CHAPTER 30 THE PROTOSTOMES

Chapter Outline

30.1 A Coelom

A. Protostome Organization

- 1. Protostomes are bilaterally symmetrical, have three germ layers, the organ level of organization, the tube-within-a-tube body plan, and a true coelom.
- 2. The **coelom** is a body cavity between the digestive tract and body wall; it is lined by mesoderm.
- 3. The coelom allows the digestive system to move independent of the body wall; internal organs can be complex.
- 4. Coelomic fluid assists respiration and circulation by diffusing nutrients, and assists excretion by accumulating wastes.
- 5. This cavity may serve as a storage area for eggs and sperm.
- 6. The coelomic fluid protects internal organs against damage and temperature changes and also serves as a **hydrostatic skeleton.**
- B. Coelomates Are Protostomes and Deuterostomes.
 - 1. **Protostomes** include molluses, annelids, and arthropods; they have three embryological traits.
 - a. In **spiral cleavage**, the cells divide without an increase in the size of cells; the fate of cells is also fixed.
 - b. The blastopore is associated with the mouth.
 - c. A coelom (schizocoelom) forms by splitting mesoderm on either side of the primitive gut.
 - 2. **Deuterostomes** include echinoderms and chordates.
 - They undergo radial cleavage where the new daughter cells sit on top of previous cells; the fate of these cells varies.
 - b. The blastopore is associated with the anus.
 - c. A coelom (enterocoelom) forms by the fusion of mesodermal pouches from the primitive gut.

30.2 Molluscs

- A. Over 110,000 living species of molluses belong to the phylum **Mollusca**.
 - 1. Most are marine, but some are freshwater and terrestrial.
 - 2. Molluscs have a three-part body plan: a visceral mass, a mantle, and a foot.
 - 3. The **visceral mass** contains internal organs: digestive tract, paired kidneys, and reproductive organs.
 - 4. A **mantle** covering partly surrounds the visceral mass; it may secrete a shell and help develop the gills or lungs.
 - 5. The **foot** is muscular and adapted for locomotion, attachment, food capture, or a combination of functions.
 - 6. The **radula** in the mouth bears many rows of teeth and is used for grazing on food.
 - 7. The nervous system consists of several ganglia connected by nerve cords.
 - 8. In molluscs, the coelom is reduced and limited to the region around heart.
 - 9. Most molluses have an **open circulatory system**: a heart pumps hemolymph through vessels into a hemocoel.
 - 10. Blue **hemocyanin**, not red hemoglobin, is the respiratory pigment found in molluscs.
 - 11. Some are slow moving with no head; others are active predators with a head and sense organs.
 - 12. Chitons are in the class Polyplacophora.
 - a. Chiton shells consists of a row of eight overlapping plates.
 - b. The flat chiton foot is muscular and creeps along or clings to rocks.
 - c. They scrape algae and other plant food from rocks with a well-developed radula.

B. Bivalves

- 1. Class **Bivalvia** contains the bivalves (clams, ovsters, mussels, scallops).
- 2. "Bivalves" are two-part shells that are hinged and close by powerful muscles.
- 3. They have no head, no radula, and little cephalization.
- 4. Clams burrow with a **hatchet-shaped foot**; mussels use it to produce threads to attach to objects.
- 5. Scallops both burrow and swim; rapid clapping of their valves releases water in spurts.
- 6. The shell is secreted by the mantle.
 - a. Shell is composed of protein and calcium carbonate with an inner layer of pearl.
 - b. Shell deposits around a foreign particle inserted between mantle and shell to form a pearl.
- 7. A compressed muscular foot projects down from shell; by expanding the tip, it pulls in the body.
- 8. The beating cilia of the gills causes water to enter the mantle cavity by way of an **incurrent siphon** and exit by way of an **excurrent siphon**.
- 9. The cilia of gills move water through mantle cavity.
- 10. Gills capture particles and move them toward the mouth; the mouth leads to the stomach, which leads to the intestine, which passes through a heart and ends at the anus.
- 11. The circulatory system is open; the heart pumps hemolymph into vessels that open into the hemocoel.
- 12. The nervous system consists of three pairs of ganglia that connect the front, back, and foot.
- 13. Two excretory kidneys below the heart remove ammonia waste from the pericardial cavity.
- 14. The sexes are separate; the gonad is located around coils of intestine.
- 15. Some clams and annelids have the same type of larva, indicating an evolutionary relationship between molluses and annelids.

C. Cephalopods

- 1. Class Cephalopoda ("head-footed") includes squids, cuttlefish, octopuses, and nautiluses.
- 2. Squids and octopuses squeeze water out of the mantle cavity; the water forced out through a funnel propels them by **jet propulsion**.
- 3. Around the head are tentacles with suckers or adhesive secretions adapted for grasping prey.
- 4. A head equipped with a powerful beak can tear prey apart.
- 5. Well-developed sense organs include focusing camera-type eyes.
- 6. Cephalopods, particularly octopuses, have well-developed brains with a capacity for learning.
- 7. Nautiluses are enclosed in shells; squids have a reduced internal shell and octopuses lack shells.
- 8. Squids and octopuses possess ink sacs; they squirt a cloud of ink to escape predators.
- 9. Squids possess a vestigial shell under the mantle (the pen) which surrounds the visceral mass.
- 10. Squids direct the funnel to squeeze water out to move forward or backward.
- 11. Squids have a closed circulatory system where blood is always within blood vessels or the heart.
- 12. A squid has three hearts, one pumps blood to internal organs; two pump blood to the gills.
- 13. Gonads make up a large portion of the visceral mass; the sexes are separate.
 - a. **Spermatophores** are packets that contain sperm which a male tentacle passes to the female mantle cavity.
 - b. After the eggs are fertilized, they are attached to substratum in strings of up to 100 eggs.

D. Gastropods

- 1. Class **Gastropoda** includes snails, land slugs, whelks, conchs, periwinkles, sea hares, and sea slugs.
- 2. Most are marine but some are freshwater or terrestrial.
- 3. Herbivores use a radula to scrape food from surfaces; carnivorous gastropods use the radula to bore through a surface, such as a bivalve shell, to obtain food.
- 4. A developed head with eyes and tentacles projects from a coiled shell that protects visceral mass.
- 5. Nudibranchs (sea slugs) and terrestrial slugs lack shells.
- 6. In development, gastropods undergo a **torsion**—the body is twisted to bring the anus and mantle cavity downward, forward and around to a position above head—to position the visceral mass above the foot.
- 7. In aquatic gastropod, the gills are in the mantle cavity.
- 8. In land gastropods, a mantle has blood vessels and functions as a lung when air is moved in and out through respiratory pores.
- 9. Terrestrial gastropod embryonic development does not go through a swimming larval stage found in aquatic species.
- 10. For terrestrial snails, the shell not only offers protection but it also prevents desiccation.

- 11. The foot contracts in peristaltic waves from anterior to posterior; this movement is aided by a lubricating mucus that is secreted.
- 12. Land snails are hermaphroditic.
 - a. In pre-mating behavior, they meet and shoot calcareous darts into each other's body wall.
 - b. Each inserts a penis into the other's vagina; this provides sperm for future fertilization of eggs.
 - c. Eggs are deposited in soil and development proceeds without the formation of a larvae.
- 13. Hermaphroditism assures that any two animals can mate-very useful in slow-moving animals.

30.3 Annelids

A. Segmented Worms

- 1. About 12,000 species of segmented worms are in phylum **Annelida**.
- 2. Segmentation is evidenced by the rings that encircle the body; **septa** are internal walls that partition the coelom.
- 3. A well-developed, fluid-filled coelom and tough integument act as a hydrostatic skeleton.
- 4. **Segmentation** may have evolved in conjunction with a hydrostatic skeleton.
- 5. Using a hydrostatic skeleton, partitioning the coelom allows for independent movement of the segments so it can not only burrow but crawl on the surface.
- 6. Once segmentation and the tube-within-a-tube plan appeared, each segment could specialize to perform a particular function.
- 7. The digestive system is specialized to include a pharynx, stomach, and accessory glands.
- 8. The extensive **closed circulatory system** has blood vessels running the length of the body and to every segment.
- 9. The nervous system has a **brain** connected to a **ventral solid nerve cord** with a **ganglion** in each segment.
- 10. Paired **nephridia** in each segment collect waste material from coelom and excrete it through openings in the body wall.

B. Polychaete Worms

- 1. Most polychaetes (class Polychaeta) are marine.
- 2. Polychaetes possess *parapodia* and *setae*.
 - a. **Parapodia** are paddle-like appendages used in swimming and for respiration.
 - b. **Setae** are bristles, attached to parapodia, that help anchor polychaetes or help them move.
- 3. Clam worms such as *Nereis* are active predators.
- 4. Many have well-developed cephalization; the head has well-developed jaws, eyes, and other sense organs.
- 5. Other sedentary filter feeders possess tentacles with cilia to create water currents and sort out food particles.
- 6. Only during breeding do polychaetes have reproductive organs.
- 7. In Nereis, many worms coordinate the shedding of a portion of their bodies that contain either eggs or sperm; these segments float to the surface where fertilization takes place.
- 8. Marine worm zygotes develop larva similar to those of marine clams; again this shows a relatedness between annelids and molluses.

C. Earthworms

- 1. Class **Oligochaeta** includes earthworms with only a few setae, protruding in pairs directly from the body.
- 2. Earthworms lack both a well-developed head and any parapodia.
- 3. Locomotion requires coordinated movement of body muscles and the help of setae.
 - a. As longitudinal muscles contract, segments bulge and setae protrude to anchor into soil.
 - b. When circular muscles contract, a worm lengthens, setae are withdrawn and the segment can be pulled forward.
- 4. Earthworms live in moist soil; a moist body wall allows for gas exchange.
- 5. Earthworms are scavengers that extract organic remains from soil they eat.
- 6. A muscular pharynx draws food into the mouth.
- 7. Food is stored in a crop and ground up in a thick, muscular gizzard.
- 8. The dorsal surface of the intestine is expanded into a **typhlosole** for more surface area for digestion.
- 9. Each external segment corresponds to an internal septum; a wall that separates each body segment.
- 10. A long ventral nerve cord leads from the brain to ganglionic swellings and lateral nerves in each segment.

- 11. The excretory system involves nephridia.
 - a. The coiled nephridia tubules in each segment have two openings: one is a ciliated funnel that collects coelomic fluid, and the other is an exit through the body wall.
 - b. Between the two openings, a coiled nephridia tubule removes waste from blood vessels.
- 12. The dorsal blood vessel moves red blood anteriorly; five pairs of hearts pump blood to a ventral vessel.
- 13. Reproduction
 - a. Earthworms are **hermaphroditic**.
 - b. The male organs are the testes, sperm ducts, and seminal vesicles.
 - c. The female organs are the ovaries, oviducts, and seminal receptacles.
 - d. Mating involves aligning parallel to each other facing opposite directions to exchange sperm.
 - e. Each possesses a **clitellum** that secretes mucus that slides off, forming a slime tube that protects the sperm and eggs from drying out.
 - f. The slime tube forms a cocoon around the fertilized eggs as they develop.
 - g. Embryonic development lacks a larval stage.
- 14. Comparison of the clam worm and earthworm show adaptations to marine and terrestrial life through presence or absence of cephalization, parapodia, a slime tube cocoon, and trochophore larvae.

D. Leeches

- 1. Leeches belong to the class **Hirudinea**.
- 2. Most are freshwater species but a few are marine or terrestrial.
- 3. They lack setae and each body ring has several transverse grooves.
- 4. Leeches possess a small anterior sucker around the mouth and a larger posterior sucker.
- 5. Although some are free-living predators, most feed on body fluids.
- 6. Leeches keep blood from coagulating by **hirudin**, an anticoagulant in their saliva.

30.4 Arthropods

- A. Arthropods Have Jointed Appendages
 - 1. Over 1,000,000 species are in phylum **Arthropoda**; they are considered highly successful because they have adapted to so many different habitats.
 - 2. Arthropods have a rigid **exoskeleton** with freely movable jointed appendages.
 - a. The exoskeleton is a strong but flexible outer covering composed mainly of **chitin**.
 - b. Chitin is a strong, flexible, nitrogenous polysaccharide.
 - The exoskeleton serves for protection, attachment for muscles, locomotion, and prevention of desiccation.
 - d. Because the exoskeleton is hard and nonexpandable, arthropods must **molt** (shed) the exoskeleton to grow larger.
 - 1) Before molting, the body secretes a larger soft and wrinkled exoskeleton underneath.
 - 2) Enzymes partially dissolve and weaken old exoskeleton.
 - 3) The arthropod breaks the old exoskeleton open and wriggles out.
 - 4) The new exoskeleton then quickly expands and hardens.
 - 3. Some segments of arthropods have fused into regions (e.g., a head, a thorax, and an abdomen).
 - a. Trilobites (Cambrian period) had a pair of appendages on each body segment.
 - b. Modern arthropod appendages specialize for walking, swimming, reproduction, etc.
 - c. These modifications account for the diversity and success of arthropods.
 - 4. Arthropods have a well-developed nervous system.
 - a. A brain is connected to a ventral solid nerve cord.
 - b. The head bears various sensory organs.
 - c. Compound eyes have many complete visual units; each collects light independently.
 - d. The lens of each visual unit focuses the image on the light-sensitive membranes of a few photoreceptors.
 - e. In simple eyes, a single lens brings the image to focus into many receptors, each of which receives only a portion of the image.
 - 5. Arthropods use a variety of respiratory organs.
 - a. Marine forms use gills with vascularized, thin-walled tissue specialized for gas exchange.
 - b. Terrestrial forms have **book lungs** (e.g., spiders) or **tracheae air tubes** (e.g., insects).
 - 6. **Metamorphosis** is a drastic change in form and physiology that occurs as a larva becomes an adult.
 - a. Metamorphosis contributes to the success of arthropods.
 - b. A larva eats foods and lives in environments different from the adult.

- c. Competition between the immatures and adults of a species is reduced.
- d. This reduction in competition allows more members of the species to exist at one time.

B. Crustaceans

- 1. About 40,000 species of crustacea belong to subphylum Crustacea.
- 2. Crustaceans are successful and mostly marine arthropods.
- 3. The head usually bears compound eyes and five pairs of appendages.
 - a. The first two appendages are antennae and antennules; in front of the mouth, they have sensory functions.
 - b. The next three pairs (mandibles, first and second maxillae) lie behind the mouth and are used in feeding.
- 4. **Biramous appendages** have two branches; one branch is a gill and the other is the leg branch.
- 5. Copepods and krill feed on algae; numerous, they are an important link in marine food chains.
- 6. **Barnacles** have a thick, heavy shell and are sessile.
 - a. Stalked barnacles attach by their stalk; stalkless barnacles attach directly to the shell.
 - b. Barnacles begin as free-swimming larvae and become sessile on wharf pilings, rocks, etc.
 - c. They extend feathery structures (cirri) to filter feed.
- 7. **Decapods** include shrimps, lobsters, crabs, etc.
 - a. Their thorax bears five pairs of walking legs; the first pair may be modified as claws.
 - b. Usually respiratory gills are above the walking legs.
 - c. The nonsegmented **carapace** covers the fused head and thorax (**cephalothorax**).
 - d. Abdominal segments have a pair of **swimmerets**, small paddlelike structures.
 - e. The first pair of swimmerets in a male are stronger to pass sperm to the female.
 - f. The last tail segments are the **uropod** and the **telson**, which together make a fan-shaped tail.
 - g. A crayfish awaits prey and uses its claws to carry it to the mouth.
 - h. The crayfish stomach has two main regions.
 - 1) The anterior **gastric mill** with chitinous teeth grinds food.
 - 2) A posterior region filters coarse particles before absorption in the digestive glands.
 - i. **Green glands** in the head area excrete metabolic wastes through a duct at the base of the antennae.
 - j. The coelom is reduced in arthropods and forms the space about the reproductive system.
 - k. Heart pumps hemolymph containing bluish hemocyanin into a **hemocoel** where it washes around the organs.
 - 1. A brain is connected to a **ventral nerve cord**; periodic ganglia give off lateral nerves.
 - m. The sexes are separate in crayfish.
 - 1) The male has a coiled sperm duct that opens to the outside at the base of fifth walking leg.
 - 2) The female's ovaries open at the base of the third walking legs.
 - 3) The fold between the bases of the fourth and fifth pair of legs serves as a seminal receptacle.
 - 4) Following fertilization, the eggs are attached to the swimmerets of the female.

C. Uniramians

- 1. The subphylum **Uniramia** includes the millipedes, centipedes, and insects.
- 2. The **uniramous appendages** attached to the thorax and abdomen have only one branch—the leg branch.
- The head appendages include one pair of antennae, one pair of mandibles, and one or two pairs of maxillae.
- 4. Uniramia live on land and breathe by air tubes called **tracheae**.

D. Insects

- 1. Over 900,000 species of **insects** are in the superclass **Insecta**; this exceeds all other animal species combined.
- 2. Most insects live on land; some are secondarily aquatic.
- 3. Insect body is divided into a **head**, **thorax**, and **abdomen**.
 - a. The head bears sense organs and mouthparts.
 - b. The thorax bears three pairs of legs and one or two pairs of wings; the wings provide advantages in escaping enemies, finding food, and mating.
 - c. The abdomen contains most of the internal organs.
- 4. The exoskeleton of an insect is lighter and contains less chitin than that of many other arthropods.

- 5. Grasshoppers have adaptations as herbivorous insects.
 - a. The third pair of legs is suited to jumping.
 - b. The front wings are protective and leathery; the thin hind pair of wings fold up.
 - c. Each side of the first abdominal segment has a **tympanum** for sound wave reception.
 - d. Two paired projections form an ovipositor in females used to dig a hole for laying eggs.
 - e. The grasshopper digestive system is complex.
 - 1) The mouth mechanically breaks apart food, and salivary secretions begin digestion.
 - 2) The crop temporarily stores food.
 - 3) A gizzard finely grinds the food.
 - 4) Digestion is completed in stomach; gastric ceca cavities assist absorption of nutrients.
 - f. The excretory system consists of Malpighian tubules.
 - 1) Tubules extend into hemocoel.
 - 2) Nitrogenous wastes are collected and excreted into the digestive system.
 - 3) Formation of solid nitrogenous wastes (uric acid) conserves water.
 - g. The respiratory system begins with openings in the exoskeleton called spiracles.
 - 1) Air enters into small tubules called tracheae.
 - 2) Tracheae branch many times until they reach moist areas of gas absorption.
 - 3) Air movement through this tracheal system is assisted by air sacs.
 - 4) Air enters anterior four spiracles and exits by the posterior six.
 - 5) Using tracheae is a factor that limits the size of insects.
 - h. The circulatory system contains a slender, tubular heart.
 - 1) This heart lies against the dorsal wall of the abdominal exoskeleton.
 - 2) The heart pumps hemolymph into a hemocoel where it circulates before returning to the heart.
 - 3) Insect hemolymph is colorless—it lacks any respiratory pigment since the tracheal system transports gases.
 - i. Reproduction is adapted to life on land.
 - 1) A male grasshopper has a penis to transfer sperm to the female.
 - 2) Internal fertilization protects the gametes from drying out.
 - 3) Female grasshoppers deposit eggs in the ground with her ovipositor.
 - j. Grasshoppers undergo incomplete metamorphosis; the immature nymph resembles adult.
 - k. Other insects undergo complete metamorphosis; the wormlike larvae reorganize into different
 - 1. Some species (e.g., bees and ants) exhibit colonial social behavior.
 - m. Entomology, the study of insects, is a major field of biology..
- 6. Crustacea are primarily marine or freshwater organisms, use gills and an oxygen carrying pigment, and excrete liquid ammonia wastes; insects are primarily terrestrial or freshwater organisms, use tracheae and lack respiratory pigments, and excrete solid wastes.
- E. Centipedes and Millipedes (Superclass Myriapoda)
 - 1. The class **Chilopoda** includes about 2,500 species of **centipedes**.
 - a. The body is composed of a head and trunk with many segments; each segment has one pair of legs.
 - b. Centipedes are carnivorous; the head bears antennae and mouthparts with poison fangs.
 - 2. The class **Diplopoda** includes about 10,000 species of **millipedes**.
 - a. Millipedes have a cylindrical segmented body.
 - b. Some body segments are fused with two pair of legs on each resulting segment.
 - c. They possess more legs than centipedes, although not one thousand as the name states.
 - d. Millipedes dwell in the soil, feeding on dead organic matter.

F. Chelicerates

- 1. Chelicerates in the subphylum **Chelicerata** include spiders, scorpions, ticks, mites, marine horseshoe crabs, and sea spiders.
- 2. The first pair of appendages are **chelicerae**, the second pair are **pedipalps**, and the next four pairs are walking legs.
 - a. Chelicerae are appendages that function as feeding organs.
 - b. **Pedipalps** are feeding or sensory structures.
- 3. All of the appendages attach to a **cephalothorax**, a fusion of head and thoracic regions.
- 4. The head lacks antennae, mandibles, or maxillae appendages.

- 5. The marine horseshoe crab (genus *Limulus*) is common along the east coast of North America.
 - a. They scavenge sandy and muddy substrates for annelids, molluscs and other invertebrates.
 - b. The anterior shield is a horseshoe-shaped carapace with two compound eyes.
 - c. A long, unsegmented telson tail projects to the rear.
 - d. They possess book gills that resemble the pages in a book.
- 6. Scorpions
 - a. Scorpions are arachnids and are the oldest terrestrial arthropods known from fossils.
 - b. They are nocturnal and spend the day hidden under a log or rock.
 - c. Pedipalps are large pincerlike appendages; the abdomen ends in a stinger containing venom.
- 7. Ticks and mites number over 25,000 species and outnumber all other arachnids.
 - a. Ticks are parasites that suck blood and sometimes transmit diseases.
 - b. Chiggers are larvae of certain mites and feed on the skin of vertebrates.
- 8. Spiders have a narrow waist separating cephalothorax from abdomen.
 - a. Spiders have numerous simple eyes rather than compound eyes.
 - b. Spider chelicera are modified as fangs with ducts leading from poison glands.
 - c. The abdomen has silk glands; they may spin a web to trap prey.
 - d. Invaginations of the body wall form lamellae (pages) of book lungs.