Chapter 31 – Emerging Trends in Software Engineering

Overview

No one can predict the future with absolute certainty. This chapter assesses software engineering trends that seem to be suggesting future directions for software development technology. Predicting the future is an art, not a science. People looks for trends and try to extrapolate from them. The correctness of the extrapolation will only be known as time passes.

Challenges of Isolating Trends
· What factors determine the success of a trend?
· What lifecycle does a trend follow?
· How early can a successful trend be identified?
· What aspects of evolution are controllable?
Technology Evolution

· How rapidly does technology evolve?

· How significant are the effects of positive feedback?

· How profound will resultant changes be?

Innovation Life Cycle

· Breakthrough phase – problem recognized and viable solutions attempted

· Replicator phase – initial work is reproduced

· Empiricism – creation of rules to govern the technology

· Theory – follows repeated success

· Automation – creation of automated tools

· Maturity – technology widely used (may never reach this stage)

Observing Software Engineering Trends

· Soft trends (business, organizational, market, and cultural)have a significant impact on the overall direction of software engineering
· Harder (research and technology) trends remain important

· Research trends are driven by perceptions of the state of the art and practice, perceptions of practitioner needs, national funding and strategic

Emerging Technologies Hype Cycle

· Technology trigger – a research breakthrough leads to media coverage and public enthusiasm

· Peak of inflated expectations – overly optimistic projections of impact based on limited, but well-publicized successes

· Disillusionment – overly optimistic projections of impact are not met and critics begin the drumbeat

· Slope of enlightenment – growing usage by a wide variety of companies leads to a better understanding of the technology’s true potential
· Plateau of productivity—real world benefits are now obvious and usage penetrates a significant percentage of the potential market

Indentifying Soft Trends
· Connectivity and collaboration has already led to a software teams that do not occupy the same physical space (telecommuting and part-time employment).

· Globalization leads to a diverse workforce (in terms of language, culture, problem resolution, management philosophy, communication priorities, and person-to-person interaction).

· The population is aging, this implies that many experienced software engineers and managers will be leaving the field over the coming decade.
· One billion new consumers will enter the worldwide marketplace over the next decade, a non-trivial percentage of this spending will be applied to products and services that are software-based or software-driven.
· Human culture itself will impact the direction of software engineering.
Software Engineering Trends

· Managing complexity of increasingly larger software projects

· Open-world software encompasses ambient intelligence, context aware applications, and pervasive computing

· The realities of emergent requirements on large projects force organizations to adopt incremental process models

· Getting the right talent mix on software dream teams

· Brain – chief architect able map stakeholder demands intop a technology framework that is extensible and implementable

· Data Grrl – data base/structures guru

· Blocker – manager who allows team to work free from interference

· Hacker – consummate programmer

· Gatherer – gathers system requirements and expresses them with clarity

· Software building blocks that allow unique solutions to be assembled by reusing existing artifacts

· Changing perception of value from business (cost and profitability) toward customer (delivery speed, functionality, product quality)

· Open source software that harnesses the power of distributed review and transparency of process (an end to predatory vendor lock-in)

Process Trends

· As SPI frameworks evolve, they will emphasize strategies that focus on goal orientation and product innovation
· Software engineers have a good sense of where the process is weak, process changes should generally be driven by their needs and should start from the bottom

· Automated software process technology (SPT) will move away from global process management to focus on those aspects of the software process that can best benefit from automation.
· Greater emphasis will be placed on the return-on-investment of SPI activities.
· The software community may come to understand that expertise in sociology and anthropology may have as much of more to do with successful SPI as other, more technical disciplines.
· New modes of learning may facilitate the transition to a more effective software process.

Characteristics of New Software

· Multi-functionality
· Reactivity and timeliness

· New modes of user interaction

· Complex architectures

· Heterogeneous, distributed systems

· Criticality

· Maintenance variability

Collaborative Development

· Software engineering is an information technology, every stakeholder must share information from the onset of the project

· Lack of collaborative tools is only part of the challenge faced by collaborative developers

· Success factors that must be combined to build the level of trust required by a global team to accomplish its tasks

· Shared goals

· Shared culture

· Shared process

· Shared responsibility

Requirements Engineering (RE)
· The success or failure of the basic actions (elicitation, elaboration, negotiation, specification, validation) have a strong influence on the outcome of the software engineering process

· To improve the manner in which requirements are defined the software engineering community will need to

· Improve knowledge acquisition and knowledge sharing

· Place greater emphasis on iteration as requirements are defined

· Create more effective communication and collaboration tools for all stakeholders
· Concurrent nature of many software engineering process models means that RE will be integrated with the design and construction activities
· Value driven requirements may begin to replace the notion of software specification

Model-Drive Software Development

· Couples domain-specific modeling languages with transformation engines and generators in a way that facilitates the representation at a high level and transforms it to lower levels

· Domain-specific languages (DSML) represent application structure, behavior, and requirements within particular application domains and are described with meta models that define key semantics and constraints associated with domain concepts

· DSML are more attuned to design concepts than a general purpose modeling language likeUML
Postmodern Design

· Where does requirements engineering stop and design begin?

· Where does design stop and code generation begin?

· Postmodern design will continue to emphasize the importance of software architecture

· Designers must state an architectural issues, make a decision addressing that issue, and define the assumptions, constraints, and implications on software as a whole

· Is there a framework that addresses the issues that can be described and the architecture that can be defined?

Test Driven Development (TDD)

· Requirements for a software component serve as the basis for the creation of a series of test cases that exercise the interface and attempt to find errors

· Test cases are created before source code

· Code is developed in very small increments (one sub-function at a time)

· Each new increment requires its own set of test case that must be passed and regression is performed as well

Tool Trends
· Human-centered (soft trend) path

· Software Engineering Environment (SEE) integrates a collection of tools round a central database
· SEE supports cooperation and communication among software engineers belonging to distributed development teams and facilitates artifact management

· Technology-centered path

· Creation of tool sets that support model driven development with emphasis on architecture driven design

· New tools will work with repository to create models at all needed levels of abstraction, establish relationships between models, and translate models from one level to another

