Chapter 20 – Testing Web Applications

Overview

This chapter describes Web testing as a collection of activities whose purpose is to uncover errors in WebApp content, function, usability, navigability, performance, capacity, and security. A testing startegy that involves both reviews and executable testing is applied throughout the WebE process. The WebApp testing process involves all project stakeholders. Web testing begins with user-visible aspects of WebApps and proceeds to exercise technology and infrastructure. Seven testing steps are performed: content testing, interface testing, navigation testing, component testing, configuration testing, performance testing, and security testing. In sometimes a test plan is written. A suite of test cases is always developed for every testing step and an archive of testing results is maintained for future use.

Dimensions of Quality

· Content evaluated at both syntactic and semantic levels

· Function tested to uncover lack of conformance to requirements

· Structure is assessed to ensure proper content and function are delivered

· Usability is tested to ensure that each category of user can be supported as new content or functionality is added

· Navigability is tested to ensure that all navigation syntax and semantics are exercised

· Performance is tested under a variety of operating conditions, configurations, and loading to ensure a reasonable level of user response

· Compatibility tested by executing WebApp using a variety of client and server configurations

· Interoperability tested to ensure proper interfaces to other applications and databases

· Security is tested by assessing potential vulnerabilities and trying to exploit each of them

Characteristics of WebApp Errors

· Many types of WebApp tests uncover problems evidenced on the client side using an specific interface (e.g. may be an error symptom, not the error itself)

· It may be difficult to reproduce errors outside of the environment in which the error was originally encountered

· Many errors can be traced to the WebApp configuration, incorrect design, or improper HTML

· It is hard to determine whether errors are caused by problems with the server, the client, or the network itself

· Some errors are attributable to problems in the static operating environment and some are attributable to the dynamic operating environment

Testing WebApps for Errors

1. WebApp content model is reviewed to uncover errors.

2. Interface model is reviewed to ensure all use-cases are accommodated.

3. Design model for WebApp is reviewed to uncover navigation errors.

4. User interface is tested to uncover presentation errors and/or navigation mechanics problems.

5. Selected functional components are unit tested.

6. Navigation throughout the architecture is tested.

7. WebApp is implemented in a variety of different environmental configurations and the compatibility of WebApp with each is assessed.

8. Security tests are conducted.

9. Performance tests are conducted.

10. WebApp is tested by a controlled and monitored group of end-users (looking for content errors, navigation errors, usability concerns, compatibility issues, reliability, and performance).

Web Engineering Test Plan Elements

1. Task set to be applied during testing

2. Work products to be produced as each testing task is executed

3. Evaluation and recording methods for testing results

Web Testing Process

· Content testing – tries to uncover content errors

· Interface testing – exercises interaction mechanisms and validates aesthetic aspects of user interface
· Navigation testing – makes use of use-cases in the design of test cases that exercise each usage scenario against the navigation design (used as part of WebApp integration testing)

· Component testing – exercises the WebApp content and functional units (used as part of WebApp integration testing)

· Configuration testing – attempts to uncover errors traceable to a specific client or server environment (cross-reference table is useful)

· Security testing – tests designed to exploit WebApp or environment vulnerabilities
· Performance testing – series of tests designed to assess:

· WebApp response time and reliability under varying system loads

· Which WebApp components are responsible for system degradation

· How performance degradation impacts overall WebApp requirements

Content Testing Objectives

· Uncover syntactic errors in all media (e.g. typos)

· Uncover semantic errors (e.g. errors in completeness or accuracy)

· Find errors in organization or structure of content presented to end-user

· Questions to be answered

· Is the information factually accurate?
· Is the information concise and to the point?
· Is the layout of the content object easy for the user to understand?
· Can information embedded within a content object be found easily?
· Have proper references been provided for all information derived from other sources?
· Is the information presented consistent internally and consistent with information presented in other content objects?
· Is the content offensive, misleading, or does it open the door to litigation?
· Does the content infringe on existing copyrights or trademarks?
· Does the content contain internal links that supplement existing content? Are the links correct?
· Does the aesthetic style of the content conflict with the aesthetic style of the interface?
Database Testing Problems

· The original query must be checked to uncover errors in translating the user’s request to SQL

· Problems in communicating between the WebApp server and Database server need to be tested.

· Need to demonstrate the validity of the raw data from the database to the WebApp and the validity of the transformations applied to the raw data.

· Need to test validity of dynamic content object formats transmitted to the user and the validity of the transformations to make the data visible to the user.

User Interface Testing

· During requirements testing the interface model reviewed to ensure it corresponds to stakeholder requirements and the requirements model

· During design interface model is reviewed to ensure generic user interface quality criteria have been achieved and that application-specific issues have been properly addressed

· During testing focus shifts to application-specific aspects of user intyeraction as manifested the user interface syntax and semantics

User Interface Testing Strategy

· Interface features are tested to ensure that design rules, aesthetics, and related visual content is available for user without error.

· Individual interface mechanisms are tested using unit testing strategies.

· Each interface mechanism is tested in the context of a use-case of navigation semantic unit (e.g. thread) for a specific user category

· Complete interface is tested against selected use-cases and navigation semantic unit to uncover interface semantic errors

· Interface is tested in a variety of environments to ensure compatibility

Testable WebApp Interface Mechanisms

· Links (each link is listed and tested)

· Forms (check labels, field navigation, data entry, error checking, data transmission, meaningful error messages)

· Client-side scripting (black box testing and compatibility tests)

· Dynamic HTML (correctness of generated HTML and compatibility tests)

· Client-side pop-up windows (proper size and placement of pop-up, working controls, consistent with aesthetic appearance of Web page)

· CGI scripts (black box, data integrity, and performance testing)

· Streaming content (demonstrate existence, accuracy, and control over content display)

· Cookies (check that server constructs cookie correctly, cookie transmitted correctly, ensure proper level of persistence, check to see WebApp attaches the correct cookies to server requests)

· Application specific interface mechanisms

Usability Testing

· Define set of usability testing categories and identify goals for each

· Interactivity – interaction mechanisms are easy to understand and use

· Layout – navigation, content, and functions allows user to find them quickly

· Readability – content understandable

· Aesthetics – graphic design supports easy of use

· Display characteristics – WebApp makes good use of screen size and resolution

· Time sensitivity – content and features can be acquired in timely manner

· Personalization – adaptive interfaces

· Accessibility – special needs users

· Design tests the will enable each goal to be evaluated

· Select participants to conduct the tests

· Instrument participants’ interactions with the WebApp during testing

· Develop method for assessing usability of the WebApp

Compatibility Testing

· Define a set of commonly encountered client-side computing configurations and their variants

· Organize this information (computing platform, typical display devices, operating system, available browsers, connection speeds) in a tree structure

· Derive compatibility validation test suite from existing interface tests, navigation tests, performance tests, and security tests

· Goal is to uncover execution problems that can be traced to configuration differences

Component-Level (Function) Testing

· Black box and white box testing of each WebApp function

· Useful test case design methods

· Equivalence partitioning

· Boundary value analysis (esp. form field values)

· Path testing

· Forced error testing

Navigation Testing

· Need to ensure that all mechanisms that allow the WebApp to user to travel through the WebApp are functional

· Need to validate that each navigation semantic unit (NSU) can be achieved by the appropriate user category
Testing Navigation Syntax

· Navigational Links

· Redirects

· Bookmarks

· Frames and framesets

· Site maps

· Internal search engines

Testing Navigation Semantics

· Navigation semantic units are defined by a set of pathways that connect navigation nodes

· Each NSU must allows a user from a defined user category achieve specific requirements defined by a use-case

· Testing needs to ensure that each path is executed in its entity without error

· Every relevant path must be tested

· User must be given guidance to follow or discontinue each path based on current location in site map

Configuration Testing

· Server-side Issues

· Compatibility of WebApp with server OS

· Correct file and directory creation by WebApp

· System security measures do not degrade user service by WebApp

· Testing WebApp with distributed server configuration

· WebApp properly integrated with database software

· Correct execution of WebApp scripts

· Examination system administration errors for impact on WebApp

· On-site testing of proxy servers

· Client-side issues

· Hardware

· Operating systems

· Browser software

· User interface components

· Plug-ins

· Connectivity

Testable Security Elements

· Firewalls

· Authentication

· Encryption

· Authorization

Performance Testing
· Used to performance problems that can result from lack of server-side resources, inappropriate network bandwidth, inadequate database capabilities, faulty operating system capabilities, poorly designed WebApp functionality, and hardware/software issues

· Intent is to discover how system responds to loading and collect metrics that will lead to improve performance
· Does the server response time degrade to a point where it is noticeable and unacceptable?

· At what point (in terms of users, transactions or data loading) does performance become unacceptable?

· What system components are responsible for performance degradation?

· What is the average response time for users under a variety of loading conditions?

· Does performance degradation have an impact on system security?

· Is WebApp reliability or accuracy affected as the load on the system grows?

· What happens when loads that are greater than maximum server capacity are applied?
· Does performance degradation have an impact on company revenues?
Performance – Load Testing

· Examines real-world conditions at variety of load level and in a variety of combinations

· Determine combinations of N, T, and D that cause performance to degrade or fail completely
N = number of concurrent users

T = number of on-line transactions per unit of time

D = data load processed by server per transaction

· Overall through put is computed using the equation

P = N * T * D

Performance – Stress Testing

· Forces loading to be increases to breaking point to determine how much capacity the WebApp can handle
· Does system degrade gracefully?

· Are users made aware that they cannot reach the server?

· Does server queue resource requests during heavy demand and then process the queue when demand lessens?

· Are transactions lost as capacity is exceeded?

· Is data integrity affected when capacity is exceeded?

· How long till system comes back on-line after a failure?

· Are certain WebApp functions discontinued as capacity is reached?

