CHAPTER 17

Introduction to
the Application Layer

Exercise

1. SeeFigure 17.E1. Therightmost (little) byte of a 32-bit integer is stored in the first
memory location ().

Figure17.E1 Solutionto Exercise 1

. 32-bit data |
I
[8bits [8bhits [8bhits | 8hits |

X+1
X+2
X+3

Memory

3. A union can be used to define two aternative data types or a combination of a data
type and a data structure. We define a union as a combination of a 16-bit integer
and an array of two characters. We stored an integer in the union, but use the union
as an array of two bytes as shown in the program in Table 17.E3.

Table 17.E3 Solution to Exercise 3

/I A program to test the computer byte-order
#include "headerFiles.h"

union

04 W

uintl6-t intData;

[06 | char charDatd[2];

}daa

IS int main (void)

(

dataintData = 0x0102;

Table 17.E3 Solution to Exercise 3

if (data.charData[0] = 1 & & (data.charData[1] == 2)
printf ("Big-endian byte order\n");

elseif (datacharDate[0] == 2 & & (data.charData[1] == 1)
printf ("Little-endian byte order\n");

e

printf ("Unknown byte order\n");

} //End of main

. Table 17.E5 shows a simple program. In lines 17 and18, we create two chunks of
memory using the memset function and store the string "AAAAAAAAA" in the
first and the string "BBBBBBBBBBBB" in the second. In line 21, we use the func-
tion memcpy to copy only the first five characters of the second chunk into the
first. In line 23, we use the memcmp function to compare first the first bytes of the
two chunks. In line 24, we use the memcmp to compare the six bytes of the two
chunks.

Table 17.E5 Solution to Exercise 5

/I A program to test the computer byte-or der
(028 +include "headerFiles.h"

int main (void)
{
/I Declaration and definition
char buff1 [10];
char buff2 [12];
int resl;
int res2;
[l Satements
memset (buffl, 'A’, 10);
memset (buff2, 'B', 12);
printf ("%s\n", buff1);
printf ("%s\n", buff2);
memcpy (buffl, buff2, 5);
printf ("%s\n", buff1);
resl = memcmp (buffl, buff2, 5);
res2 = memecmp (buffl, buff2, 6);
printf ("%d %d \n", resl, res2);
return O;
} //End of main

NN 2R PR e R e = o o (@)

The result of running the program is shown below. The first line shows the con-
tents of the first chunk. The second line shows the contents of the second chunk.
the third line shows the contents the second chunk after copying. The last line
shows the result of the comparison.

AAAAAAAAAA
BBEBEBBBBBBEBB

BBBBBAAAAA
0 -1

7. We canreplace line 14 in Table 17.1 in the text with the following lines:

if (sd = socket (PF_INET, SOCK_DGRAM, 0) = -1)
{

perror (" Call to socket function failed”);

exit (1);
}

9. Table 17.E9 shows the new program. The colored section (lines 21 to 28) shows
the changes in the original program in the text.

Table17.E9 Solution to Exercise 9
/I UDP echo client program
#include "headerFiles.h"

int main (void)
{
/I Declar ation and definition
int sd;
int ns;
intnr;
char buffer [256];
struct sockaddr_in serverAddr;

/I Create socket
sd = socket (PF_INET, SOCK_DGRAM, 0);

/I Create server socket address

memset (& servAddr, O, sizeof (serverAddr));
servAddr.sin_family = AF_INET;

inet_pton (AF_INET, “server address’, & serverAddr.sin_addr);
serverAddr.sin_port = htons (7);

/I Send and receive datagrams
while (fgets (buffer, 256, stdin));
{
ns = sendto (sd, buffer, strlen (buffer), O,

(struct sockaddr)& serverAddr, sizeof(serveraddr));
recvfrom (sd, buffer, strlen (buffer), 0, NULL, NULL);
buffer [nr] = 0;
printf (“ Received from server:”);
fputs (buffer, stdout);

Table 17.E9 Solution to Exercise 9 (Continued)

33 /I Close and exit
34 close (sd);

35 exit (0);

36

Kyl } // End of echo client program

10. SeeFigure 17.E10.

Figure17.E10 Solution to Exercise 10

Client

fd = socket (...)

sleep

wake up @

v

send (...) '.......

v

recv (...) '
block l

unblock@<(=ssssnnnnnnn

All data
.- [arrived?

[true]

close (fd)

Exit

[false]

Connection handshake

One or more
segments

One or more
segments

Start t

fd = socket (...)

fd = accept (...)

Server ﬁ

J!

recv (...) '
block

hessunnnnnsna)@ unblock

[false]

	Chapter 17
	Introduction to the Application Layer
	Exercise
	1. See Figure 17.E1. The rightmost (little) byte of a 32-bit integer is stored in the first memory location (x).
	Figure 17.E1 Solution to Exercise 1

	3. A union can be used to define two alternative data types or a combination of a data type and a data structure. We define a union as a combination of a 16-bit integer and an array of two characters. We stored an integer in the union, but use the un...

	Table 17.E3 Solution to Exercise 3
	5. Table 17.E5 shows a simple program. In lines 17 and18, we create two chunks of memory using the memset function and store the string "AAAAAAAAA" in the first and the string "BBBBBBBBBBBB" in the second. In line 21, we use the function memcpy to co...

	Table 17.E5 Solution to Exercise 5
	7. We can replace line 14 in Table 17.1 in the text with the following lines:
	if (sd = socket (PF_INET, SOCK_DGRAM, 0) = -1)
	{
	perror("Call to socket function failed”);
	exit (1);
	}
	9. Table 17.E9 shows the new program. The colored section (lines 21 to 28) shows the changes in the original program in the text.

	Table 17.E9 Solution to Exercise 9
	10. See Figure 17.E10.
	Figure 17.E10 Solution to Exercise 10

