# CHAPTER 36 DIGESTION AND NUTRITION

## **Chapter Outline**

## **36.1 Digestive Tracts**

- A. General Digestion
  - 1. Most animals need to digest food into small molecules that can cross plasma membranes.
  - 2. Digestion provides the energy needed to carry out routine metabolic activities and maintain homeostasis.
  - 3. The digestive tract ingests food, breaks down food into small molecules that can cross plasma membranes, absorbs these nutrient molecules, and eliminates nondigestible remains.
- B. Incomplete Versus Complete Tracts
  - 1. Planarians are organisms with an **incomplete gut**.
    - a. Planaria are carnivorous and feed largely on smaller aquatic animals.
    - b. Digestive system contains only a mouth, a pharynx, and an intestine.
    - c. To feed, its pharynx extends far beyond the mouth to suck up minute quantities at one time.
    - d. Digestive enzymes in the **gastrovascular cavity** allow some extracellular digestion.
    - e. Digestion is finished intracellularly by cells that line the digestive cavity; food then diffuses to nearby cells.
    - f. The digestive system lacks regions of specialized function.
    - g. The tapeworm relatives of planaria lack a digestive system altogether; they absorb food through a body wall with modified microscopic projections that absorb nutrients from the host.
  - 2. In contrast, the earthworm has a **complete gut**.
    - a. The digestive system is composed of a tube with a mouth and an anus.
    - b. Earthworms feed on decayed organic matter in the soil.
    - c. Different regions of the gut have specialized functions (e.g., ingestion, mechanical digestion, etc.).
    - d. A muscular **pharynx** draws in food with sucking action.
    - e. The **crop** is storage area with expansive walls.
    - f. The **gizzard** has thick muscular walls to grind food.
    - g. Digestion occurs in the intestine, outside of cells or "extracellular."
    - h. The surface area for absorption is increased by an intestinal fold called the typhlosole.
    - i. The undigested remains exit the body at the anus.
- C. Continuous Versus Discontinuous Feeders
  - 1. Clams are **continuous feeders**, often called **filter feeders**.
    - a. Water moves into a mantle cavity through an incurrent siphon and deposits particles on gills.
    - b. Ciliary action moves particles to the labial palps which direct them into the mouth and into the stomach.
    - c. Digestive enzymes from a digestive gland help amoeboid cells in the tract complete digestion.
  - 2. Marine fanworms are sessile filter feeders; only small particles are consumed while large particles are rejected.
  - 3. Baleen whales are active filter feeders; baleen (fringe) filters small krill from water.
  - 4. Squids are an example of discontinuous feeders.
    - a. The head of a squid has ten arms; two arms seize the prey and bring it to the squid's mouth.
    - b. Beaklike jaws and a radula (toothy tongue) reduce the food to pieces.
    - c. The esophagus leads to a stomach that holds food until digestion is complete.
    - d. Discontinuous feeders require a storage region in their gut.
- D. Adaptation to Diet
  - 1. Animals are herbivores (eat plants) or carnivores (eat animals) or omnivores (eat both).
  - 2. Invertebrates demonstrate a wide variety of diets.

- 3. Mammal dentition differs according to their mode of nutrition.
  - a. Omnivores, including humans, have dentition that accommodates both a vegetable and meat diet.
  - b. Omnivore teeth include **incisors** (shearing), **canines** (tearing), **premolars** (grinding), and **molars** (crushing).
  - c. Herbivores have large, flat premolars and molars for grinding plant matter.
  - d. Grazers (e.g., horses) have sharp incisors for clipping off grass and leaves.
  - e. Hard-to-digest plant material requires extensive grinding to disrupt the plant cell walls.
  - f. Animals that feed on plants may have long and complex digestive tracts and bacteria in their digestive tracts that can digest cellulose, producing nutrients that an animal can use.
  - g. Some grazers have a **rumen** to digest chewed grasses; partially digested cud is then rechewed.
  - h. Carnivores' pointed incisors and canines tear off pieces small enough to swallow.
  - i. Meat is rich in protein and fatty acids and is easier to digest than plant material.
  - i. Carnivores have fewer molars for grinding and a shorter digestive tract with less specialization.

## **36.2 Human Digestive Tract**

## A. Human Digestion

- 1. The human digestive tract is a complete tube-within-a-tube system.
- 2. Each part of the digestive system has a specific function.
- 3. Food is never found within the accessory glands, only within the tract itself.
- 4. The digestion of food in humans is an extracellular process.
- 5. Enzymes are secreted into the digestive tract by nearby glands which never contain food themselves.
- 6. Digestion requires a cooperative effort by the production of hormones and the actions of the nervous system.

#### B. Mouth

- 1. Human dentition has many specializations because humans are omnivores.
- 2. Food is chewed in the mouth and mixed with saliva.
  - a. Three pairs of salivary glands secrete saliva by way of ducts into the mouth.
  - b. **Salivary amylase** is the enzyme that begins starch digestion; maltose is the common end product. salivary amylase

starch 
$$+ H_2O \rightarrow maltose$$

- c. Food is manipulated by a muscular tongue containing both touch and pressure receptors.
- d. **Taste buds** are located primarily on the tongue but also on the surface of the mouth; chemical receptors are stimulated by the chemical composition of food.
- e. Food is chewed and mixed with saliva to form a bolus in preparation for swallowing.

## C. The Pharynx and the Esophagus

- 1. The digestive and respiratory passages come together in the pharynx, and then separate.
  - a. During swallowing, the pathway of air to the lungs could be blocked if food entered the trachea.
  - b. The **epiglottis** covers the opening into the **trachea** as muscles move a bolus of food through the pharynx into the esophagus.
- 2. The **esophagus** is a muscular tube that moves swallowed food to the **stomach** by **peristalsis**.

## D. Stomach

- 1. The **stomach** stores liters of partially digested food, freeing humans from continual eating.
- 2. Pioneer work by Dr. William Beaumont revealed much of the stomach's functions in the mid-1800s.
  - a. The French-Canadian fur trapper Alexis St. Martin had an opening (**fistula**) through which Dr. Beaumont could observe his stomach.
  - b. He collected the **gastric juice** produced by cells of **gastric glands**.
  - c. Walls of the stomach contract vigorously and mix food with juices secreted when the food enters.
  - d. Beaumont found that gastric juice contains hydrochloric acid and another digestive substance, pepsin.
  - e. He discovered gastric juices are produced independently of the protective mucous secretions.
  - f. His careful work pioneered the study of the physiology of digestion.
- 3. **Hydrochloric acid (HCl)** lowers pH of the gastric contents to about 2.
  - a. The epithelial lining of the stomach has millions of gastric pits leading to gastric glands.
  - b. This acid kills most bacteria and other microorganisms.
  - c. The low pH also stops the activity of salivary amylase and promotes the activity of pepsin.

| 4. | Pepsin | is a | hydrolytic | enzyme | that acts or | n proteins to | produce peptides. |
|----|--------|------|------------|--------|--------------|---------------|-------------------|
|    |        |      |            |        |              |               |                   |

pepsin

protein +  $H_2O$   $\rightarrow$  peptides

- 5. A thick layer of mucus protects the wall of the stomach and the first part of the duodenum from **HCl** and **pepsin**.
- 6. Ulcers develop when the lining is exposed to digestive action; recent research indicates this is usually due to infection by *Helicobacter pylori* bacteria.
- 7. Stomach contents, a thick, soupy mixture, are called **chyme**.
- 8. At the base of the stomach is a narrow opening controlled by a **sphincter** (a circular muscle valve).
  - a. When the sphincter relaxes, chyme enters the **duodenum**; a neural reflex causes the sphincter to contract, closing off the opening.
  - b. The **duodenum** is the first part of the **small intestine**.
  - c. The sphincter relaxes and allows more chyme to enter the duodenum.
  - d. The slow, rhythmic pace with which chyme exits the stomach allows for thorough digestion.

#### E. Small Intestine

- 1. The human **small intestine** is a coiled muscular tube about three meters long.
- 2. As chyme enters the duodenum, proteins and carbohydrates are partly digested but no fat digestion
- 3. Additional digestion is aided by secretions from the **liver** and the **pancreas**.
  - a. Bile is a secretion of the liver temporarily stored in the gallbladder before being sent to duodenum.
  - b. Bile emulsifies fat; bile is a green byproduct of the breakdown of hemoglobin.
  - c. Bile contains bile salts that help in the emulsification of fat.
    - 1) Emulsification breaks fat globules into microscopic droplets.

bile salts

 $fat \qquad \rightarrow \qquad fat \ droplets$ 

- 2) This increases fat digestion by increasing the surface area of fat globules exposed to enzymes.
- d. **Pancreatic juice** is secreted by the **pancreas** and contains the following:
  - 1) sodium bicarbonate [NaCO<sub>3</sub>] that neutralizes acidity of chyme; the pH of small intestine is slightly basic;
  - 2) pancreatic amylase that digests starch to maltose;

pancreatic amylase

 $starch + H<sub>2</sub>O \rightarrow maltose$ 

3) trypsin and other enzymes that digest protein to peptides; and

protein + 
$$H_2O \rightarrow peptides$$

4) lipase that digests fat droplets to glycerol and fatty acids.

lipase

fat droplets + 
$$H_2O \rightarrow glycerol + fatty acids$$

- e. Epithelial cells of villi produce intestinal enzymes attached to the plasma membrane of microvilli.
- f. Intestinal secretions complete the digestion of peptides and sugars; peptides are digested by peptidases into amino acids

peptidases

peptides + 
$$H_2O \rightarrow$$
 amino acids

g. and maltose from the first step in starch digestion is converted by maltase to glucose maltase

 $maltose + H_2O \rightarrow glucose + glucose$ 

- 5. Large molecules of carbohydrates, proteins and fats are broken into small molecules absorbed by villi. F. Absorption by Villi
  - 1. The mucous membrane lining has ridges and furrows; these surfaces are covered by villi.
    - a. Villi are fingerlike projections whose surface cells are covered by microvilli.
    - b. **Microvilli** are minute projections, called a brush border on the surface of cells of the intestinal villi.

- Ridges, furrows, villi, and microvilli greatly increase the effective surface area of the small intestine.
- 2. The small intestine is specialized for absorption by the huge number of villi that line the intestinal wall.
- 3. If the small intestine was merely a smooth tube, it would have to be 500–600 m long to have a comparable surface area.
- 4. Each villus contains blood vessels and a lymphatic lacteal.
- 5. A **lacteal** is lymphatic vessel in an intestinal villus that aids in absorption of fats.
- 6. Sugars and amino acids enter villi cells and are absorbed into bloodstream.
- 7. Glycerol and fatty acids enter villi cells; reassembled into fat molecules, they move into lacteals.
- 8. Absorption involves diffusion and active transport requiring the expenditure of cellular energy.

### G. Control of Digestive Juices

- 1. **Gastrin** is produced by cells in the gastric glands of the stomach wall; gastrin stimulates gastric glands and increases gastric motility; its secretion is stimulated by a meal rich in protein.
- 2. **Secretin** is produced by cells in the duodenal wall; secretin stimulates the pancreas to secrete fluids rich in NaCO<sub>3</sub> into the duodenum; secretion is stimulated by acid chyme.
- 3. **Cholecystokinin (CCK)** produced by the duodenal wall stimulates the pancreas to increase pancreatic juice and the liver to increase the output of bile; it also causes the gallbladder to release bile; secretion of CCK is stimulated by fats.
- 4. **Gastric inhibitory peptide (GIP)** from the duodenal wall inhibits both gastric gland secretion and stomach motility.

## H. Accessory Organs

- 1. Pancreas
  - a. The **pancreas** lies deep within the abdominal cavity, just below the stomach, and rests on the posterior abdominal wall.
  - b. It is an elongated and somewhat flattened organ.
  - c. As an endocrine gland, it secretes glucagon and insulin hormone into the bloodstream.
  - d. As an exocrine gland, it secretes pancreatic juice.
    - 1) Pancreatic juice contains sodium bicarbonate that neutralizes acidic chyme.
    - 2) Pancreatic enzymes digest carbohydrates, fats and proteins.
- 2. The **liver** is a large glandular organ that fills the top of abdominal cavity, just below the diaphragm.
  - a. Liver has numerous functions:
    - 1) The liver detoxifies blood by removing and metabolizing poisonous substances.
    - 2) The liver makes plasma proteins including albumin and fibrinogen.
    - 3) The liver destroys old red blood cells and converts hemoglobin to bilirubin and biliverdin in bile.
    - 4) It produces bile stored in the **gallbladder** before it enters the duodenum to emulsify fats.
    - 5) It stores glucose as glycogen and breaks down glycogen to maintain a constant blood glucose concentration.
    - 6) The liver produces urea from amino groups and ammonia.
  - b. Blood vessels from both the large and small intestines lead to the liver as the hepatic portal vein.
  - c. The liver maintains the blood glucose level at 0.1% by removing glucose from the hepatic portal vein to store as glycogen; when needed, glycogen is broken down and glucose re-enters the hepatic vein.
  - d. Amino acids can be converted to glucose but deamination (removal of amino groups) must occur.
  - e. Using complex metabolic pathway, the liver converts amino groups to urea.
  - f. Urea is the most common human nitrogenous waste; it is transported by the blood to the kidneys.

#### 3. Liver Disorders

- a. Jaundice is a symptom involving a yellowish skin due to a large amount of bilirubin in blood.
- b. In hemolytic jaundice, the RBCs are broken down in abnormally large amounts.
- c. In *obstructive jaundice*, there is blockage of the bile ducts (gallstones) or damage to liver cells.
- d. Viral hepatitis is a viral liver infection.
  - 1) Hepatitis A results from eating contaminated food.
  - 2) Hepatitis B and C are spread by blood transfusions, kidney dialysis, and unsterile needle use.
  - 3) All three can be caused from sexual contact.
- e. Cirrhosis is a chronic disease where the liver tissue is replaced by fatty tissue and then scar tissue; alcoholics provide too much alcohol for the liver to break down.

## I. Large Intestine

- 1. The **large intestine** is the region following the small intestine.
- 2. It has four parts: the cecum, colon, rectum, and anal canal.
- 3. Appendix
  - a. Th appendix is a fingerlike projection extending from the **cecum**, a blind sac at the junction of small and large intestine.
  - b. It may play a role in fighting infections.
  - c. If infected appendix bursts, it results in general abdominal infection (peritonitis).
- About 1.5 liters of water enter the digestive tract daily from drinking and another 8.5 liters enter from various secretions.
  - a. About 95% of this total liquid is reabsorbed by the small intestine; most of the remainder is absorbed by cells of the colon.
  - If the water is not reabsorbed, it causes diarrhea which can cause a serious dehydration and ion loss.
- 5. The large intestine functions in ion regulation, absorbing salts plus the vitamin K produced by intestinal bacteria.
- 6. The large intestine terminates at the **anus**, an external opening.
- 7. Feces
  - a. Feces consists of about 75% water and 25% solid matter.
  - b. One-third of the the solid matter is intestinal bacteria.
  - c. The remainder is undigested wastes, fats, organic material, mucus, and dead cells from the intestinal lining.
- 8. Intestinal **polyps** are small growths arising from epithelial lining.
  - a. Whether they are benign or cancerous, polyps can be removed surgically.
  - b. A low-fat, high-fiber diet promotes regularity and may provide protection against mutagenic agents.

#### 36.3 Nutrition

- A. A balanced diet, required for good health, includes a properly proportioned variety of foods.
- B. Vitamins
  - 1. **Vitamins** are essential organic compounds the body cannot make but still requires for metabolic activities.
  - 2. Many vitamins are portions of coenzymes: niacin is part of NAD<sup>+</sup> and riboflavin is a part of FAD.
  - 3. Coenzymes are needed in small amounts because they are used over again and again.
  - 4. Vitamin A is not a coenzyme but a precursor for the visual pigment that prevents night blindness.
  - 5. Lack of vitamins results in vitamin deficiencies.
  - 6. The 13 vitamins are divided into those that are fat soluble and those that are water soluble.

### C. Antioxidants

- 1. Cell metabolism generates **free radicals**, unstable molecules with an extra electron; O<sub>3</sub> is a common free radical.
- 2. Free radicals stabilize by eventually donating electrons to another molecule; this damages cellular molecules.
- 3. Free radicals damage DNA, proteins, and other molecules by donating an electron; this may cause cancer or plaque in arteries.
- 4. Vitamins C, E, and A—abundant in fruits and vegetables—are antioxidants that defend against free radicals.
- 5. Supplements do not replace fruits and vegetables that also contain many other beneficial compounds.

#### D. Vitamin D

- 1. Skin cells contain a precursor cholesterol molecule converted to vitamin D by UV light exposure.
- 2. Only a small amount of UV is needed to cause this change.
- 3. Vitamin D leaves the skin and is modified in the kidneys and then in the liver until it becomes calcitriol.
- 4. Calcitriol circulates throughout the body regulating calcium uptake and metabolism.
- 5. Calcitriol promotes absorption of calcium by the intestines.
- 6. The lack of vitamin D leads to rickets in children; poor mineralization of the skeleton causes bowing of the legs.
- 7. Most milk is fortified with vitamin D to prevent rickets.

### E. Minerals

- 1. We require **macrominerals** (e.g., calcium, phosphorus) in amounts of over 100 mg per day.
  - a. They are constituents of cells and body fluids and structural components of tissues.
  - b. Calcium is needed to build bones and teeth and for nerve conduction and muscle contraction.
- 2. **Microminerals** are elements (e.g., zinc, iron) recommended in amounts less than 20 mg per day.
  - a. These microminerals are more likely to have very specific functions.
  - b. Iron is needed to produce hemoglobin; adult females need more due to menstrual loss of blood.
  - c. Iodine is used to produce thyroxin, a hormone of the thyroid glands.
  - Minute amounts of molybdenum, selenium, chromium, nickel, vanadium, silicon, and arsenic are essential.
  - e. Some individuals may not receive enough calcium, stress can cause a magnesium deficiency, and a vegetarian diet may be short on zinc.

## G. Calcium

- Calcium supplements counteract the osteoporosis that afflicts 25% of older men and 50% of older women.
- 2. Porous bones break easily due to lack of calcium.
- 3. After menopause, bone-eating cells called osteoclasts are more active than bone-forming osteoblasts.
- 4. Calcium supplements have been shown to slow bone loss in the elderly.
- 5. Intake of 1,000–1,500 mg calcium/day is recommended; therefore supplemental calcium is usually necessary.
- 6. Exercise is also effective in building bone mass.

### G. Sodium

- 1. The recommended daily intake of sodium is 400–3,300 mg; average American intake is 4,000–4,700 mg.
- 2. A high sodium intake has been linked to hypertension in some people.
- 3. One third of our sodium intake is found naturally in foods; another third is added in processing.
- 4. We add one-third of our salt intake in cooking or as table salt.