variables will take on values such that

�
n

j=1
aijxj � bi.

Thus, the objective is to select the “best” nonnegative solution that “probably” will turn
out to satisfy each of the original constraints when the random variables (the aij, bi, and cj)
take on their values.

There are many possible expressions for the objective function when some of the cj

are random variables, and several of these have been explored elsewhere1 in the context
of chance-constrained programming. However, only the one assumed in the preceding sec-
tion, namely, the expected value function, is considered here.

No procedure is now available for solving the general chance-constrained (linear) pro-
gramming problem. However, certain important special cases are solvable. The one discussed
here is where: (1) all the aij parameters are constants, so that only some or all of the cj and bi

are random variables, (2) the probability distribution of the bi is a known multivariate normal
distribution, and (3) cj is statistically independent of bi (j � 1, 2, . . . , n; i � 1, 2, . . . , m).

As in the preceding section, it is initially assumed that all of the xj must be deter-
mined before learning the value taken on by any of the random variables. Then, after the
approach for this case is developed, the more general case where this assumption is dropped
will be discussed.

One-Stage Problems

The chance-constrained programming problem considered here fits the linear program-
ming model format except for the constraints,

P ��
n

j�1
aijxj � bi� � �i, for i � 1, 2, . . . , m.

Therefore, the goal is to convert these constraints into legitimate linear programming con-
straints, so that the simplex method can be used to solve the problem. This can be done
under the stated assumptions, as shown below.

To begin, notice that

P ��
n

j�1 
aijxj � bi� � P � � 


bi –
�

E

bi

(bi)
�,

where E(bi) and �bi
are the mean and standard deviation of bi, respectively. Since bi is as-

sumed to have a normal distribution, [bi – E(bi)]/�bi
must also be normal with mean zero

and standard deviation one. In the table for the normal distribution given in Appendix 5,
Kα is taken to be the constant such that

P{Y � K�} � �,

where � is any given number between zero and one, and where Y is the random variable
whose probability distribution is normal with mean zero and standard deviation one. This
table gives K� for various values of �. For example,

K0.90 � �1.28, K0.95 � �1.645, and K0.99 � �2.33.

�
n

j�1
aijxj � E(bi)




�bi

1A. Charnes and W. W. Cooper, “Deterministic Equivalents for Optimizing and Satisficing under Chance Con-
straints,” Operations Research, 11: 18–39 (1963).
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Therefore, it now follows that

P �Kαi
� 


bi �

�b

E

i

(bi)
� � �i.

Note that this probability would be increased if K�i
were replaced by a number 	 K�i

.
Hence,

P � � 

bi –

�

E

bi

(bi)
� � �i

for a given solution if and only if

� K�i
.

Rewriting both expressions in an equivalent form, the conclusion is that

P ��
n

j�1
aijxj � bi� � �i

if and only if

�
n

j�1
aijxj � E(bi) � K�i

�bi
,

so that this probability constraint can be replaced by this linear programming constraint.
The fact that these constraints are equivalent is illustrated by Fig. 23.5.

To summarize, the chance-constrained programming problem considered above can
be reduced to the following equivalent linear programming problem.

Maximize E(Z) � �
n

j�1 
E(cj)xj,

subject to

�
n

j�1
aijxj � E(bi) � K�i

�bi
, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n.

�
n

j�1
aijxj � E(bi)




�bi

�
n

j�1
aijxj � E(bi)




�bi

Cross-hatched
area = 1 − αi

E(bi) + Kαi 
σbi 

E(bi)

� FIGURE 23.5
Probability density function
of bi.
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Multistage Problems

We now will consider multistage problems such as discussed in the preceding section,
where decisions beyond the first stage take into account the value taken on by certain ran-
dom variable parameters at preceding stages. In our current context, we assume that some
of the bi become known before some of the xj values must be chosen.

We need to formulate and solve problems of this type in such a way that the final de-
cision on the xj is partially based on the new information that has become available. The
chance-constrained programming approach to this situation is to solve for each xj as an
explicit function of the bi whose values become known before a value must be assigned
to xj. From a computational standpoint, it is convenient to deal with linear functions of
the bi, thereby leading to what are called linear decision rules for the xj. In particular, let

xj � �
m

k�1
djkbk � yj, for j � 1, 2, . . . , n,

where the djk are specified constants (where djk � 0 whenever the value taken on by bk is not
known before a value must be assigned to xj), and where the yj are decision variables.1 (These
equations are often written in matrix form as x � Db � y.) The proper choice of the djk de-
pends very much on the nature of the individual problem (if indeed it can be formulated rea-
sonably in this way). An example is given later that illustrates how the djk are chosen.

Given the djk, it is only necessary to solve for the yj. Then, when the time comes to
assign a value to xj, this value is obtained from the above equation. The details on how
to solve for the yj are given below.

The first step is to substitute

��
m

k�1
djkbk � yj� for xj (for j � 1, 2, . . . , n)

throughout the original chance-constrained programming model. The objective function
becomes

E(Z) � E ��
n

j�1 
cj��

n

k�1
djkbk � yj��

� �
n

j�1
�
m

k�1
djkE(cj)E(bk) � �

n

j�1
E(cj)yj.

Since

�
n

j�1
�
m

k�1
djkE(cj)E(bk)

is a constant, it can be dropped from the objective function, so that the new objective
becomes

Maximize �
n

j�1
E(cj)yj.

1Another common type of linear decision rule in chance-constrained programming is to let

xj � �
m

k�1
bkdjk, for j � 1, 2, . . . , n,

where djk is a decision variable if bk becomes known before a value must be assigned to xj and is zero other-
wise. This case is considered in Problem 23.7-2.
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Since

�
n

j�1
aijxj � �

n

j�1
aij��

m

k�1
djkbk � yj�

� �
n

j�1
�
m

k�1
aijdjkbk � �

n

j�1
aijyj,

the constraints,

P ��
n

j�1
aijxj � bi� � �i, for i � 1, 2, . . . , m,

become

P ��
n

j�1
aijyj � bi � �

n

j�1
�
m

k�1
aijdjkbk� � �i, for i � 1, 2, . . . , m.

The next step is to reduce these constraints to linear programming constraints. This is
done just as before since the fundamental nature of the constraints has not been changed.
Because

�bi � �
n

j�1
�
m

k�1
aijdjkbk�

is a linear function of normal random variables, it must also be a normally distributed ran-
dom variable. Let �i and �i denote the mean and standard deviation, respectively, of

�bi – �
n

j�1
�
m

k�1
aijdjkbk�.

Thus,

�i � E(bi) � �
n

j�1
�
m

k�1
aijdjkE(bk),

and, if the bk are mutually independent,

�i
2 � �

m

��
n

j�1
aijdjk�

2

�2
bk

� �1 � �
n

j�1
aijdji�

2

�2
bi.

(Lacking independence, covariance terms would be included.) It then follows as before
that these constraints are equivalent to the linear programming constraints,

�
n

j�1
aijyj � �i � K�i

�i, for j � 1, 2, . . . , m.

It usually makes sense for the individual problem to add the restriction that

yj � 0, for j � 1, 2, . . . , n.

The model consisting of the new objective function and these constraints can then be
solved by the simplex method.

k�1
k�i
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To illustrate the way in which linear decision rules may arise, consider the problem of
scheduling the production output for a given product over the next n time periods. Let xj

( j � 1, 2, . . . , n) be the total number of units produced in time periods 1 through j, so that
(xj � xj�1) is the output in period j. Thus, the xj are the decision variables. Let Sj ( j � 1,
2, . . . , n) be the total number of units sold in time periods 1 through j. Assuming sales
cannot be predicted exactly in advance, the Sj are random variables such that the value taken
on by Sj becomes known at the end of period j. Assume that the Sj are normally distributed.

Suppose that the firm’s management places a high priority on not alienating customers
by a late delivery of their purchases. Hence, assuming no initial inventory, the xj should
be chosen such that it is almost certain that xj � Sj. Therefore, one set of constraints that
should be included in the mathematical model is

P{xj � Sj) � �j, for j � 1, 2, . . . , n,

where the αj are selected numbers close to one.
However, rather than solving for the xj directly at the outset, the problem should be

solved in such a way that the information on cumulative sales can be used as it becomes
available. Suppose that the final decision on xj need not be made until the beginning of
period j. It would be highly desirable to take into account the value taken on by Sj�1 be-
fore assigning a value to xj. Therefore, let

xj � Sj–1 � yj, for j � 1, 2, . . . , n (where S0 � 0),

and then solve only for the yj at the outset.
To express this example in the notation used earlier, the constraints should be written as

P{�xi � � Si) � �i, for i � 1, 2, . . . , m (m � n),

so that bi � � Si. Hence,

xj � �
m

k�1
djkbk � yj � � bj�1 � yj,

so that dj(j�1) � � 1 and djk � 0 for k � j � 1. Since yj is just the number of units of the
product that is available for immediate delivery in period j, it is natural to impose the ad-
ditional restriction that yj � 0 for j � 1, 2, . . . , n. Therefore, assuming that the remain-
der of the model also fits the linear programming format, this particular problem can be
formulated and solved by the general procedure described in this section.

� 23.8 CONCLUSIONS

The linear programming model encompasses a wide variety of specific types of problems.
The general simplex method is a powerful algorithm that can solve surprisingly large ver-
sions of any of these problems. However, some of these problem types have such simple
formulations that they can be solved much more efficiently by streamlined versions of the
simplex method that exploit their special structure. These streamlined versions can cut
down tremendously on the computer time required for large problems, and they some-
times make it computationally feasible to solve huge problems. Of the problems consid-
ered in this chapter, this is particularly true for transshipment problems and problems with
many upper-bound or GUB constraints. For general multidivisional problems, multitime
period problems, or combinations of the two, the setup times are sufficiently large for
their streamlined procedures that they should be used selectively only on large problems.

Stochastic programming and chance-constrained programming provide useful ways of
dealing with linear programming problems where the certainty assumption is so badly vio-
lated that some or all of the model parameters must be treated explicitly as random variables.
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� PROBLEMS

To the left of each of the following problems (or their parts), we
have inserted a C whenever you should use the computer with any
of the software options available to you (or as instructed by your
instructor) to solve the problem.

23.1-1. Suppose that the air freight charge per ton between seven
particular locations is given by the following table (except where
no direct air freight service is available):

A certain corporation must ship a certain perishable com-
modity from locations 1–3 to locations 4–7. A total of 70, 80, and
50 tons of this commodity is to be sent from locations 1, 2, and 3,
respectively. A total of 30, 60, 50, and 60 tons is to be sent to lo-
cations 4, 5, 6, and 7, respectively. Shipments can be sent through
intermediate locations at a cost equal to the sum of the costs for
each of the legs of the journey. The problem is to determine the
shipping plan that minimizes the total freight cost.
(a) Describe how this problem fits into the format of the general

transshipment problem.
(b) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
(c) Use the northwest corner rule to obtain an initial BF solution

for the problem formulated in part (b). Describe the corre-
sponding shipping pattern.

C (d) Use the computer to obtain an optimal solution for the prob-
lem formulated in part (b). Describe the corresponding op-
timal shipping pattern.

Location 1 2 3 4 5 6 7

1 — 21 50 62 93 77 —
2 21 — 17 54 67 — 48
3 50 17 — 60 98 67 25
4 62 54 60 — 27 — 38
5 93 67 98 27 — 47 42
6 77 — 67 — 47 — 5
7 — 48 25 38 42 35 —
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23.1-2. Consider the airline company problem presented in
Prob. 9.3-2.
(a) Describe how this problem can be fitted into the format of the

transshipment problem.
(b) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
(c) Use Vogel’s approximation method to obtain an initial BF so-

lution for the problem formulated in part (b).
(d) Use the transportation simplex method by hand to obtain an

optimal solution for the problem formulated in part (b).

23.1-3. A student about to enter college away from home has de-
cided that she will need an automobile during the next four years.
Since funds are going to be very limited, she wants to do this in
the cheapest possible way. However, considering both the initial
purchase price and the operating maintenance costs, it is not clear
whether she should purchase a very old car or just a moderately
old car. Furthermore, it is not clear whether she should plan to trade
in her car at least once during the four years, before the costs be-
come to high.

The relevant data each time she purchases a car are as follows:

Operating and Maintenance Trade-in Value at End
Costs for Ownership Year of Ownership Year

Purchase
Price 1 2 3 4 1 2 3 4

Very old car $1,200 $1,900 $2,200 $2,500 $2,800 $ 700 $  500 $ 400 $ 300
Moderately old car $4,500 $1,000 $1,300 $1,700 $2,300 $2,500 $1,800 $1,300 $1,000

If the student trades in a car during the next four years, she would
do it at the end of a year (during the summer) on another car of
one of these two kinds. She definitely plans to trade in her car at
the end of the four years on a much newer model. However, she
needs to determine which plan for purchasing and (perhaps) trad-
ing in cars during the four years would minimize the total net cost
for the four years.
(a) Describe how this problem can be fitted into the format of the

transshipment problem.
(b) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
C (c) Use the computer to obtain an optimal solution for the prob-

lem formulated in part (b).

23.1-4. Without using xii variables to introduce fictional shipments
from a location to itself, formulate the linear programming model
for the general transshipment problem described at the end of Sec.
23.1. Identify the special structure of this model by constructing
its table of constraint coefficients (similar to Table 23.1) that shows
the location and values of the nonzero coefficients.

23.2-1. Consider the following linear programming problem.

Maximize Z � 2x1 � 4x2 � 3x3 � 2x4 � 5x5 � 3x6,

subject to

3x1 � 2x2 � 3x3 � 30
2x5 � x6 � 20

5x1 � 2x2 � 3x3 � 4x4 � 2x5 � x6 � 20
3 � x4 � 15

2x5 � 3x6 � 40
5x1 � x3 � 30

2x1 � 4x2 � 2x4 � 3x6 � 60
�x1 � 2x2 � x3 � 20

and

xj � 0, for j � 1, 2, . . . , 6.

(a) Rewrite this problem in a form that demonstrates that it pos-
sesses the special structure for multidivisional problems. Iden-
tify the variables and constraints for the master problem and
each subproblem.

(b) Construct the corresponding table of constraint coefficients hav-
ing the block angular structure shown in Table 23.4. (Include
only nonzero coefficients, and draw a box around each block
of these coefficients to emphasize this structure.)

23.2-2. Consider the following table of constraint coefficients for
a linear programming problem:

(a) Show how this table can be converted into the block angular
structure for multidivisional linear programming as shown in
Table 23.4 (with three subproblems in this case) by reordering
the variables and constraints appropriately.

Coefficient of:

Constraint x1 x2 x3 x4 x5 x6 x7

1 1 1 1
2 1
3 4 3 �2 2 4 1
4 2 4
5 1 1
6 5 3 1 �2 4
7 1
8 2 1 3
9 2 4

� �
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(b) Identify the upper-bound constraints and GUB constraints for
this problem.

23.2-3. A corporation has two divisions (the Eastern Division and the
Western Division) that operate semiautonomously, with each devel-
oping and marketing its own products. However, to coordinate their
product lines and to promote efficiency, the divisions compete at the
corporate level for investment funds for new product development pro-
jects. In particular, each division submits its proposals to corporate

headquarters in September for new major projects to be undertaken
the following year, and available funds are then allocated in such a
way as to maximize the estimated total net discounted profits that will
eventually result from the projects.

For the upcoming year, each division is proposing three new
major projects. Each project can be undertaken at any level, where
the estimated net discounted profit would be proportional to the
level. The relevant data on the projects are summarized as follows:

Eastern Division Western Division
Project Project

1 2 3 1 2 3

Level x1 x2 x3 x4 x5 x6

Required investment (in millions of dollars) 16x1 7x2 13x3 8x4 20x5 10x6

Net profitability 7x1 3x2 5x3 4x4 7x5 5x6

Facility restriction 10x1 � 3x2 � 7x3 � 50 6x4 � 13x5 � 9x6 � 45
Labor restriction 4x1 � 2x2 � 5x3 � 30 3x4 � 8x5 � 2x6 � 25

A total of $150,000,000 is budgeted for investment in these
projects.
(a) Formulate this problem as a multidivisional linear program-

ming problem.
(b) Construct the corresponding table of constraint coefficients

having the block angular structure shown in Table 23.4.

23.3-1. Use the decomposition principle to solve the Wyndor Glass
Co. problem presented in Sec. 3.1.

23.3-2. Consider the following multidivisional problem:

Maximize Z � 10x1 � 5x2 � 8x3 � 7x4,

subject to

6x1 � 5x2 � 4x3 � 6x4 � 40
3x1 � x2 � 15
x1 � x2 � 10

x3 � 2x4 � 10
2x3 � x4 � 10

and

xj � 0, for j � 1, 2, 3, 4.

(a) Explicitly construct the complete reformulated version of
this problem in terms of the �jk decision variables that would
be generated (as needed) and used by the decomposition
principle.

(b) Use the decomposition principle to solve this problem.

23.3-3. Using the decomposition principle, begin solving the Good
Foods Corp. multidivisional problem presented in Sec. 23.2 by ex-
ecuting the first two iterations.

23.4-1. Consider the following table of constraint coefficients for
a linear programming problem:

Show how this table can be converted into the dual angular struc-
ture for multitime period linear programming shown in Table 23.9
(with three time periods in this case) by reordering the variables
and constraints appropriately.

23.4-2. Consider the Wyndor Glass Co. problem described in
Sec. 3.1 (see Table 3.1). Suppose that decisions have been made
to discontinue additional products in the future and to initiate
other new products. Therefore, for the two products being ana-
lyzed, the number of hours of production time available per week
in each of the three plants will be different than shown in Table
3.1 after the first year. Furthermore, the profit per batch (exclusive
of storage costs) that can be realized from the sale of these two
products will vary from year to year as market conditions change.
Therefore, it may be worthwhile to store some of the units pro-
duced in 1 year for sale in a later year. The storage costs involved
would be approximately $2,000 per batch for either product.

The relevant data for the next three years are summarized
next.

Constraint x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 3 1
2 1 2 �1
3 1 5
4 1 2 �1 �1 �1
5 1
6 1 1 1 1 3 2
7 2 �1 1

� �
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The production time per batch used by each product remains the
same for each year as shown in Table 3.1. The objective is to de-
termine how much of each product to produce in each year and
what portion to store for sale in each subsequent year to maximize
the total profit over the three years.
(a) Formulate this problem as a multitime period linear program-

ming problem.
(b) Construct the corresponding table of constraint coefficients

having the dual angular structure shown in Table 23.9.

23.5-1. Consider the following table of constraint coefficients for
a linear programming problem.

Show how this table can be converted into the form for multidivi-
sional multitime period problems shown in Table 23.12 (with two
linking constraints, two linking variables, and four subproblems in
this case) by reordering the variables and constraints appropriately.

23.5-2. Consider the Woodstock Company multitime period prob-
lem described in Sec. 23.4 (see Table 23.10). Suppose that the com-
pany has decided to expand its operation to also buy, store, and
sell plywood in this warehouse. For the upcoming year, the rele-
vant data for raw lumber are still as given in Sec. 23.4. The cor-
responding price data for plywood are as follows:

For plywood stored for sale in a later season, the handling cost is
$6 per 1,000 board feet, and the storage cost is $18 per 1,000 board
feet. The storage capacity of 2 million board feet now applies to
the total for raw lumber and plywood. Everything should still be
sold by the end of autumn.

The objective now is to determine the most profitable sched-
ule for buying and selling raw lumber and plywood.
(a) Formulate this problem as a multidivisional multitime period

linear programming problem.
(b) Construct the corresponding table of constraint coefficients

having the form shown in Table 23.12.

23.6-1. Consider the following problem.

Maximize Z � 20x1 � 30x2 � 25x3,

subject to

3x1 � 2x2 � x3 � b1

2x1 � 4x2 � 2x3 � b2

x1 � 3x2 � 5x3 � b3

and

xj � 0, for j � 1, 2, 3,

where b1, b2, and b3 are random variables. Assume that the prob-
ability distribution of each of these random variables is such that
it can take on any one of three possible values. These values are
(29, 30, 31) for b1, (48, 50, 52) for b2, and (57, 60, 63) for b3. In
each case, the probability of the middle value is 1/2, whereas each
of the other two values has a probability of 1/4. The random vari-
ables are statistically independent. Suppose that the constraints are
required to hold with probability 1.
(a) Reformulate this problem as an equivalent ordinary linear pro-

gramming problem.
(b) Suppose that the value taken on by b1 will be known when a

value must be assigned to x2, and both b1 and b2 will be known
when x3 must be specified. Use the stochastic programming
approach to formulate an equivalent ordinary linear program-
ming problem that maximizes E(Z) while taking this informa-
tion into account.

23.7-1. Reconsider Prob. 23.6-1. Suppose, after further analysis,
it is decided that b1, b2, and b3 each actually has a normal distri-
bution, with a mean and standard deviation of (30, 1), (50, 2), and
(60, 3), respectively. Therefore, a chance-constrained programming
approach is to be used instead, where the first, second, and third
constraints are required to hold with probability 0.975, 0.95, and
0.90, respectively.
(a) Consider the solution, (x1, x2, x3) � (2


1
3


, 7

1
3


, 6

1
3


). What are the
probabilities that the respective original constraints will be sat-
isfied by this solution? Is this solution feasible? What is the
probability that all the original constraints will be satisfied by
this solution?

(b) Reformulate this chance-constrained programming problem as
an equivalent ordinary linear programming problem.

(c) Suppose that [as in part (b) of Prob. 23.6-1] the value taken on
by b1 will be known when a value must be assigned to x2, and

Constraint x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 2 3 1
2 1 1 2 2
3 5 �1 2 �1 �1 �3 4
4 1 �1
5 �1 2 �2 5 3
6 1 1
7 2 1 3 2 1 �1
8 �1 2 1 �1
9 1 2 1

10 �1 4 1 5

� �

Purchase Selling Maximum
Season Price* Price* Sales†

Winter 680 705 800
Spring 715 730 1,200
Summer 760 770 1,500
Autumn 740 750 100

*Prices are in dollars per 1,000 board feet.

†Sales are in 1,000 board feet.

Hours/Week Available
in Year

1 2 3

1 4 6 3
Plant 2 12 12 10

3 18 24 15

Profit per batch, Product 1 $3,000 $4,000 $5,000
Profit per batch, Product 2 $5,000 $4,000 $8,000
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both b1 and b2 will be known when x3 must be specified. Use
the linear decision rules,

x2 � 

1
4


b1 � y2,

x3 � 

1
2


b1 � 

1
2


b2 – y3,

in order to formulate an equivalent ordinary linear programming prob-
lem that maximizes E(Z) while taking this information into account.

23.7-2. Consider the chance-constrained programming constraint,

P ��
n

i�1
aijxj � bi� � �i.

(a) Suppose that, in addition to bi, the aij also are (independent)
random variables whose probability distributions are normal

with known mean E(aij) and variance Var(aij). Convert this con-
straint into an equivalent deterministic nonlinear constraint.

(b) Suppose that the xj are expressed as linear decision rules of the
form,

xj � �
m

k�1
bk djk, for j � 1, 2, . . . , n,

where each djk is a decision variable if the value taken on by bk

will be known when a value must be assigned to xj, and is zero
otherwise. Assume that the bk are independent random variables
with known normal distributions, and that the aij are constants.
Convert this constraint into an equivalent constraint of the form
obtained in part (a).
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