Chapter Outline

37.1 Gas Exchange Surfaces

- A. Respiration is the sequence of events that results in gas exchange between the environment and the body's cells.
 - 1. Breathing includes inspiration (bringing air in) and expiration (moving air out).
 - 2. External respiration involves gas exchange with the external environment at a respiratory surface.
 - 3. **Internal respiration** in more complex animals involves gas exchange between the blood and tissue fluid.
- B. Diffusion Accompanies Gas Exchange
 - 1. An effective gas exchange region must be moist, thin, and large in relation to the size of the body.
 - 2. Some animals are small and shaped to allow their surface to be an adequate gas-exchange surface.
 - 3. Larger animals are complex and have a specialized gas-exchange surface.
 - 4. Diffusion improves with vascularization; gas delivery to cells is promoted if the blood contains hemoglobin.

C. Water Environments

- 1. It is more difficult for animals to obtain O_2 from water than from air.
 - a. Water fully saturated with air contains only a fraction of the O₂ as the same volume of air.
 - b. Water is more dense than air; therefore aquatic animals must use more energy to breathe.
 - c. Fishes use up to 25% of their energy to breathe; land mammals use only 1–2% of their energy output to breathe.
- 2. Hydras and planaria have a large surface area in comparison to their size.
 - a. Gas exchange occurs directly across their body surface.
 - b. The hydra's outer cell layer contacts the environment; an inner layer exchanges gases with the water in the gastrovascular cavity.
 - c. The flat body of planaria permits cells to exchange gases with the external environment.
- A tubular shape and vascularized parapodia extensions in polychaete worms provide surface areas for diffusion.
- 4. Aquatic animals often pass water over gills.
 - a. Gills are finely divided and vascularized outgrowths of either an outer or inner body surface.
 - b. Among clams, water is drawn into the mantle cavity and flows over gills.
 - c. Decapod gills are located in brachial chambers under the exoskeleton; water is circulated by special mouthparts.
 - d. Fish gills are outward extensions of the pharynx organized into arches.
 - e. Ventilation is the result of the combined action of the mouth and gill covers.
 - f. When the mouth is open, the opercula are closed and water is drawn in; the mouth then closes and the opercula open, drawing water from the pharynx through gill slits located between the gill arches.
 - g. To the outside of the gill arches are gill **filaments** folded into platelike **lamellae**, each of which contains capillaries; the result is a tremendous surface area for gas exchange.
 - 1) Blood in capillaries of gill lamellae flows in a direction opposite to that of water.
 - This countercurrent flow of water and blood increases the amount of O₂ and CO₂ exchanged.
 - 3) Such a countercurrent mechanism extracts about 80–90% of the initial dissolved O₂ in the water.

D. Land Environments

- 1. Air is a richer source of O₂ than water but air dries out the wet respiratory surfaces; humans lose 350 ml of water per day at 50% relative humidity.
- 2. The earthworm is an invertebrate that uses its body surface for respiration.
 - a. An earthworm expends energy to secrete mucus and release fluids from excretory pores.
 - b. The earthworm is also behaviorally adapted to stay in the moist soil during the day when air is driest.
- 3. Terrestrial insects utilize **tracheal systems**.
 - a. Oxygen enters a tracheal system at **spiracles**, valvelike openings at each side of the body.
 - The tracheae branch and rebranch to end in tiny tracheoles that are in direct contact with body cells.
 - c. Larger insects have air sacs located near major muscles to keep air moving in and out of the trachea.
 - d. The tracheae effectively deliver adequate oxygen to the cells of insects; the circulatory system has no role in gas transport.
- 4. Terrestrial vertebrates have evolved **lungs** for gas exchange.
 - a. Lungs are vascularized outgrowths of the lower pharyngeal region.
 - b. Amphibian lungs are simple, saclike structures, that connect to the external environment by way of two bronchi which connect to a short trachea.
 - 1) Amphibian gas exchange occurs through a skin kept moist by mucus produced by surface glands.
 - 2) In the winter, amphibians burrow in mud and all gas exchange occurs across the skin.
 - 3) Frogs use positive pressure to force air in; nostrils shut and floor of mouth forces air into lungs.
 - c. The lining of the lung becomes progressively more finely divided as we move from amphibians to reptiles to birds and mammals.
 - d. Human lungs have at least 50 times the skin's surface area.
 - e. Reptiles, birds, and mammals use negative pressure to move air into lungs.
 - 1) Jointed ribs are raised and the muscular diaphragm is flattened to expand the lungs.
 - 2) As the thoracic cavity expands, the lung volume increases; air flows in due to the difference in air pressure.
 - 3) By lowering the ribs, pressure is exerted on the lungs, which forces air out.
 - f. The lungs of reptiles, amphibians and mammals are not completely emptied during each breathing cycle.
 - 1) With incomplete ventilation, entering air mixes with used air in lungs.
 - 2) This conserves moisture but decreases gas-exchange efficiency.
 - g. The high oxygen requirements of flying birds requires a **complete ventilation system**.
 - 1) Incoming air is carried past lungs by a bronchus that takes it to set of posterior air sacs.
 - 2) Air then passes forward through lungs into a set of anterior air sacs and is finally expelled.
 - 3) The one-way flow means that oxygen-rich air does not mix with used air; this maximizes gas exchange.

37.2 Human Respiratory System

A. Structure

- 1. The human **respiratory system** includes everything that conducts air to and from the **lungs**; **the** lungs lie deep within the thoracic cavity for protection from drying out.
- 2. Air moves into the nose, then flows past the **pharynx** to the **trachea**, **bronchi** and **lungs**.
 - a. This process filters debris, warms air, and adds moisture.
 - b. When the air reaches the lungs, it is at body temperature and saturated with water.
 - c. The trachea and bronchi are lined with cilia that beat upward carrying mucus, dust, and any food particles that went the wrong route.
 - d. The **hard** and **soft palates** separate nasal cavities from mouth.
 - e. The air and food passages cross in pharynx; the real danger of choking is offset by providing an alternative path for breathing during congestion, and also increasing air intake during exercise.
 - f. Air flows past the pharynx through the **glottis** and into the **larynx**, which is protected by the epiglottis.

- g. At the edges of the glottis are **vocal cords**; as air passes across them, these tissues vibrate creating sounds
- h. From the larynx, air flows down the **trachea** to the **bronchi**.
 - 1) The larynx is held open by cartilage that forms the Adam's apple.
 - 2) The **trachea** walls are reinforced with C-shaped rings of cartilage.
 - 3) As food is swallowed, the larynx rises and the glottis is closed by a flap of tissue called the **epiglottis**.
 - 4) A backward movement of soft palate covers the entrance to the nasal passages; this directs food downward.
- i. The trachea divides into two **bronchi**; C-shaped rings of cartilage diminish as bronchi branch.
- j. Within the lungs, each bronchus branches into numerous **bronchioles** that conduct air to **alveoli**.
- k. **Alveoli** are microscopic air sacs.

B. Breathing

- 1. Humans breathe using negative pressure similar to all other mammals.
- 2. During **inhalation**, lowering the diaphragm and raising the ribs forms a negative pressure by increasing the volume of the thoracic cavity; the air–under greater outside pressure–flows into the lung.
- 3. Increases in the CO₂ and H⁺ concentrations in the blood are the primary stimuli increasing the breathing rate.
 - a. The chemical content of blood is monitored by **chemoreceptors** sensitive to increases in CO₂ and H⁺ concentrations of the blood, but minimally sensitive to decreases in O₂ concentration.
 - b. The **aortic bodies** are chemoreceptors located in the wall of the aortic arch.
 - c. Carotid bodies are chemoreceptors located in the wall of the carotid arteries.
- 4. Information from these goes to a respiratory center in the **medulla oblongata** increasing the breathing rate when CO₂ or H⁺ concentrations increase; this respiratory center is sensitive to blood reaching brain.

C. Gas Exchange and Transport

- 1. Gas exchange between the air in the alveoli and the blood in the pulmonary capillaries is primarily by diffusion.
- 2. Atmospheric air contains little CO₂, but blood flowing in the pulmonary capillaries has a higher concentration of CO₂.
- 3. CO₂ diffuses from higher concentration in the blood across the walls of alveolar capillaries to lower concentration in the air in the alveoli.
- 4. The blood coming into pulmonary capillaries is oxygen poor and the alveolar air is oxygen rich.
- 5. Oxygen diffuses from higher concentration in alveoli across the walls of the alveolar capillaries to the lower concentration in blood.

D. Transport of Oxygen and Carbon Dioxide

1. Most O_2 entering pulmonary capillaries combines with **hemoglobin** (Hb) to form **oxyhemoglobin** (Hb O_2).

 $\begin{array}{ccccc} \text{Hb} & + & \text{O}_2 & \rightarrow & \text{HbO}_2 \\ \text{deoxyhemoglobin oxygen} & & \text{oxyhemoglobin} \end{array}$

- 2. Each **hemoglobin** molecule has four polypeptide chains; each chain folds over an iron-containing heme.
 - a. Each RBC has 250 million hemoglobin molecules.
 - b. Each RBC can carry a billion molecules of O₂ oxyhemoglobin.
 - c. The iron atom of a heme group loosely binds with an O_2 molecule.
- 3. Oxygen-binding ability of hemoglobin can be graphed.
 - a. The percentage of oxygen-binding sites of hemoglobin carrying O₂ varies with **partial pressure** of O₂ (PO₂) in immediate environment.
 - b. The **partial pressure** is the amount of pressure exerted by a particular gas among all of the gases present.
 - c. At a normal partial pressure of O₂ in lungs, hemoglobin becomes practically saturated with O₂.
 - d. But at the O_2 partial pressures in the tissues, oxyhemoglobin quickly unloads much of its O_2 . $HbO_2 \rightarrow Hb + O_2$
 - e. The acid pH and warmer temperature of the tissues also promote this dissociation.

- 4. In tissues, some hemoglobin combines with CO₂ to form **carbaminohemoglobin**.
- 5. However, most CO₂ is transported in form of **bicarbonate ion** (HCO₃⁻).
 - a. First CO₂ combines with water, forming **carbonic acid** (H₂CO₃).
 - b. Then this dissociates to a H⁺ and a HCO₃⁻

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$$

carbonic acid bicarbonate ion

- c. Carbonic anhydrase, an enzyme in red blood cells, speeds this reaction.
- d. Release of H⁺ ions could drastically lower blood pH; however, the hydrogen ions are absorbed by the globin portions of hemoglobin and the HCO₃⁻ diffuses out of the RBCs and into the plasma.
- e. Hemoglobin combines with H⁺ ions as **reduced hemoglobin** (**HHb**); HHb plays a vital role in maintaining normal blood pH.
- f. As blood enters the pulmonary capillaries, most of the CO₂ is in plasma as HCO₃.
- g. The little free CO₂ remaining diffuses out of the blood across the walls of the pulmonary capillaries and into alveoli.
- h. Any decrease in plasma CO₂ concentration causes the following reaction also catalyzed by carbonic anhydrase:

$$H^+ + HCO_3^- \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O$$

i. At same time, hemoglobin unloads H⁺ and HHb becomes Hb.

37.3 Respiration and Health

- A. Upper Respiratory Tract Infections (URI)
 - 1. The entire respiratory tract has a warm, wet, mucous membrane lining exposed to environmental air.
 - 2. The upper respiratory tract consists of nose, pharynx and larynx.
 - 3. **Strept throat** is a severe infection caused by the bacteria *Streptococcus pyogenes* resulting in a high fever and difficulty swallowing and it can lead to a systemic infection.
 - 4. **Sinusitis** is infection of the sinuses; 1–3% of upper respiratory infections are accompanied by sinusitis.
 - 5. **Tonsillitis** occurs when the tonsils and adenoids of the pharynx are inflamed as a first line of defense.
 - 6. **Laryngitis** is an infection of the larynx causing hoarseness and an inability to talk.
 - 7. Persistent hoarseness without any upper respiratory infection is one of the warning signs of **cancer**.
- B. Lower Respiratory Tract Disorders
 - 1. **Acute bronchitis** is an infection of the primary and secondary bronchi and is usually preceded by a viral URI.

2. Pneumonia

- a. Pneumonia is usually caused by a bacterial or viral lung infection.
- b. The bronchi and alveoli fill with fluid.
- c. Pneumonia can be localized in specific lobules.
- d. AIDS patients are subject to a rare form of pneumonia caused by the protozoan *Pneumocystis carinii*.

3. Pulmonary Tuberculosis

- a. Tuberculosis is caused by the tubercle bacillus, a type of bacterium.
- b. A TB skin test is a highly diluted extract of the bacilli injected into the patient's skin; if a person has been exposed, the immune response will cause an area of inflammation.
- c. Bacilli that invade lung tissue are isolated by the lung tissue in tiny capsules called tubercles.
- d. If the person is highly resistant, the imprisoned bacteria die.
- e. If the person is not resistant, the bacteria can eventually be liberated.
- f. A chest X ray detects active tubercles.
- g. Appropriate drug therapy can ensure localization and the eventual destruction of live bacteria
- h. Resurgence has accompanied increases in AIDS, homeless, and poor.
- i. The new strains are resistant to standard antibiotics.

C. Pulmonary Disorders

1. Pulmonary Fibrosis

- a. Inhaling particles of silica, coal dust, fiberglass and asbestos can lead to **pulmonary fibrosis**.
- b. These agents result in a build up of fibrous connective tissue; then the lungs cannot inflate properly.
- c. Asbestos was used widely for fireproofing and widespread exposure occurred; it is estimated that a possible 2 million deaths could be caused by asbestos between 1990 and 2020.

2. Chronic Bronchitis

- a. Airways are inflamed and filled with mucus; often a cough brings mucus up.
- b. The bronchi degenerate, losing cilia and normal cleansing action and making an infection likely.
- c. Smoking cigarettes and cigars is the most common cause but other pollutants are also involved.

3. Emphysema

- a. Emphysema is a chronic and incurable disorder; it involves distended and damaged alveoli.
- b. The lungs often balloon due to trapped air and ineffective alveoli.
- b. Emphysema is often preceded by chronic bronchitis.
- The elastic recoil of the lungs is reduced and the airways are narrowed, making expiration difficult.
- d. Since the surface area for gas exchange is reduced, insufficient O₂ reaches the heart and the brain.
- e. This triggers the heart to work furiously to force more blood through lungs; this can then lead to a heart condition.
- f. Lack of oxygen to the brain makes the patient feel depressed, sluggish, and irritable.
- g. Exercise, drug therapy, and supplemental oxygen may relieve the symptoms and slow the progress.

4. Asthma

- Asthma is a disease of the bronchi and bronchioles; it causes wheezing, breathlessness and a cough.
- b. The airways are sensitive to specific allergens (e.g., pollen, dust, cold air, etc.)
- c. Exposure to the irritant causes the smooth muscle in bronchi to spasm; chemical mediators given off by the immune cells in the bronchioles result in the spasms.
- d. Bronchial inflammation reduces the diameter of the airways.
- e. Special Inhalers can control the inflammation and sometimes prevent an attack; other inhalers can stop muscle spasms.

5. Lung Cancer

- a. Formerly more common in men, lung cancer now surpasses breast cancer as cause of death in women due to smoking.
- b. Lung cancer develops in the lung tissue in steps.
 - 1) First, a thickening and callusing of the cells lining the bronchi appears.
 - 2) Cilia are lost so it becomes impossible to prevent dust and dirt from settling in the lungs.
 - 3) Next, cells with atypical nuclei appear in the callused lining.
 - 4) A tumor consisting of disordered cells with atypical nuclei develops as **cancer** *in situ* (cancer at one location).
 - 5) When some tumor cells break free and penetrate other tissue (metastasis), the cancer spreads.
 - 6) A tumor may grow until the bronchus is blocked, cutting off the air supply to the lungs.
 - 7) The entire lung then collapses; the trapped secretions become infected causing pneumonia or lung abscess.
- c. The only treatment is surgery (pneumonectomy) where a lobe or whole lung is removed before the cancer has been able to spread.