Chapter 27 - Project Scheduling

Overview

The chapter describes the process of building and monitoring schedules for software development projects. To build complex software systems, many engineering tasks need to occur in parallel with one another to complete the project on time. The output from one task often determines when another may begin. Software engineers need to build activity networks that take these task interdependencies into account. Managers find that it is difficult to ensure that a team is working on the most appropriate tasks without building a detailed schedule and sticking to it. This requires that tasks are assigned to people, milestones are created, resources are allocated for each task, and progress is tracked.
Root Causes for Late Software

· Unrealistic deadline established outside the team

· Changing customer requirements not reflected in schedule changes

· Underestimating the resources required to complete the project

· Risks that were not considered when project began

· Technical difficulties that complete not have been predicted in advance

· Human difficulties that complete not have been predicted in advance

· Miscommunication among project staff resulting in delays

· Failure by project management to recognize project failing behind schedule and failure to take corrective action to correct problems

How to Deal With Unrealistic Schedule Demands

1. Perform a detailed project estimate for project effort and duration using historical data.

2. Use an incremental process model that will deliver critical functionality imposed by deadline, but delay other requested functionality.

3. Meet with the customer and explain why the deadline is unrealistic using your estimates based on prior team performance.

4. Offer an incremental development and delivery strategy as an alternative to increasing resources or allowing the schedule to slip beyond the deadline.

Project Scheduling Perspectives

· Project scheduling is an activity that distributes estimated effort across the planned project duration by allocating the effort to specific software engineering tasks.

· One view is that the end-date for the software release is set externally and that the software organization is constrained to distribute effort in the prescribed time frame.

· Another view is that the rough chronological bounds have been discussed by the developers and customers, but the end-date is best set by the developer after carefully considering how to best use the resources needed to meet the customer’s needs.

· Schedules evolve over time as the first macroscopic schedules is refined into the detailed schedule for each planned software increment.

Software Project Scheduling Principles

· Compartmentalization - the product and process must be decomposed into a manageable number of activities and tasks

· Interdependency - tasks that can be completed in parallel must be separated from those that must completed serially

· Time allocation - every task has start and completion dates that take the task interdependencies into account

· Effort validation - project manager must ensure that on any given day there are enough staff members assigned to completed the tasks within the time estimated in the project plan

· Defined Responsibilities - every scheduled task needs to be assigned to a specific team member

· Defined outcomes - every task in the schedule needs to have a defined outcome (usually a work product or deliverable)

· Defined milestones - a milestone is accomplished when one or more work products from an engineering task have passed quality review

Relationship Between People and Effort

· Adding people to a project after it is behind schedule often causes the schedule to slip further

· The relationship between the number of people on a project and overall productivity is not linear (e.g. 3 people do not produce 3 times the work of 1 person, if the people have to work in cooperation with one another)

· The main reasons for using more than 1 person on a project are to get the job done more rapidly and to improve software quality.

Project Effort Distribution

· The 40-20-40 rule:

· 40% front-end analysis and design

· 20% coding

· 40% back-end testing

· Generally accepted guidelines are:

· 02-03 % planning

· 10-25 % requirements analysis

· 20-25 % design

· 15-20 % coding

· 30-40 % testing and debugging

Software Project Types

1. Concept development - initiated to explore new business concept or new application of technology

2. New application development - new product requested by customer

3. Application enhancement - major modifications to function, performance, or interfaces (observable to user)

4. Application maintenance - correcting, adapting, or extending existing software (not immediately obvious to user)

5. Reengineering - rebuilding all (or part) of a legacy system

Factors Affecting Task Set

· Size of project

· Number of potential users

· Mission criticality

· Application longevity

· Requirement stability

· Ease of customer/developer communication

· Maturity of applicable technology

· Performance constraints

· Embedded/non-embedded characteristics

· Project staffing

· Reengineering factors

Concept Development Tasks

· Concept scoping - determine overall project scope

· Preliminary concept planning - establishes development team's ability to undertake the proposed work

· Technology risk assessment - evaluates the risk associated with the technology implied by the software scope

· Proof of concept - demonstrates the feasibility of the technology in the software context

· Concept implementation - concept represented in a form that can be used to sell it to the customer

· Customer reaction to concept - solicits feedback on new technology from customer

Scheduling

· Task networks (activity networks) are graphic representations can be of the task interdependencies and can help define a rough schedule for particular project

· Scheduling tools should be used to schedule any non-trivial project.

· Program evaluation and review technique (PERT) and critical path method (CPM)) are quantitative techniques that allow software planners to identify the chain of dependent tasks in the project work breakdown structure (WBS) that determine the project duration time.

· Timeline (Gantt) charts enable software planners to determine what tasks will be need to be conducted at a given point in time (based on estimates for effort, start time, and duration for each task).

· The best indicator of progress is the completion and successful review of a defined software work product.

· Time-boxing is the practice of deciding a priori the fixed amount of time that can be spent on each task. When the task's time limit is exceeded, development moves on to the next task (with the hope that a majority of the critical work was completed before time ran out).

Tracking Project Schedules

· Periodic project status meetings with each team member reporting progress and problems
· Evaluation of results of all work product reviews

· Comparing actual milestone completion dates to scheduled dates

· Comparing actual project task start-dates to scheduled start-dates

· Informal meeting with practitioners to have them asses subjectively progress to date and future problems

· Use earned value analysis to assess progress quantitatively

Tracking Increment Progress for OO Projects

· Technical milestone: OO analysis complete

· All hierarchy classes defined and reviewed

· Class attributes and operations are defined and reviewed

· Class relationships defined and reviewed

· Behavioral model defined and reviewed

· Reusable classed identified

· Technical milestone: OO design complete

· Subsystems defined and reviewed

· Classes allocated to subsystems and reviewed

· Task allocation has been established and reviewed

· Responsibilities and collaborations have been identified

· Attributes and operations have been designed and reviewed

· Communication model has been created and reviewed

· Technical milestone: OO programming complete

· Each new design model class has been implemented

· Classes extracted from the reuse library have been implemented

· Prototype or increment has been built

· Technical milestone: OO testing complete

· The correctness and completeness of the OOA and OOD models has been reviewed

· Class-responsibility-collaboration network has been developed and reviewed

· Test cases are designed and class-level tests have been conducted for each class

· Test cases are designed, cluster testing is completed, and classes have been integrated

· System level tests are complete

WebApp Project Scheduling

· During the first iteration a macroscopic is developed by allocating effort to specific tasks (it is understood that this is changeable schedule)
· The project is broken up into increments and the increments are refined in to detailed schedules as each is begun (some increments may be developed in parallel)

· Each task on the task list for each increment is adapted in one of four ways as its detailed schedule is created

· task is applied as is

· task is eliminated because it is not necessary for the increment

· new (custom) task is added

· task is refined (elaborated) into a number of named subtasks that each becomes part of the schedule
· This process continues until each planned increment is completed
Earned Value Analysis

· Earned value is a quantitative measure given to each task as a percent of project completed so far.

1. The total hours to complete each project task are estimated (BCWS - budgeted cost of work scheduled)
2. The effort to complete the project is computed by summing the effort to complete each task (BAC - budget at completion)
3. Each task is given an earned value based on its estimated percentage contribution to the total (BCWP - budgeted cost of work completed).

· It is compute the actual cost of work performed (ACWP) at any point in the project and to compute progress indicators for both schedule and costs based on these measures

