Chapter 7 – Requirements Modeling: Flow, Behavior, WebApps
Requirements modeling has many different dimensions. The discussion in this chapter focuses on flow-oriented models, behavioral models, and patterns. This chapter also discusses WebApp requirements models. Flow-oriented modeling shows how data objects are transformed by processing functions. Behavioral modeling depicts the systems states and the impact of events on system states. Pattern-based modeling makes use of existing domain knowledge to facilitate requirements modeling. Software engineers build models using requirements elicited from stakeholders. Developer insights into software requirements grows in direct proportion to the number of different representations used in modeling. It is not always possible to develop every model for every project given the available project resources. Requirements modeling work products must be reviewed for correctness, completeness, consistency, and relevancy to stakeholder needs.
Flow-oriented Modeling
· Data flow diagrams (DFD) show the relationships of external entities, process or transforms, data items, and data stores

· DFD’s take an input-process-output view of the system

· DFD's cannot show procedural detail (e.g. conditionals or loops) only the flow of data through the software

· In DFD’s data objects are represented by labeled arrows and data transformations are represented by circles

· First DFD (known as the level 0 or context diagram) represents system as a whole

· Subsequent data flow diagrams refine the context diagram providing increasing levels of detail

· Refinement from one DFD level to the next should follow approximately a 1:5 ratio (this ratio will reduce as the refinement proceeds)

Creating Data Flow Diagram

· Level 0 data flow diagram should depict the system as a single bubble

· Primary input and output should be carefully noted

· Refinement should begin by consolidating candidate processes, data objects, and data stores to be represented at the next level

· Label all arrows with meaningful names

· Information flow continuity must be maintained from one level to level

· Refine one bubble at a time

· Write a process specification (PSPEC) for each bubble in the final DFD

· PSPEC is a "mini-spec" describing the process algorithm written using text narrative, a program design language (PDL), equations, tables, or UML activity diagrams
Creating Control Flow Model
· Begin by stripping all the data flow arrows form the DFD

· Events (solid arrows) and control items (dashed arrows) are added to the control flow diagram (CFD)
· Create a control specification (CSPEC) for each bubble in the final CFD

· CSPEC contains a state diagram that is a sequential specification of the behavior and may also contain a program activation table that is a combinatorial specification of system behavior

Behavioral Modeling
· A state transition diagrams (STD) represents the system states and events that trigger state transitions

· STD's indicate actions (e.g. process activation) taken as a consequence of a particular event

· A state is any observable mode of behavior
Creating Behavior Models
· Evaluate all use-cases to understand the sequence of interaction within the system

· Identify events that drive the interaction sequence and how these events relate to specific objects

· Create a sequence or event-trace for each use-case

· Build a state transition diagram for the system
· Review the behavior model to verify accuracy and consistency

UML State Diagrams

· Round corned rectangles are used for each state

· Passive states show the current status of object attributes

· Active states indicate current status of object as it undergoes transformation or processing

· Arrows connecting states are labeled with the name of the event that triggers the transition from one state to the other

· Guards limiting the transition from one state to the next may be specified as Boolean conditions involving object attributes in the use-case narratives

UML Sequence Diagrams

· Built from use-case descriptions by determining how events cause transitions from one object to another

· Key classes and actors are shown across the top

· Object and actor activations are shown as vertical rectangles arranged along vertical dashed lines called lifelines

· Arrows connecting activations are labeled with the name of the event that triggers the transition from one class or actor to another

· Object flow among objects and actors may be represented by labeling a dashed horizontal line with the name of the object being passed

· States may be shown along the lifelines

Analysis Patterns

· Discovered (not created) during requirements engineering work

· Should be documented by describing the general problem pattern is applicable to, the prescribed solution, assumptions, constraints, advantages, disadvantages, and references to known examples

· Documented analysis patterns are stored in an indexed repository facilitate its reuse by other team members

Conditions Favoring WebApp Requirements Modeling

· Large or complex WebApp to be built

· Large number of stakeholders

· Large number developers on WebApp team
· Development team members have not worked together before
· WebApp success will have strong bearing on success of company

WebApp Requirements Modeling

· Inputs – any information collected during communication activity

· Outptus – models for WebApp content, function, user interaction, environment, infrastructure

WebApp Requirements Models

· Content – content (text, graphics, images, audio, video) provided by WebApp

· Interaction – describes user interaction with WebApp

· Functional – defines operations applied to the WebApp content and other content independent processing functions

· Navigation – defines overall navigation strategy for the WebApp

· Configuration – describes WebApp environmental infrastructure in detail

Content Model

· Structural elements that represent WebApp content requirements

· WebApp content objects – text, graphics, photographs, video images, audio

· Includes all analysis classes – user visible entities created or manipulated as end-users interact with WebApp

· Analysis classes defined by class diagrams showing attributes, operations, and class collaborations

· Content model is derived from careful examination of WebApp use-cases

Interaction Model

· Use-cases – dominant element of WebApp interaction models

· Sequence diagrams – provide representation of manner in which user actions collaborate with analysis classes

· State diagrams – indicates information required to move users between states and represents behavioral information, can also depict potential navigation pathways

· User interface prototypes – layout of content presentation, interaction mechanisms, and overall aesthetic of user interface

Functional Model

· User observable behavior delivered to WebApp end-users

· Operations contained in analysis classes to implement class behaviors

· UML activity diagrams used to model both

Configuration Model

· May be a list of server-side and client-side attributes for the WebApp

· UML deployment diagrams can be used for complex configuration architectures

Navigation Model

· Web engineers consider requirements that dictate how each type of user will navigate from one content object to another

· Navigation mechanics are defined as part of design

· Web engineers and stakeholders must determine navigation requirements

