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After studying this chapter, you should be able to:

• Describe a multivariate normal distribution.
• Explain when a discriminant analysis could be conducted.
• Interpret the results of a discriminant analysis.
• Explain when a factor analysis could be conducted.
• Differentiate between principal components and factors.
• Interpret factor analysis results.
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A couple living in a suburb of Chicago, earning
a modest living on salaries and claiming only
small and reasonable deductions on their taxes,
nonetheless gets audited by the IRS every year.

The reason: The couple has 21 children. A formula residing deep inside the big IRS
computer in West Virginia plucks taxpayers for audit based on the information on
their tax returns. The formula is a statistical one and constitutes one of the advanced
methods described in this chapter. The technique is called discriminant analysis. This
example shows how not to use statistics, since the IRS has never been able to collect
additional tax from this couple. And the IRS’s discriminant analysis makes a variety
of other errors with thousands of taxpayers.1 Used correctly, however, discriminant
analysis can lead to a reasonable breakdown of a population into two categories (in
this example: the category of people who owe more tax and the category of people
who do not owe more tax). This multivariate technique will be introduced in this
chapter, along with a few others.

Multivariate statistical methods, or simply multivariate methods, are statistical
methods for the simultaneous analysis of data on several variables. Suppose that a com-
pany markets two related products, say, toothbrushes and toothpaste. The company’s
marketing director may be interested in analyzing consumers’ preferences for the two
products. The exact type of analysis may vary depending on what the company needs
to know. What distinguishes the analysis—whatever form it may take—is that it should
consider people’s perceptions of both products jointly. Why? If the two products are
related, it is likely that consumers’ perceptions of the two products will be correlated.
Incorporating knowledge of such correlations in our analysis makes the analysis
more accurate and more meaningful.

Recall that regression analysis and correlation analysis are methods involving sev-
eral variables. In a sense, they are multivariate methods even though, strictly speak-
ing, in regression analysis we make the assumption that the independent variable or
variables are not random but are fixed quantities. In this chapter, we discuss statistical
methods that are usually referred to as multivariate. These are more advanced than
regression analysis or simple correlational analysis. In a multivariate analysis, we usu-
ally consider data on several variables as a single element—for example, an ordered
set of values such as (x1, x2, x3, x4) is considered a single element in an analysis that
concerns four variables. In the case of the analysis of consumers’ preference scores
for two products, we will have a consumer’s response as the pair of scores (x1, x2),
where x1 is the consumer’s preference for the toothbrush, measured on some scale, and
x2 is his or her preference for the toothpaste, measured on some scale. In the analysis,
we consider the pair of scores (x1, x2) as one sample point. When k variables are
involved in the analysis, we will consider the k-tuple of numbers (x1, x2, . . . , xk ) as one
element—one data point. Such an ordered set of numbers is called a vector. Vectors
form the basic elements of our analysis in this chapter.

As you recall, the normal distribution plays a crucial role in most areas of statistical
analysis. You should therefore not be surprised that the normal distribution plays an
equally important role in multivariate analysis. Interestingly, the normal distribution is
easily extendable to several variables. As such, it is the distribution of vector random
variables of the form X = (X1, X2, X3, . . . , Xk). The distribution is called the multivariate
normal distribution. When k = 2, the bivariate case, we have a two-dimensional nor-
mal distribution. Instead of a bell-shaped curve, we have a (three-dimensional)
bell-shaped mound as our density function. When k is greater than 2, the probability
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1More on the IRS’s use of statistics can be found in A. Aczel, How to Beat the IRS at Its Own Game, 2d ed. (New York:
Four Walls, 1995).



function is a surface of higher dimensionality than 3, and we cannot graph it. The
multivariate normal distribution will be discussed in the next section. It forms the
basis for multivariate methods.

17–2 The Multivariate Normal Distribution
In the introduction, we mentioned that in multivariate analysis our elements are vec-
tors rather than single observations. We did not define a vector, counting on the intu-
itive interpretation that a vector is an ordered set of numbers. For our purposes, a
vector is just that: an ordered set of numbers, with each number representing a value
of one of the k variables in our analysis.
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A k-dimensional random variable X is

X = (X1, X2, . . . , Xk) (17–1)

where k is some integer.

A joint cumulative probability distribution function of a k-dimensional
random variable X is

F(x1, x2, . . . , xk) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk) (17–3)

A realization of a k-dimensional random variable X is

x = (x1, x2, . . . , xk) (17–2)

A realization of the random variable X is a drawing from the populations of values
of the k variables and will be denoted, as usual, by lowercase letters.

Thus, in our simple example of consumer preferences for two products, we will be
interested in the bivariate (two-component) random variable X = (X1, X2 ), where X1
denotes a consumer’s preference for the toothbrush and X2 is the same consumer’s
preference for the toothpaste. A particular realization of the bivariate random vari-
able may be (89, 78). If this is a result of random sampling from a population, it
means that the particular sampled individual rates the toothbrush an 89 (on a scale of
0 to 100) and the toothpaste a 78.

For the k-dimensional random variable X = (X1, X2, X3, . . . , Xk ), we may define
a cumulative probability distribution function F (x1, x2, x3, . . . , xk ). This is a joint
probability function for all k random variables Xi , where i = 1, 2, 3, . . . , k.

Equation 17–3 is a statement of the probability that X1 is less than or equal to some
value x1, and x2 is less than or equal to some value x2, and . . . and Xk is less than or
equal to some value xk. In our simple example, F (55, 60) is the joint probability that
a consumer’s preference score for the toothbrush is less than or equal to 55 and that
his or her preference score for the toothpaste is less than or equal to 60.

The multivariate normal distribution is an extension of the normal curve to several
variables—it is the distribution of a k-dimensional vector random variable.



The multivariate normal distribution is an essential element in multivariate statis-
tical techniques. Most such techniques assume that the data (on several variables),
and the underlying multivariate random variable, are distributed according to a mul-
tivariate normal distribution. Figure 17–1 shows a bivariate (two-dimensional) normal
probability density function.

17–3 Discriminant Analysis
A bank is faced with the following problem: Due to economic conditions in the area
the bank serves, a large percentage of the bank’s mortgage holders are defaulting on
their loans. It therefore is very important for the bank to develop some criteria for
making a statistical determination about whether any particular loan applicant is likely
to be able to repay the loan. Is such a determination possible?

There is a very useful multivariate technique aimed at answering such a question.
The idea is very similar to multiple regression analysis. In multiple regression, we try
to predict values of a continuous-scale variable—the dependent variable—based on the
values of a set of independent variables. The independent variables may be continu-
ous, or they may be qualitative (in which case we use dummy variables to model
them, as you recall from Chapter 11). In discriminant analysis, the situation is sim-
ilar. We try to develop an equation that will help us predict the value of a dependent
variable based on values of a set of independent variables. The difference is that the
dependent variable is qualitative. In the bank loan example, the qualitative dependent
variable is a classification: repay or default. The independent variables that help us
make a classification of the loan outcome category may be family income, family
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A multivariate normal random variable has the probability density function

f(x1, x2, . . . , xk) = (17–4)

where X is the vector random variable defined in equation 17–1; the term
� = (�1, �2, . . . , �k) is the vector of means of the component variables Xj ; and
∑ is the variance-covariance matrix. The operations ’ and �1 are transposition
and inversion of matrices, respectively, and � � denotes the determinant of a
matrix.
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FIGURE 17–1 The Bivariate Normal Probability Density Function
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assets, job stability (number of years with present employer), and any other variables
we think may have an effect on whether the loan will be repaid. There is also an
option where the algorithm itself chooses which variables should be included in the
prediction equation. This is similar to a stepwise regression procedure.

If we let our dependent, qualitative variable be D and we consider k independent
variables, then our prediction equation has the following form.
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The form of an estimated prediction equation is

D = b0 + b1X1 + b2X2 + · · · + bkXk (17–5)

where the bi, i = 1, . . . , k, are the discriminant weights—they are like the
estimated regression coefficients in multiple regression; b0 is a constant.

FIGURE 17–2 Maximizing the Separation between Two Groups
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Developing a Discriminant Function
In discriminant analysis, we aim at deriving the linear combination of the independ-
ent variables that discriminates best between the two or more a priori defined groups
(the repay group versus the default group in the bank loan example). This is done by
finding coefficient estimates bi in equation 17–5 that maximize the among-groups
variation relative to the within-groups variation.

Figure 17–2 shows how we develop a discriminant function. We look for a direc-
tion in space, a combination of variables (here, two variables, X1 and X2) that maximizes
the separation between the two groups. As seen in the figure, if we consider only the X2
component of every point in the two groups, we do not have much separation
between the two groups. Look at the data in Figure 17–2 from the direction specified
by having the eye located by the X2 axis. As you see from your vantage point, the two
groups overlap, and some of the upper points in group 2 look as if they belong
in group 1. Now look at the data with the eye located below the X1 axis. Here you
have better separation between the two groups. From this vantage point, however,



the points blend together into one big group, and you will still not be able to easily
classify a point as belonging to a single group based solely on its location. Now look
at the data with the eye above and perpendicular to line L. Here you have perfect
separation of the two groups, and if you were given the coordinate along line L of a
new point, you would probably be able to logically classify that point as belonging to
one group or the other. (Such classification will never be perfect with real data because
there will always be the chance that a point belonging to population 1 will somehow
happen to have a low X2 component and/or a large X1 component that would throw
it into the region we classify as belonging to population 2.) In discriminant analysis,
we find the combination of variables (i.e., the direction in space) that maximizes the
discrimination between groups. Then we classify new observations as belonging to
one group or the other based on their score on the weighted combination of variables
chosen as the discriminant function.

Since in multivariate analysis we assume that the points in each group have a mul-
tivariate normal distribution (with possibly different means), the marginal distribution
of each of the two populations, when viewed along the direction that maximizes the
differentiation between groups, is univariate normal. This is shown in Figure 17–3.

The point C on the discriminant scale is the cutting score. When a data point gets
a score smaller than C, we classify that point as belonging to population 1; and when a
data point receives a score greater than C, we classify that point as belonging to popu-
lation 2. This assumes, of course, that we do not know which population the point really
belongs to and we use the discriminant function to classify the point based on the values
the point has with respect to the independent variables. In our bank loan example,
we use the variables family income, assets, job stability, and other variables to estimate
a discriminant function that will maximize the differences (i.e., the multivariate dis-
tance) between the two groups: the repay group and the default group. Then, when
new applicants arrive, we find their score on our discriminant scale and classify the
applicants as to whether we believe they are going to repay or default. Errors will, of
course, occur. Someone we classify as a defaulter may (if given the loan) actually repay
it, and someone we classify in the repay group may not.

Look at Figure 17–3. There is an area under the univariate normal projection
of group 1 to the right of C. This is the probability of erroneously classifying an
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FIGURE 17–3 The Discriminant Function
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observation in population 1 as belonging to population 2. Similarly, the area under the
right-hand normal curve to the left of the cutting score C is the probability of misclas-
sifying a point that belongs to population 2 as being from population 1.

When the population means of the two groups are equal, there is no discrimination
between the groups based on the values of the independent variables considered in the
analysis. In such a case, the univariate normal distributions of the discriminant scores
will be identical (the two curves will overlap). The reason the curves overlap is due to
the model assumptions. In discriminant analysis, we assume that the populations under
study have multivariate normal distributions with equal variance-covariance matrices
and possibly different means.

Evaluating the Performance of the Model
We test the accuracy of our discriminant function by evaluating its success rate when
the function is applied to cases with known group memberships. It is best to withhold
some of our data when we carry out the estimation phase of the analysis, and then
use the withheld observations in testing the accuracy of the predictions based on our
estimated discriminant function. If we try to evaluate the success rate of our discrim-
inant function based only on observations used in the estimation phase, then we run
the risk of overestimating the success rate. Still, we will use our estimation data in esti-
mating the success rate because withholding many observations for use solely in
assessing our classification success rate is seldom efficient. A classification summary
table will be produced by the computer. This table will show us how many cases were
correctly classified and will also report the percentage of correctly classified cases in
each group. This will give us the hit rate or hitting probabilities.

We assume that the cost of making one kind of error (classifying an element as
belonging to population 1 when the element actually belongs to population 2) is
equal to the cost of making the other kind of error (classifying an element as belong-
ing to population 2 when the element actually belongs to population 1). When the
costs are unequal, an adjustment to the procedure may be made.

The procedure may also be adjusted for prior probabilities of group membership.
That is, when assigning an element to one of the two groups, we may account not only
for its discriminant score, but also for its prior probability of belonging to the particular
population, based on the relative size of the population compared with the other popu-
lations under study. In the bank loan example, suppose that defaulting on the loan is a
very rare event, with a priori probability 0.001. We may wish to adjust our discriminant
criterion to account for this fact, appropriately reducing our rate of classifying people
as belonging to the default category. Such adjustments are based on the use of Bayes’
theorem. We demonstrate discriminant analysis with the example we used at the begin-
ning of this section, the bank loan example, which we will call Example 17–1.
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The bank we have been discussing has data on 32 loan applicants. Data are available
on each applicant’s total family assets, total family income, total debt outstanding,
family size, number of years with present employer for household head, and a quali-
tative variable that equals 1 if the applicant has repaid the loan and 0 if he or she has
not repaid the loan. Data are presented in Table 17–1. The bank will use the data to
estimate a discriminant function. The bank intends to use this function in classifying
future loan applicants.

E X A M P L E  1 7 – 1

The data, a random sample of 32 cases, are analyzed using the SPSS program
DISCRIMINANT. The output of the analysis is given in the following figures. We
use a stepwise procedure similar to stepwise multiple regression. At each stage, the
computer chooses a variable to enter the discriminant function. The criterion for
entering the equation may be specified by the user. Here we choose the Wilks lambda

S o l u t i o n



criterion. The variable to enter is the variable that best fits the entry requirements in
terms of the associated Wilks lambda value. Variables may enter and leave the equa-
tion at each step in the same way that they are processed in stepwise regression. The
reason for this is that multicollinearity may exist. Therefore, we need to allow variables
to leave the equation once other variables are in the equation. Figure 17–4 shows the
variables that enter and leave the equation at each stage of the discriminant analysis.

We see that the procedure chose total family assets, total debt, and family size as the
three most discriminating variables between the repay and the default groups. The
summary table in Figure 17–4 shows that all three variables are significant, the largest
p value being 0.0153. The three variables have some discriminating power. Figure 17–5
shows the estimated discriminant function coefficients. The results in the figure give
us the following estimated discriminant function:
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TABLE 17–1 Data of Example 17–1 (assets, income, and debt, in thousands of dollars)

Number of
Years with

Assets Income Debt Family Size Present Employer Repay/Default

98 35 12 4 4 1
65 44 5 3 1 1
22 50 0 2 7 1
78 60 34 5 5 1
50 31 4 2 2 1
21 30 5 3 7 1
42 32 21 4 11 1
20 41 10 2 3 1
33 25 0 3 6 1
57 32 8 2 5 1
8 23 12 2 1 0
0 15 10 4 2 0

12 18 7 3 4 0
7 21 19 4 2 0

15 14 28 2 1 0
30 27 50 4 4 0
29 18 30 3 6 0
9 22 10 4 5 0

12 25 39 5 3 0
23 30 65 3 1 0
34 45 21 2 5 0
21 12 28 3 2 1
10 17 0 2 3 1
57 39 13 5 8 0
60 40 10 3 2 1
78 60 8 3 5 1
45 33 9 4 7 0
9 18 9 3 5 1

12 23 10 4 4 1
55 36 12 2 5 1
67 33 35 2 4 1
42 45 12 3 8 0

D = �0.995 �0.0352 ASSETS � 0.0429 DEBT 
�  0.483 FAMILY SIZE (17–6)



-------------- VARIABLES NOT IN THE ANALYSIS AFTER STEP   1 --------------

VARIABLE  TOLERANCE  F TO REMOVE   WILKS’ LAMBDA

ASSETS    1.0000000     6.6152

                      MINIMUM

VARIABLE  TOLERANCE  TOLERANCE  F TO ENTER    WILKS’ LAMBDA

INCOME    0.5784563  0.5784563  0.90821E-02      0.81908

DEBT      0.9706667  0.9706667   6.0662          0.67759

FAMSIZE   0.9492947  0.9492947   3.9269          0.72162

JOB       0.9631433  0.9631483   0.47688E-06     0.81933

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP   1

EACH F STATISTIC HAS   1 AND       30.0 DEGREES OF FREEDOM.

                 GROUP        0

   GROUP

       1                 6.6152

                         0.0153

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

AT STEP 2, DEBT       WAS INCLUDED IN THE ANALYSIS.

                             DEGREES OF FREEDOM   SIGNIF.  BETWEEN GROUPS

WILKS’ LAMBDA    0.67759        2   1      30.0

EQUIVALENT F     6.89923            2      29.0   0.0035

---------------- VARIABLES IN THE ANALYSIS AFTER STEP   2 -----------------

-------------------------- D I S C R I M I N A N T  A N A L Y S I S

ON GROUPS DEFINED BY REPAY

ANALYSIS NUMBER       1

STEPWISE VARIABLE SELECTION

SELECTION RULE:  MINIMIZE WILKS’ LAMBDA

    MAXIMUM NUMBER OF STEPS. . . . . . . . . .      10

    MINIMUM TOLERANCE LEVEL. . . . . . . . . . 0.00100

    MINIMUM F TO ENTER . . . . . . . . . . . .  1.0000

    MAXIMUM F TO REMOVE. . . . . . . . . . . .  1.0000

CANONICAL DISCRIMINANT FUNCTIONS

    MAXIMUM NUMBER OF FUNCTIONS. . . . . . . . . .  1

    MINIMUM CUMULATIVE PERCENT OF VARIANCE . . 100.00

    MAXIMUM SIGNIFICANCE OF WILKS’ LAMBDA. . . 1.0000

PRIOR PROBABILITY FOR EACH GROUP IS 0.50000

-------------- VARIABLES NOT IN THE ANALYSIS AFTER STEP   0 --------------

                      MINIMUM

VARIABLE  TOLERANCE  TOLERANCE  F TO ENTER    WILKS’ LAMBDA

ASSETS    1.0000000  1.0000000    6.6152          0.81933

INCOME    1.0000000  1.0000000    3.0672          0.90724

DEBT      1.0000000  1.0000000    5.2263          0.85164

FAMSIZE   1.0000000  1.0000000    2.5292          0.92225

JOB       1.0000000  1.0000000    0.24457         0.99191

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

AT STEP   1, ASSETS   WAS INCLUDED IN THE ANALYSIS.

                                DEGREES OF FREEDOM  SIGNIF.  BETWEEN GROUPS

WILKS’ LAMBDA        0.81933    1     1       30.0

EQUIVALENT F         6.61516          1       30.0   0.0153

FIGURE 17–4  SPSS-Produced Stepwise Discriminant Analysis for Example 17–1
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FIGURE 17–5
SPSS-Produced Estimates of
the Discriminant Function
Coefficients for Example 17–1

UNSTANDARDIZED CANONICAL

DISCRIMINANT FUNCTION

COEFFICIENTS

FUNC 1

ASSETS -0.3522450E-01

DEBT 0.4291038E-01

FAMSIZE 0.4882695

(CONSTANT) -0.9950070

VARIABLE  TOLERANCE  F TO REMOVE   WILKS’ LAMBDA

ASSETS    0.9706667    7.4487          0.85164

DEBT      0.9706667    6.0662          0.81933

-------------- VARIABLES NOT IN THE ANALYSIS AFTER STEP   2 --------------

                      MINIMUM

VARIABLE  TOLERANCE  TOLERANCE  F TO ENTER    WILKS’ LAMBDA

INCOME    0.5728383  0.5568120  0.17524E-01      0.67717

FAMSIZE   0.9323959  0.9308959  2.2214           0.62779

JOB       0.9105435  0.9105435  0.27914          0.67091

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP   2

EACH F STATISTIC HAS   2 AND       29.0 DEGREES OF FREEDOM.

                   GROUP        0

     GROUP

         1                 6.8992

                           0.0035

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

 

AT STEP   3, FAMSIZE WAS INCLUDED IN  THE ANALYSIS.

                                DEGREES OF FREEDOM   SIGNIF.  BETWEEN GROUPS

WILKS’ LAMBDA        0.62779       3     1    30.0

EQUIVALENT F         5.53369             3    28.0    0.0041

FIGURE 17–4  (Continued)

---------------- VARIABLES IN THE ANALYSIS AFTER STEP   3 ----------------- 

VARIABLE  TOLERANCE  F TO REMOVE   WILKS’ LAMBDA

ASSETS    0.9308959    8.4282          0.81676

DEBT      0.9533874    4.1849          0.72162

FAMSIZE   0.9323959    2.2214          0.67759

-------------- VARIABLES NOT IN THE ANALYSIS AFTER STEP   3 --------------

                      MINIMUM

VARIABLE  TOLERANCE  TOLERANCE  F TO ENTER    WILKS’ LAMBDA

INCOME    0.5725772  0.5410775  0.24098E-01      0.62723

JOB       0.8333526  0.8333526  0.86952E-02      0.62759

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP  3

EACH F STATISTIC HAS   3 AND       28.0 DEGREES OF FREEDOM.

                 GROUP        0

   GROUP

       1                 5.5337

                         0.0041

F LEVEL OR TOLERANCE OR VIN INSUFFICIENT FOR FURTHER COMPUTATION

                                    SUMMARY TABLE

          ACTION      VARS  WILKS’

STEP ENTERED REMOVED   IN   LAMBDA    SIG.    LABEL

  1  ASSETS             1   .81933   .0153

  2  DEBT               2   .67759   .0035

  3  FAMSIZE            3   .62779   .0041

The cutting score is zero. Discriminant scores greater than zero (i.e., positive scores)
indicate a predicted membership in the default group (population 0), while negative
scores imply predicted membership in the repay group (population 1). This can be seen
by looking at the predicted group membership chart, Figure 17–6. The figure shows all
cases used in the analysis. Since we have no holdout sample for testing the effectiveness
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of prediction of group membership, the results are for the estimation sample only. For
each case, the table gives the actual group to which the data point (person, in our example)
belongs. A double asterisk (**) next to the actual group indicates that the point was incor-
rectly classified. The next column, under the heading “Highest Probability: Group,” gives
the predicted group membership (0 or 1) for every element in our sample.

In a sense, the hit ratio, the overall percentage of cases that were correctly classi-
fied by the discriminant function, is similar to the R2 statistic in multiple regression.
The hit ratio is a measure of how well the discriminant function discriminates
between groups. When this measure is 100%, the discrimination is very good; when
it is small, the discrimination is poor. How small is “small”? Let us consider this prob-
lem logically. Suppose that our data set contains 100 observations: 50 in each of the
two groups. Now, if we arbitrarily assign all 100 observations to one of the groups, we
have a 50% prediction accuracy! We should expect the discriminant function to give
us better than 50% correct classification ratio; otherwise we can do as well without it.
Similarly, suppose that one group has 75 observations and the other 25. In this case,
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FIGURE 17–6 Predicted Group Membership Chart for Example 17–1

CASE MIS ACTUAL HIGHEST PROBABILITY 2ND HIGHEST DISCRIMINANT

SEGNUM VAL SEL GROUP GROUP P(D/G) P(G/D) GROUP P (G/D) SCORES...

1 1 1 0.1798 0.9587 0 0.0413 �1.9990

2 1 1 0.3357 0.9293 0 0.0707 �1.6202

3 1 1 0.8840 0.7939 0 0.2061 �0.8034

4 1 ** 0 0.4761 0.5146 1 0.4854 0.1328

5 1 1 0.3368 0.9291 0 0.0709 �1.6181

6 1 1 0.5571 0.5614 0 0.4386 �0.0704

7 1 ** 0 0.6272 0.5986 1 0.4014 0.3598

8 1 1 0.7236 0.6452 0 0.3548 �0.3039

9 1 1 0.9600 0.7693 0 0.2307 �0.7076

10 1 1 0.3004 0.9362 0 0.0638 �1.6930

11 0 0 0.5217 0.5415 1 0.4585 0.2047

12 0 0 0.6018 0.8714 1 0.1286 1.3672

13 0 0 0.6080 0.5887 1 0.4113 0.3325

14 0 0 0.5083 0.8932 1 0.1068 1.5068

15 0 0 0.8409 0.6959 1 0.3041 0.6447

16 0 0 0.2374 0.9481 1 0.0519 2.0269

17 0 0 0.9007 0.7195 1 0.2805 0.7206

18 0 0 0.8377 0.8080 1 0.1920 1.0502

19 0 0 0.0677 0.9797 1 0.0203 2.6721

20 0 0 0.1122 0.9712 1 0.0288 2.4338

21 0 ** 1 0.7395 0.6524 0 0.3476 �0.3250

22 1 ** 0 0.9432 0.7749 1 0.2251 0.9166

23 1 1 0.7819 0.6711 0 0.3289 �0.3807

24 0 ** 1 0.5294 0.5459 0 0.4541 �0.0286

25 1 1 0.5673 0.8796 0 0.1204 �1.2296

26 1 1 0.1964 0.9557 0 0.0443 �1.9494

27 0 ** 1 0.6916 0.6302 0 0.3698 �0.2608

28 1 ** 0 0.7479 0.6562 1 0.3438 0.5240

29 1 ** 0 0.9211 0.7822 1 0.2178 0.9445

30 1 1 0.4276 0.9107 0 0.0893 �1.4509

31 1 1 0.8188 0.8136 0 0.1864 �0.8866

32 0 ** 1 0.8825 0.7124 0 0.2876 �0.5097



In our example, the discriminant function passes both of these tests. The pro-
portions of people in each of the two groups are 14�32 = 0.4375, and 18�32 =
0.5625. From Figure 17–7, we know that the hit ratio of the discriminant function
is 0.7188 (71.88%). This figure is much higher than that we could obtain by arbi-
trary assignment (56.25%). The proportional chance criterion, equation 17–7, gives
us C = (0.4375)2 � (0.5625)2 = 0.5078. The hit ratio is clearly larger than this crite-
rion as well. While the hit ratio is better than expected under arbitrary classifica-
tion, it is not great. We would probably like to have a greater hit ratio if we were
to classify loan applicants in a meaningful way. In this case, over 28% may be
expected to be incorrectly classified. We must also keep in mind two facts: (1) Our
sample size was relatively small, and therefore our inference may be subject to large
errors; and (2) our hit ratio is overestimated because it is based on the estimation
data. To get a better idea, we would need to use the discriminant function in classi-
fying cases not used in the estimation and see how well the function performs with
this data set.

Figure 17–8 shows the locations of the data points in the two groups in relation to
their discriminant scores. It is a map of the locations of the two groups along the
direction of greatest differentiation between the groups (the direction of the discrimi-
nant function). Note the overlap of the two groups in the middle of the graph and the
separation on the two sides. (Group 0 is denoted by 1s and group 1 by 2s.)

Discriminant Analysis with More Than Two Groups
Discriminant analysis is extendable to more than two groups. When we carry out an
analysis with more than two groups, however, we have more than one discriminant
function. The first discriminant function is the function that discriminates best among
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FIGURE 17–7 Summary Table of Classification Results for Example 17–1

The proportional chance criterion is

C � p2 � (1 � p)2 (17–7)

where p is the proportion of observations in one of the two groups (given as
a decimal quantity).

CLASSIFICATION RESULTS -

NO. OF PREDICTED GROUP MEMBERSHIP

ACTUAL GROUP CASES 0 1

GROUP 0 14 10 4

71.4% 28.6%

GROUP 1 18 5 13

27.8% 72.2%

PERCENT OF ‘GROUPED’ CASES CORRECTLY CLASSIFIED: 71.88%

we get 75% correct classification if we assign all our observations to the large group.
Here the discriminant function should give us better than 75% correct classification
if it is to be useful.

Another criterion for evaluating the success of the discriminant function is the
proportional chance criterion.



the r groups. The second discriminant function is a function that has zero correlation
with the first and has second-best discriminating power among the r groups, and so
on. With r groups, there are r � 1 discriminant functions. Thus, with three groups, for
example, there are two discriminant functions.

For Example 17–1, suppose that the bank distinguishes three categories: people
who repay the loan (group 1), people who default (group 0), and people who have
some difficulties and are several months late with payments, but do not default
(group 2). The bank has data on a random sample of 46 people, each person falling
into one of the three categories. Figure 17–9 shows the classification probabilities and
the predicted groups for the new analysis. The classification is based on scores on
both discriminant functions. The discriminant scores of each person on each of
the two discriminant functions are also shown. Again, double asterisks denote a mis-
classified case. Figure 17–10 gives the estimated coefficients of the two discriminant
functions.

Figure 17–11 gives the classification summary. We see that 86.7% of the group 0
cases were correctly classified by the two discriminant functions, 78.6% of group 1
were correctly classified, and 82.4% of group 2 were correctly classified. The overall
percentage of correctly classified cases is 82.61%, which is fairly high.

Figure 17–12 is a scatter plot of the data in the three groups. The figure also shows
the three group means. The following figure, Figure 17–13, is especially useful. This
is a territorial map of the three groups as determined by the pair of estimated dis-
criminant functions. The map shows the boundaries of the plane formed by looking
at the pair of scores: (discriminant function 1 score, discriminant function 2 score).
Any new point may be classified as belonging to one of the groups depending on
where its pair of computed scores makes it fall on the map. For example, a point
with the scores 2 on function 1 and �4 on function 2 falls in the territory of group 0

17-12 Chapter 17

FIGURE 17–8 A Map of the Location of the Two Groups for Example 17–1

SYMBOLS USED IN PLOTS
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FIGURE 17–9 Predicted Group Membership Chart for Three Groups (extended Example 17–1)

CASE MIS ACTUAL HIGHEST PROBABILITY 2ND HIGHEST DISCRIMINANT

SEGNUM VAL SEL GROUP GROUP P(D/G) P(G/D) GROUP P(G/D) SCORES...

1 1 1 0.6966 0.9781 2 0.0198 -2.3023 -0.4206

2 1 1 0.3304 0.9854 2 0.0142 -2.8760 -0.1267

3 1 1 0.9252 0.8584 2 0.1060 -1.2282 -0.3592

4 1 1 0.5982 0.9936 2 0.0040 -2.3031 -1.2574

5 1** 0 0.6971 0.8513 1 0.1098 0.6072 -1.3190

6 1 1 0.8917 0.8293 2 0.1226 -1.1074 -0.3643

7 1** 0 0.2512 0.5769 1 0.4032 -0.0298 -1.8240

8 1 1 0.7886 0.9855 2 0.0083 -1.9517 -1.1657

9 0 0 0.3132 0.4869 1 0.4675 -0.1210 -1.3934

10 0 0 0.4604 0.9951 2 0.0032 2.1534 -1.7015

11 0 0 0.5333 0.9572 1 0.0348 1.0323 -1.9002

12 0 0 0.8044 0.9762 2 0.0204 1.9347 -0.9280

13 0 0 0.6697 0.8395 1 0.1217 0.5641 -1.3381

14 0 0 0.2209 0.7170 2 0.2815 2.2185 0.6586

15 0 0 0.6520 0.9900 2 0.0075 2.0176 -1.3735

16 0 0 0.0848 0.9458 2 0.0541 3.2112 0.3004

17 0** 2 0.2951 0.7983 0 0.1995 1.6393 1.4480

18 1** 0 0.1217 0.6092 1 0.3843 -0.0234 -2.3885

19 0 0 0.6545 0.6144 2 0.3130 0.7054 -0.0932

20 1 1 0.7386 0.9606 2 0.0362 -2.1369 -0.2312

21 1 1 0.0613 0.9498 2 0.0501 -3.2772 0.8831

22 0 0 0.6667 0.6961 1 0.1797 0.3857 -0.7874

23 1 1 0.7659 0.8561 2 0.1320 -1.6001 0.0635

24 0** 1 0.5040 0.4938 2 0.3454 -0.4694 -0.0770

25 2** 1 0.9715 0.8941 2 0.0731 -1.2811 -0.5314

26 2 2 0.6241 0.5767 0 0.2936 0.2503 0.2971

27 2 2 0.9608 0.9420 0 0.0353 0.1808 1.5221

28 2 2 0.9594 0.9183 0 0.0589 0.3557 1.3629

29 2** 0 0.2982 0.5458 2 0.4492 1.6705 0.6994

30 2** 1 0.9627 0.9160 2 0.0462 -1.2538 -0.8067

31 2 2 0.0400 0.9923 0 0.0076 1.7304 3.1894

32 2 2 0.9426 0.9077 1 0.0620 -0.2467 1.3298

33 2 2 0.7863 0.7575 0 0.2075 0.6256 0.8154

34 2 2 0.3220 0.9927 0 0.0060 0.6198 2.6635

35 2 2 0.9093 0.8322 1 0.1113 -0.2519 0.9826

36 2 2 0.5387 0.5528 0 0.4147 0.8843 0.4770

37 2 2 0.7285 0.9752 1 0.0160 -0.1655 2.0088

38 2 2 0.7446 0.9662 1 0.0248 -0.3220 1.9034

39 0 0 0.6216 0.9039 1 0.0770 0.7409 -1.6165

40 2 2 0.9461 0.8737 1 0.0823 -0.2246 1.1434

41 1 1 0.7824 0.9250 2 0.0690 -1.8845 -0.0819

42 0 0 0.3184 0.9647 1 0.0319 1.0456 -2.3016

43 1 1 0.7266 0.7304 0 0.1409 -0.6875 -0.6183

44 2 2 0.8738 0.9561 1 0.0278 -0.1642 1.7082

45 0 0 0.6271 0.9864 2 0.0121 2.2294 -1.0154

46 2 2 0.2616 0.9813 1 0.0175 -0.8946 2.5641
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CLASSIFICATION RESULTS

NO. OF PREDICTED GROUP MEMBERSHIP

ACTUAL GROUP CASES 0 1 2

GROUP 0 15 13 1 1

86.7% 6.7% 6.7%

GROUP 1 14 3 11 0

21.4% 78.6% 0.0%

GROUP 2 17 1 2 14

5.9% 11.8% 82.4%

PERCENT OF ’GROUPED’ CASES CORRECTLY CLASSIFIED: 82.61%

FIGURE 17–11 Summary Table of Classification Results (extended Example 17–1)

FIGURE 17–12 Scatter Plot of the Data (extended Example 17–1)

                   ALL—GROUPS SCATTERPLOT — * INDICATES A GROUP CENTROID
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FIGURE 17–10 Estimated Coefficients of the Two Discriminant Functions (extended 
Example 17–1)

UNSTANDARDIZED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS

FUNC 1 FUNC 2

ASSETS –0.4103059E–01 –0.5688170E–03

INCOME –0.4325325E–01 –0.6726829E–01

DEBT 0.3644035E–01 0.4154356E–01

FAMSIZE 0.7471749 0.1772388

JOB 0.1787231 –0.4592559E–01

(CONSTANT) –0.9083139 –3.743060
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FIGURE 17–13 Territorial Map (extended Example 17–1)

           TERRITORIAL MAP * INDICATES A  GROUP CENTROID

                          CANONICAL DISCRIMINANT FUNCTION 1
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SYMBOLS USED IN TERRITORIAL MAP

SYMBOL  GROUP LABEL

-----  -----  --------------

  1       0

  2       1

  3       2

  *           GROUP CENTROIDS

(this group is denoted by 1 in the plot, as indicated). A group territory is marked by its
symbol on the inside of its boundaries with other groups. Group means are also
shown, denoted by asterisks.

Many more statistics relevant to discriminant analysis may be computed and
reported by computer packages. These are beyond the scope of our discussion, but
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P R O B L E M S

17–1. What are the purposes of discriminant analysis?
17–2. Suppose that a discriminant analysis is carried out on a data set consisting of
two groups. The larger group constitutes 125 observations and the smaller one 89. The
relative sizes of the two groups are believed to reflect their relative sizes within the pop-
ulation. If the classification summary table indicates that the overall percentage of cor-
rect classification is 57%, would you use the results of this analysis? Why or why not?
17–3. Refer to the results in Figure 17–5 and to equation 17–6. Suppose that a loan
applicant has assets of $23,000, debt of $12,000, and a family with three members.
How should you classify this person, if you are to use the results of the discriminant
analysis? (Remember that debt and assets values are listed without the “000” digits in
the program.)
17–4. For problem 17–3, suppose an applicant has $54,000 in assets, $10,000 of
debt, and a family of four. How would you classify this applicant? In this problem
and the preceding one, be careful to interpret the sign of the score correctly.
17–5. Why should you use a holdout data set and try to use the discriminant func-
tion for classifying its members? How would you go about doing this?
17–6. A mail-order firm wants to be able to classify people as prospective buyers
versus nonbuyers based on some of the people’s demographics provided on mailing
lists. Prior experience indicates that only 8% of those who receive a brochure end up
buying from the company. Use two criteria to determine the minimum overall pre-
diction success rate you would expect from a discriminant function in this case.
17–7. In the situation of problem 17–6, how would you account for the prior knowl-
edge that 8% of the population of those who receive a brochure actually buy?
17–8. Use the territorial map shown in Figure 17–13 to predict group membership
for a point with a score of �3 on discriminant function 1 and a score of 0 on dis-
criminant function 2. What about a point with a score of 2 on function 1 and 4 on
function 2?
17–9. Use the information in Figure 17–10 and the territorial map in Figure 17–13 to
classify a person with assets of $50,000, income of $37,500, debt of $23,000, family
size of 2, and 3 years’ employment at the current job.
17–10. What are the advantages of a stepwise routine for selection of variables to be
included in the discriminant function(s)?
17–11. A discriminant function is estimated, and the p -value based on Wilks’ lambda
is found to be 0.239. Would you use this function? Explain.
17–12. What is the meaning of P (G | D), and how is it computed when prior infor-
mation is specified?
17–13. In trying to classify members of a population into one of six groups, how
many discriminant functions are possible? Will all these functions necessarily be
found significant? Explain.
17–14. A discriminant analysis was carried out to determine whether a firm
belongs to one of three classes: build, hold, or pull back. The results, reported in
an article in the Journal of Marketing Research, include the following territorial map.
How would you classify a firm that received a score of 0 on both discriminant
functions?

explanations of these statistics may be found in books on multivariate analysis. This
section should give you the basic ideas of discriminant analysis so that you may build
on the knowledge acquired here.
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Discriminant Territorial Map

Canonical discriminant function 2
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17–4 Principal Components and Factor Analysis
In this section, we discuss two related methods for decomposing the information
content in a set of variables into information about an inherent set of latent compo-
nents. The first method is called principal component analysis. Our aim with this
method is to decompose the variation in a multivariate data set into a set of compo-
nents such that the first component accounts for as much of the variation in the data
as possible, the second component accounts for the second largest portion of the
variation, and so on. In addition, each component in this method of analysis is
orthogonal to the others; that is, each component is uncorrelated with the others: as a
direction in space, each component is at right angles to the others.

In factor analysis, which is the second method for decomposing the information
in a set of variables, our approach to the decomposition is different. We are not
always interested in the orthogonality of the components (in this context, called factors);
neither do we care whether the proportion of the variance accounted for by the
factors decreases as each factor is extracted. Instead, we look for meaningful factors
in terms of the particular application at hand. The factors we seek are the underly-
ing, latent dimensions of the problem. The factors summarize the larger set of original
variables.

For example, consider the results of a test consisting of answers to many ques-
tions administered to a sample of students. If we apply principal-components analy-
sis, we will decompose the answers to the questions into scores on a (usually smaller)
set of components that account for successively smaller portions of the variation in
the student answers and that are independent of each other. If we apply factor analy-
sis, on the other hand, we seek to group the question variables into a smaller set of
meaningful factors. One factor, consisting of responses to several questions, may be a
measure of raw intelligence; another factor may be a measure of verbal ability and
will consist of another set of questions; and so on.

We start by discussing principal components and then present a detailed
description of the techniques of factor analysis. There are two kinds of factor analysis.
One is called R-factor analysis, and this is the method we will describe. Another is
called Q-factor analysis. Q-factor analysis is a technique where we group the respon-
dents, people or data elements, into sets with certain meanings rather than group
the variables.



Principal Components
Figure 17–14 shows a data set in two dimensions. Each point in the ellipsoid cluster
has two components: X and Y. If we look at the direction of the data cluster, how-
ever, we see that it is not oriented along either of the two axes X and Y. In fact, the
data are oriented in space at a certain angle to the X axis. Look at the two principal axes
of the ellipse of data, and you will notice that one contains much variation along its
direction. The other axis, at 90° to the first, represents less variation of the data along
its direction. We choose that direction in space about which the data are most variable
(the principal axis of the ellipse) and call it the first principal component. The second
principal component is at 90° to the first—it is orthogonal to the first. These axes are
shown in Figure 17–14. Note that all we really have to do is to rotate the original X and
Y axes until we find a direction in space where the principal axis of the elliptical cluster
of data lies along this direction. Since this is the larger axis, it represents the largest
variation in the data; the data vary most along the direction we labeled first component.
The second component captures the second-largest variation in the data.

With three variables, there are three directions in space. We find that rotation of
the axes of the three variables X, Y, and Z such that the first component is the direc-
tion in which the ellipsoid of data is widest. The second component is the direction
with the second-largest proportion of variance, and the third component is the direc-
tion with the third-largest variation. All three components are at 90° to one another.
Such rotations, which preserve the orthogonality (90° angle) of the axes, are called
rigid rotations. With more variables, the procedure is the same (except that we can no
longer graph it). The successive reduction in the variation in the data with the extraction
of each component is shown schematically in Figure 17–15.

The Extraction of the Components
The fundamental theorem of principal components  is a remarkable mathematical theo-
rem that allows us to find the components. The theorem says that if we have any set of
k variables X1, X2, . . . , Xk , where the variance-covariance matrix of these variables,
denoted , is invertible (an algebraic condition you need not worry about), we can always
transform the original variables to a set of k uncorrelated variables Y1, Y2, . . . , Yk by an
appropriate rotation. Note that we do not require a normal-distribution assumption.

Can you think of one very good use of principal-component analysis as a pre-
liminary stage for an important statistical technique? Remember the ever-present
problem of multicollinearity in multiple regression analysis? There the fact that k
“independent” variables turned out to be dependent on one another caused many

g
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FIGURE 17–14 Principal Components of a Bivariate Data Set

First component

Second component

y

x



problems. One solution to the problem of multicollinearity is to transform the original
k variables, which are correlated with one another, into a new set of k uncorrelated
variables. These uncorrelated variables are the principal components of the data set.
Then we can run the regression on the new set, the principal components, and avoid
the multicollinearity altogether. We still have to consider, however, the contribution
of each original variable to the dependent variable in the regression.

Equation 17–8 is the equation of the first principal component, which is a linear
combination of the original k variables X1, X2, . . . , Xk.
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FIGURE 17–15 Reduction in the Variance in a Data Set with Successive Extraction 
of Components

Total variance

After first
component

After second
component

After third
component

Remaining variance after successive
extraction of three components

Y1 � a11X1 � a12X2 � · · · � a1k Xk (17–8)

Y2 � a21X1 � a22X2 � · · · � a2k Xk (17–9)

Similarly, the second principal component is given by

and so on. The aij are constants, like regression coefficients. The linear combinations
are formed by the rotation of the axes.

If we use k new independent variables Y1, Y2, . . . , Yk , then we have accounted for
all the variance in the observations. In that case, all we have done is to transform the
original variables to linear combinations that are uncorrelated with one another
(orthogonal) and that account for all the variance in the observations, the first com-
ponent accounting for the largest portion, the second for less, and so on. When we
use k new variables, however, there is no economy in the number of new variables. If,
on the other hand, we want to reduce the number of original variables to a smaller
set where each new variable has some meaning—each new variable represents a hidden
factor—we need to use factor analysis. Factor analysis (the R-factor kind), also called
common-factor analysis, is one of the most commonly used multivariate methods, and
we devote the rest of this section to a description of this important method. In factor
analysis, we assume a multivariate normal distribution.

Factor Analysis
In factor analysis, we assume that each of the variables we have is made up of a linear
combination of common factors (hidden factors that affect the variable and possibly
affect other variables) and a specific component unique to the variable.
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The k original Xi variables written as linear combinations of a smaller set of 
m common factors and a unique component for each variable are

X1 = b11F1 + b12F2 + · · · + b1mFm + U1

X2 = b21F1 + b22F2 + · · · + b2mFm + U2

·

·

·

Xk = bk1F1 + bk2F2 + · · · + bkmFm + Uk (17–10)

The Fj , j = 1, . . . , m, are the common factors. Each Ui, i = 1, . . . , k, is the
unique component of variable Xi. The coefficients bij are called factor loadings.

The total variance in the data in factor analysis is composed of the common-factor
component, called the communality, and the specific part, due to each variable alone.

The Extraction of Factors
The factors are extracted according to the communality. We determine the number
of factors in an analysis based on the percentage of the variation explained by each
factor. Sometimes prior considerations lead to the determination of the number of
factors. One rule of thumb in determining the number of factors to be extracted con-
siders the total variance explained by the factor. In computer output, the total vari-
ance explained by a factor is listed as the eigenvalue. (Eigenvalues are roots of
determinant equations and are fundamental to much of multivariate analysis. Since
understanding them requires some familiarity with linear algebra, we will not say
much about eigenvalues, except that they are used as measures of the variance
explained by factors.) The rule just mentioned says that a factor with an eigenvalue
less than 1.00 should not be used because it accounts for less than the variation
explained by a single variable. This rule is conservative in the sense that we probably
want to summarize the variables with a set of factors smaller than indicated by this
rule. Another, less conservative, rule says that the factors should account for a rela-
tively large portion of the variation in the variables: 80%, 70%, 65%, or any relatively
high percentage of the variance. The consideration in setting the percentage is similar
to our evaluation of R2 in regression. There really is no absolute rule.

We start the factor analysis by computing a correlation matrix of all the variables.
This diagonal matrix has 1s on the diagonal because the correlation of each variable
with itself is equal to 1.00. The correlation in row i and column j of this matrix is the
correlation between variables Xi and Xj. The correlation matrix is then used by the
computer in extracting the factors and producing the factor matrix. The factor matrix
is a matrix showing the factor loadings—the sample correlations between each factor
and each variable. These are the coefficients bij in equation 17–10. Principal-component
analysis is often used in the preliminary factor extraction procedure, although other
methods are useful as well.

The Rotation of Factors
Once the factors are extracted, the next stage of the analysis begins. In this stage, the
factors are rotated. The purpose of the rotation is to find the best distribution of the
factor loadings in terms of the meaning of the factors. If you think of our hypothetical
example of scores of students on an examination, it could be that the initial factors
derived (these could be just the principal components) explain proportions of the
variation in scores, but not in any meaningful way. The rotation may then lead us to
find a factor that accounts for intelligence, a factor that accounts for verbal ability, a
third factor that accounts for artistic talent, and so on. The rotation is an integral part



of factor analysis and helps us derive factors that are as meaningful as possible.
Usually, each of the initially derived factors will tend to be correlated with many of
the variables. The purpose of the rotation is to identify each factor with only some of the
variables—different variables with each factor—so that each factor may be interpreted
in a meaningful way. Each factor will then be associated with one hidden attribute:
intelligence, verbal ability, or artistic talent.

There are two classes of rotation methods. One is orthogonal, or rigid, rotation.
Here the axes maintain their orthogonality; that is, they maintain an angle of 90°
between every two of them. This means that the factors, once they are rotated, will
maintain the quality of being uncorrelated with each other. This may be useful if we
believe that the inherent, hidden dimensions in our problem are independent of one
another (here this would mean that we believe intelligence is independent of verbal
ability and that both are independent of artistic talent). The rigid rotation is also simpler
to carry out than nonrigid rotation. A nonrigid rotation is called an oblique rotation.
In an oblique rotation, we allow the factors to have some correlations among them.
We break the initial 90° angles between pairs of axes (pairs of factors), and we seek the
best association between factors and variables that are included in them, regardless of
whether the factors are orthogonal to one another (i.e., at 90° to one another).

Figure 17–16 shows the two possible kinds of rotation. The dots on the graph in
each part of the figure correspond to variables, and the axes correspond to factors. In
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FIGURE 17–16 An Orthogonal Factor Rotation and an Oblique Factor Rotation
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the first example, orthogonal rotation, look at the projections of the seven points
(seven variables) along the two axes. These are the factor loadings. When we rotate
the axes (the factors), maintaining their 90° angle, we find a better fit of the variables
with the factors. The top four variables load highly on the shifted vertical axis, while
the bottom three variables load highly on the shifted horizontal axis. In the lower fig-
ure, we see that an oblique rotation provides a better association of the factors with
the variables in this different situation.

There are several algorithms for orthogonal rotation. The most commonly used
algorithm is called VARIMAX. The VARIMAX rotation aims at finding a solution
where a variable loads highly on one particular factor and loads as lowly as possible
on other factors. The algorithm maximizes the sum of the variances of the loadings
in the factor matrix; hence the name VARIMAX. When we use this method, our
final solution will have factors with loadings that are high on some variables and low
on others. This simplifies the interpretation of the factors. Two other methods are
QUARTIMAX and EQUIMAX. Since they are less commonly used, we will not
discuss them. Let us look at an example.
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An analysis of the responses of 1,076 randomly sampled people to a survey about job
satisfaction was carried out. The questionnaire contained 14 questions related to satis-
faction on the job. The responses to the questions were analyzed using factor analysis
with VARIMAX rotation of factors. The results, the four factors extracted and their
loadings with respect to each of the original 14 variables, are shown in Table 17–2.

E X A M P L E  1 7 – 2

The highest-loading variables are chosen for each factor. Thus, the first factor has
loadings of 0.87, 0.88, 0.92, and 0.65 on the questions relabeled as 1, 2, 3, and 4,
respectively. After looking at the questions, the analysts named this factor satisfaction
with information. After looking at the highest-loading variables on the next factor, fac-
tor 2, the analysts named this factor satisfaction with variety. The two remaining factors

S o l u t i o n

TABLE 17–2 Factor Analysis of Satisfaction Items

Factor Loadingsa

1 2 3 4
Satisfaction with Information
1. I am satisfied with the information I receive from my superior about my

job performance 0.87 0.19 0.13 0.22
2. I receive enough information from my supervisor about my job performance 0.88 0.14 0.15 0.13
3. I receive enough feedback from my supervisor on how well I’m doing 0.92 0.09 0.11 0.12
4. There is enough opportunity in my job to find out how I am doing 0.65 0.29 0.31 0.15

Satisfaction with Variety
5. I am satisfied with the variety of activities my job offers 0.13 0.82 0.07 0.17
6. I am satisfied with the freedom I have to do what I want on my job 0.17 0.59 0.45 0.14
7. I am satisfied with the opportunities my job provides me to interact 

with others 0.18 0.48 0.32 0.22
8. There is enough variety in my job 0.11 0.75 0.02 0.12
9. I have enough freedom to do what I want in my job 0.17 0.62 0.46 0.12

10. My job has enough opportunity for independent thought and action 0.20 0.62 0.47 0.06

Satisfaction with Closure
11. I am satisfied with the opportunities my job gives me to complete tasks

from beginning to end 0.17 0.21 0.76 0.11
12. My job has enough opportunity to complete the work I start 0.12 0.10 0.71 0.12

Satisfaction with Pay
13. I am satisfied with the pay I receive for my job 0.17 0.14 0.05 0.51
14. I am satisfied with the security my job provides me 0.10 0.11 0.15 0.66

aVarimax rotation. R2 for each of the four factors is 41.0, 13.5, 8.5, and 7.8, respectively.



were named in a similar way. The key to identifying and interpreting the factors is
to look for the variables with highest loadings on each factor and to find a common
meaning: a summary name for all the variables loading high on that factor. The
VARIMAX rotation is especially useful for such interpretations because it will make
each factor have some variables with high loadings and the rest of the variables with
low loadings. The factor is then identified with the high-loading variables.

The factor loadings are the standardized regression coefficients in a multiple regres-
sion equation of each original variable as dependent, and with the factors as inde-
pendent variables. When the factors are uncorrelated, as is the case when we use an
orthogonal rotation, the total proportion of the variance explained for each variable is
equal to the sum of the proportions of the variance explained by all the factors. The
proportion of the variance of each variable that is explained by the common factors is
the communality. For each variable we therefore have
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Communality = % variance explained = (17–11)a
j

b2
ij

where bij are the coefficients from the appropriate equation for the variable in question
from equation 17–11. In this example, we have for the variable “I am satisfied with the
information I receive from my superior about my job performance” (variable 1):

Communality = (0.87)2 + (0.19)2 + (0.13)2 + (0.22)2 = 0.8583, or 85.83%

(See the loadings of this variable on the four factors in Table 17–2.) This means that
85.83% of the variation in values of variable 1 is explained by the four factors. We may
similarly compute the communality of all other variables. Variable 1 is assigned to
factor 1, as indicated in the table. That factor accounts for (0.87)2 = 0.7569, or 75.69%
of the variation in this variable. Variable 5, for example, is assigned to factor 2, and
factor 2 accounts for (0.82)2 = 0.6724, or 67.24% of the variation in variable 5.

17–15. What is the main purpose of factor analysis?
17–16. What are the differences between factor analysis and principal-components
analysis?
17–17. What are the two kinds of factor analysis, and why is one of them more com-
monly used than the other?
17–18. What are the two kinds of factor rotation? What is the aim of rotating the
factors? What is achieved by each of the two kinds of rotation?
17–19. What is achieved by the VARIMAX rotation, and what are two other rotation
methods?

In the following problems, we present tables of results of factor analyses in differ-
ent contexts reported in the marketing research literature. Give a brief interpretation
of the findings in each problem.

P R O B L E M S

Finally, we mention a use of factor analysis as a preliminary stage for other forms
of analysis. We can assign factor scores to each of the respondents (each member of
our data set) and then conduct whatever analysis we are interested in, using the factor
scores instead of scores on the original variables. This is meaningful when the factors
summarize the information in a way that can be interpreted easily.



17–20.
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Rotated Factor Loadings

Factor 1 Factor 2 Factor 3
(Scale 3) (Scale 2) (Scale 1)

1. Argument evaluation
a. Supplier’s argument 0.31 0.38 0.76
b. User’s argument 0.15 0.35 0.85

2. Who-must-yield
a. Who must give in 0.15 0.85 0.29
b. Who has best case 0.18 0.78 0.37

3. Overall supplier evaluation
a. Overall impression 0.90 0.18 0.26
b. Buy from in future 0.94 0.14 0.12

17–22. Name the factors; consider the signs of the loadings.

Factor 1 Factor 2 Factor 3 Factor 4

Importance 1 0.59

Importance 2 0.56

Importance 3 0.62

Importance 4 0.74

Pleasure 1 �0.73

Pleasure 2 �0.68

Pleasure 3 �0.82

Pleasure 4 �0.67

Pleasure 5 �0.58

Sign 1 0.78

Sign 2 0.94

Sign 3 0.73

Sign 4 0.77

17–21.
Pattern Matrix

Factor 1 Factor 2 Factor 3 Factor 4
Price Retailing/Selling Advertising Product

Price item 1 0.37964 �0.11218 0.21009 �0.16767
Price item 2 0.34560 �0.11200 0.18910 �0.09073
Price item 3 0.60497 0.07133 �0.04858 0.03024
Price item 6 0.81856 0.03963 �0.01044 0.01738
Price item 7 0.74661 0.03967 0.00884 �0.06703

Retailing/selling item 1 0.07910 0.74098 �0.02888 0.07095
Retailing/selling item 2 �0.13690 0.58813 0.15950 �0.14141
Retailing/selling item 3 0.01484 0.74749 �0.02151 0.02269
Retailing/selling item 6 �0.05868 0.56753 0.10925 �0.13337
Retailing/selling item 7 0.07788 0.69284 �0.02320 �0.00457

Advertising item 2 �0.03460 �0.03414 0.65854 �0.01691
Advertising item 3 �0.06838 0.01973 0.71499 �0.06951
Advertising item 4 0.01481 �0.00748 0.57196 �0.03100
Advertising item 5 0.20779 0.13434 0.38402 0.12561
Advertising item 7 0.00921 0.11200 0.64330 �0.02534

Product item 2 0.24372 0.16809 �0.05254 �0.33600
Product item 3 �0.00370 0.02951 �0.00013 �0.61145
Product item 5 �0.03193 0.00631 0.04031 �0.78286
Product item 6 0.02346 0.01814 0.09122 �0.73298
Product item 7 0.03854 0.08088 �0.05244 �0.33921

≥  

¥

¥

¥

¥

≥  

≥  
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Factor 1 Factor 2 Factor 3 Factor 4

Risk importance 1 0.62

Risk importance 2 0.74

Risk importance 3 0.74

Risk probability 1 0.76

Risk probability 2 0.64

Risk probability 3 0.50

Omitted loadings are inferior to 0.25.

17–23. Identify each of the variables with one factor only. Also find the communal-
ity of each variable.

Factor 1 Factor 2
Market Penetration Project Quality

Business Policy Issues Issues

Pricing policies 0.331 0.626

Record and reporting procedures 0.136 0.242

Advertising copy and expenditures 0.468 0.101

Selection of sources of operating supplies 0.214 0.126

Customer service and complaints �0.152 0.792

Market forecasting and performance standards 0.459 0.669

Warranty decisions 0.438 0.528

Personnel staffing and training 0.162 0.193

Product delivery scheduling 0.020 0.782

Construction/installation procedures 0.237 0.724

Subcontracting agreements �0.015 0.112

Number of dealerships 0.899 0.138

Location of dealerships 0.926 0.122

Trade areas 0.885 0.033

Size of building projects 0.206 0.436

Building design capabilities �0.047 0.076

Sales promotion materials 0.286 0.096

Financial resources 0.029 0.427

Builder reputation 0.076 0.166

Offering competitors’ lines 0.213 0.111

Variance explained 3.528 3.479

Percentage of total variance 17.64 17.39

Reliability (coefficient �) 0.94 0.83

17–24. Name the factors.

Factor 1 Factor 2

Developing end-user preferences �0.04 0.88

Product quality and technical leadership 0.19 0.65

Sales promotion programs and promotional aids �0.11 0.86

Pricing policy 0.78 �0.03

Return-goods policy 0.79 �0.04

Product availability (delivery and reliability) 0.63 0.26

Cooperativeness and technical competence of its personnel 0.59 0.45

17–25. Telephone interviewing is widely used in random sampling, in which the
telephone numbers are randomly selected. Under what conditions is this methodology
flawed, and why?
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17–5 Using the Computer
Using MINITAB for Discriminant and Principal Component Analysis
When you have a sample with known groups, you can use the MINITAB discriminant
analysis tool to classify observations into two or more groups. The two available options
in MINITAB are linear and quadratic discriminant analysis. With linear discriminant
analysis all groups are assumed to have the same variance-covariance matrices and
possibly different means. In order to start, choose Stat � Multivariate � Discriminant
Analysis from the menu bar. When the corresponding dialog box appears, you need
to choose the column containing the group codes in the Groups edit box. You can
define up to 20 groups. The column(s) containing the measurement variables or pre-
dictors are entered in the Predictors dialog box. Then you can choose to perform lin-
ear discriminant analysis or quadratic discriminant analysis. Check the Use cross
validation box to perform the discrimination using cross-validation. The cross-validation
routine works by removing each observation at a time, recalculating the classification
function using the remaining data, and then classifying the omitted observation. In
the Linear discriminant function edit box enter storage columns for the coefficients
from the linear discriminant function. MINITAB uses one column for each group.
The constant is stored at the top of each column. By clicking on the Options button
you can specify prior probabilities, predict group membership for new observations,
and control the display of the Session window output. 

As an example we used the data set of Example 17–1 to run a discriminant
analysis using MINITAB. Figure 17–17 shows the MINITAB Discriminant Analysis
dialog box, corresponding Session commands, and final results. As we can see, the
Repay/Default column was defined as the column that contains the group codes. All
other variables were entered as predictors. The linear discriminant analysis correctly
identified 23 of 32 applicants, as shown in the Summary of classification table in the
Session window. To identify new applicants as members of a particular group, you
can compute the linear discriminant function associated with Repay or Default and
then choose the group for which the discriminant function value is higher. The coef-
ficients of the discriminant functions are seen in the Linear Discriminant Function for
Groups table. 

MINITAB is also used for principal component analysis. For this purpose, you
need to set up your worksheet so that each row contains measurements on a single
item. There must be two or more numeric columns, each of which represents a dif-
ferent response variable. To perform principal component analysis, start by choosing
Stat � Multivariate � Principal Components from the menu bar. When the corre-
sponding dialog box appears, enter the columns containing the variables to be
included in the analysis in the Variables edit box. The Number of components to
compute edit box will contain the number of principal components to be extracted.
If you do not specify the number of components and m variables are selected, then
m principal components will be extracted. Click the Correlation box if you wish to
calculate the principal components using the correlation. This case usually happens
when the variables are measured by different scales and you want to standardize vari-
ables. If you don’t wish to standardize variables, choose the Covariance edit box. By
clicking on the Graphs button, you can set to display plots for judging the impor-
tance of the different principal components and for examining the scores of the first
two principal components. The Storage button enables you to store the coefficients
and scores. 

Another MINITAB tool that enables you to summarize the data covariance
structure in a few dimensions of data is factor analysis. For this purpose, you can
have three types of input data: columns of raw data, a matrix of correlations or
covariances, or columns containing factor loadings. If you set your worksheet to
contain the raw data, then each row represents the measurements on a single item.
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There must be two or more numeric columns, with each column representing a dif-
ferent response variable. To perform factor analysis with raw data, choose Stat �

Multivariate � Factor Analysis from the menu bar. Enter the columns containing the
variables you want to use in the analysis in the Variables edit box. Then you need to
specify the number of factors to extract. As a Method of Extraction, choose Principal
components to use the principal components method of factor extraction. Type of
Rotation in the next section controls orthogonal rotations. If you want to use a stored
correlation or covariance matrix, or the loadings from a previous analysis instead of
the raw data, click Options. The corresponding dialog box allows you to specify the
matrix type and source, and the loadings to use for the initial extraction. The Graphs
button enables you to display a plot and score and loading plots for the first two factors.
The Storage and Results buttons have the same functionality as before.

17–6 Summary and Review of Terms
There is a large body of statistical techniques called multivariate methods. These
methods are useful in analyzing data in situations that involve several variables.
The data and parameters are vectors. In this chapter, we discussed some of these
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FIGURE 17–17 Discriminant Analysis Using MINITAB
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A D D I T I O N A L  P R O B L E M S

17–26. What are the uses of the multivariate normal distribution? Why is it needed?

17–27. How many discriminant functions may be found significant in classifying an
observation into one of four groups?

17–28. Is it possible that only one discriminant function will be found significant in
discriminating among three groups? Explain.

17–29. What is a hit ratio? Will a hit ratio of 67% be sufficient when one group has
100 observations, another group has 200 observations, and the ratio of these groups
is believed to reflect their ratio in the population? Explain.

17–30. What is achieved by principal-components analysis? How can it be used
as a preliminary stage in factor analysis? What important stages must follow it,
and why?

17–31. In a factor analysis of 17 variables, a solution is found consisting of 17 factors.
Comment on the analysis.

17–32. When is an oblique rotation superior to an orthogonal one, and why?

17–33. What is a communality, and what does it indicate?

17–34. What is the communality of variable 9 listed in Table 17–2?

17–35. Name a statistical method of analysis for which principal components may
be a first stage. Explain.

17–36. What are factor loadings, and what do they measure?

17–37. A television producer wants to predict the success of new television programs.
A program is considered successful if it survives its first season. Data on production
costs, number of sponsors, and the total amount spent on promoting the program are
available. A random sample of programs is selected, and the data are presented in the
following table. Production costs are in millions of dollars, and promotions in hundreds
of thousands of dollars; S denotes success and F failure.

Success/Failure Production Cost Number of Sponsors Promotions

S 2.5 1 2.1

F 1.1 1 3.7

S 2.0 1 2.8

F 2.5 1 1.8

F 2.5 1 1.0

S 3.7 2 5.5

S 3.6 3 5.0

methods. We began by describing the multivariate normal distribution. We then
discussed discriminant analysis, a method of classifying members of a population
into one of two (or more) groups. The analysis entailed the postulation and estima-
tion of one or more discriminant functions. We then discussed factor analysis, a
statistical technique for reducing the dimensionality of a problem by summarizing
a set of variables as a smaller set of inherent, latent common factors. We also discussed
a related technique often used as a first stage in factor analysis: principal-components
analysis. We discussed the concept of independence in several dimensions: the
concept of orthogonality of factors or variables. We discussed rotations used in factor
analysis: orthogonal rotations, which maintain the noncorrelation of the factors,
and oblique rotations, which do not.



The following article is reprinted in its entirety by
permission from Forbes (April 1, 1991). Discuss
the statistical method alluded to in this article.

Could you reproduce (or improve upon) Professor
Platt’s results? Explain.

Is a former $40 stock now trading at $2.50 a
bargain? Or an invitation to get wiped out? Depends.

CASE 22 Predicting Company Failure

Success/Failure Production Cost Number of Sponsors Promotions

S 2.7 1 4.1

S 1.9 1 6.9

F 1.3 1 1.5

S 2.6 2 2.0

S 3.5 3 3.8

F 1.9 1 1.0

S 6.8 1 2.1

S 5.0 1 1.9

S 4.6 3 4.1

S 3.0 2 3.9

S 2.5 3 7.0

S 1.8 2 6.6

F 2.0 2 1.1

S 3.5 3 3.8

S 1.8 3 8.1

S 5.6 1 4.2

F 1.5 2 3.0

S 4.4 4 5.0

Conduct a discriminant analysis, and state your conclusions.

17–38. A factor analysis was conducted with 24 variables. The VARIMAX rotation
was used, and the results were two factors. Comment on the analysis.

17–39. Suppose a major real estate development corporation has hired you to
research the features of housing for which people will pay the most in making
a home purchasing decision. Where would you start? Perhaps you would start
with demographic data from the Department of Housing and Urban Develop-
ment, www.huduser.org. From the Data Available area, locate and examine the
American Housing Survey. Read the most recent Survey Quick Facts. Based on
this information, design a principal-components demographic analysis for deter-
mining the purchase price of a new house. Would you be able to conduct the
analysis entirely from data and other information available at the Hud User site?
Why or why not?
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How Cheap?
Harlan Platt, an associate professor of
finance at Northeastern University, has
written Why Companies Fail, a study
that should be of considerable interest
to bargain-hunting investors. 

Platt’s study can be useful in help-
ing determine whether a stock that has
fallen sharply in price is a bargain or a
prospective piece of wallpaper.

Platt developed a mathematical
model that predicts the probability of
bankruptcy from certain ratios on a
company’s balance sheet.

Here’s the thesis: Some compa-
nies trading very cheaply still have
large sales, considerable brand recog-
nition and a chance at recovery, or at
least takeover at a premium. Their
stocks could double or triple despite
losses and weak balance sheets. Other
borderline companies will land in
bankruptcy court and leave common
shareholders with nothing.

Even though it more than tripled
from its October low, Unisys, with $10
billion in sales, is not a Wall Street
favorite: At a recent 51⁄2 its market capi-
talization is only $890 million. Will
Unisys fail? Almost certainly not within
the next 12 months, according to Platt.

For the list below, we found cheap
stocks with low price-to-sales ratios.
Then we eliminated all but the ones
Platt says are highly unlikely to fail

within a year. Platt put cheap stocks
such as Gaylord Container, Masco
Industries and Kinder-Care Learning
Centers in the danger zone.

Among low-priced stocks, Unisys
and Navistar, however, make the safety
grade. So does Wang Laboratories.
Says Platt, “They are still selling over
$2 billion worth of computers and
their $575 million in bank debt is now
down to almost nothing.”

Platt, who furnishes his probabili-
ties to Prospect Street Investment
Management Co., a Boston fund man-
ager, refuses to disclose his propri-
etary formula. But among the ratios
he considers are total debt to total
assets, cash flow to sales, short-term
debt to total debt, and fixed assets to
total assets.

“Companies with large fixed assets
are more likely to have trouble because
these assets are less liquid,” Platt says.
But norms for a company’s industry
are also important. An unusually high
level of such current assets as inven-
tory and receivables may itself be a
sign of weakness.

The low-priced stocks on the list
may or may not rise sharply in the
near future, but they are not likely to
disappear into insolvency.

—STEVE KICHEN

Steve Kichen, “How Cheap?” Forbes, April 1, 1991. Reprinted by permission of Forbes
Magazine © Forbes, Inc. 2004.
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Big Companies with Little Prices

These 10 companies are in poor financial shape, but not so poor, according to calculations by finance professor Harlan Platt, that they
are likely to go bankrupt within the next year. Thus, these stocks are plausible bets for rebounds.

Earnings per Share 
Total Total 

Recent Latest 12 1991 Assets Debt/Total Sales Cash Flow/ Price/
Company/Industry Price Months Estimated ($mil) Assets ($mil) Sales Sales
Highland Superstores/
consumer electronics stores 21/8 $�0.89 NA $320 57% $892 �1.6% 0.04

Businessland/computer stores 21/2 �1.65 $�1.02 616 72 1,306 �2.0 0.06

Jamesway/discount stores 31/2 �0.06 0.18 435 61 909 1.6 0.06

Merisel/computer equipment 
wholesaler 31/8 0.03 0.33 432 73 1,192 0.4 0.06

Unisys/computers 51/2 �3.45 �0.56 10,484 65 10,111 3.1 0.09

National Convenience Stores/
convenience stores 51/8 �0.43 0.21 406 65 1,067 2.0 0.11

TW Holdings/restaurants 47/16 �0.61 �0.43 3,531 79 3,682 3.9 0.13

Varity/farm and construction 
equipment 23/4 0.35 0.32 3,177 61 3,472 6.4 0.20

Wang Laboratories CIB/
minicomputers 33/8 4.04 �0.29 1,750 72 2,369 �20.1 0.24

Navistar International/trucks 41/8 �0.24 �0.08 3,795 60 3,810 �0.6 0.27

NA: Not available.
From “Big Companies with Little Prices,” Forbes, April 1, 1991; Harlan Platt, Northeastern University; Institutional Brokers Estimate System (a service of
Lynch, Jones & Ryan), via Lotus One Source; Forbes. Reprinted by permission of Forbes Magazine © Forbes, Inc. 1991.


