
Confirming Pages

xiii

 Preface
 Almost every computer science and computer engineering curriculum now includes a
required team-based software development project. In some cases, the project is only one
semester or quarter in length, but a year-long team-based software development project is
fast becoming the norm.
 In an ideal world, every student would complete a course in software engineering before
starting his or her team-based project (“two-stage curriculum”). In practice, however, many
students have to start their projects partway through their software engineering course, or
even at the beginning of the course (“parallel curriculum”).
 As explained in the next section, this book is organized in such a way that it can be used
for both curricula.

 How the Eighth Edition Is Organized
 The book comprises two main parts: Part B teaches the students how to develop a software
product; Part A provides the necessary theoretical background for Part B. The 18 chapters
are organized as follows:

 Chapter 1 Introduction to software engineering
 Part A Chapters 2 through 9 Software engineering concepts
 Part B Chapters 10 through 17 Software engineering techniques
 Chapter 18 Emerging technologies

 Chapter 10 is new. It contains a summary of the key material of Part A. When the two-stage
curriculum is followed, the instructor teaches fi rst Part A and then Part B (omitting Chapter 10,
because the material of Chapter 10 will have been covered in depth in Part A). For the parallel
curriculum, the instructor fi rst teaches Part B (so that the students can start their projects as soon
as possible), and then Part A. The material of Chapter 10 enables the students to understand Part
B without fi rst covering Part A.
 This latter approach seems counterintuitive: Surely theory should always be taught
before practice. In fact, curricular issues have forced many of the instructors who have
used the seventh edition of this book to teach the material of Part B before Part A. Surpris-
ingly, they have been most satisfi ed with the outcome. They report that their students have
a greater appreciation of the theoretical material of Part A as a consequence of their project
work. That is, team-based project work makes students more receptive to and understand-
ing of the theoretical concepts that underlie software engineering.
 In more detail, the material of the eighth edition may be taught in the following two ways:

 1. Two-Stage Curriculum

 Chapter 1 (Introduction to software engineering)
 Part A Chapters 2 through 9 (Software engineering concepts)
 Part B Chapters 11 through 17 (Software engineering techniques)
 Chapter 18 (Emerging technologies)
 The students then commence their team-based projects in the following semester

or quarter.

sch76183_FM-i-xx.indd xiiisch76183_FM-i-xx.indd xiii 15/05/10 2:35 PM15/05/10 2:35 PM

Confirming Pages

 2. Parallel Curriculum

 Chapter 1 (Introduction to software engineering)
 Chapter 10 (Key material from Part A)
 The students now commence their team-based projects, in parallel with studying

the material of Part B.
 Part B Chapters 11 through 17 (Software engineering techniques)
 Part A Chapters 2 through 9 (Software engineering concepts)

 Chapter 18 (Emerging technologies)

 New Features of the Eighth Edition

 • The book has been updated throughout.

 • I have added two new chapters. As previously explained, Chapter 10, a summary of key
points of Part A, has been included so that this book can be used when students start their
team-based term projects in parallel with their software engineering course. The other
new chapter, Chapter 18, gives an overview of 10 emerging technologies, including

 • Aspect-oriented technology

 • Model-driven technology

 • Component-based technology

 • Service-oriented technology

 • Social computing

 • Web engineering

 • Cloud technology

 • Web 3.0

 • Computer security

 • Model checking

 • I have considerably expanded the material on design patterns in Chapter 8, including a
new mini case study.

 • Two theoretical tools have been added to Chapter 5: divide-and-conquer, and separation
of concerns.

 • The object-oriented analysis of the elevator problem of Chapter 13 now refl ects a mod-
ern distributed, decentralized architecture.

 • The references have been extensively updated, with an emphasis on current research.

 • There are well over 100 new problems.

 • There are new Just in Case You Wanted to Know boxes.

 Features Retained from the Seventh Edition

 • The Unifi ed Process is still largely the methodology of choice for object-oriented soft-
ware development. Throughout this book, the student is therefore exposed to both the
theory and the practice of the Unifi ed Process.

 • In Chapter 1, the strengths of the object-oriented paradigm are analyzed in depth.

xiv Preface

sch76183_FM-i-xx.indd xivsch76183_FM-i-xx.indd xiv 15/05/10 2:35 PM15/05/10 2:35 PM

Confirming Pages

 • The iterative-and-incremental life-cycle model has been introduced as early as possible, namely,
in Chapter 2. Furthermore, as with all previous editions, numerous other life-cycle models are
presented, compared, and contrasted. Particular attention is paid to agile processes.

 • In Chapter 3 (“The Software Process”), the workfl ows (activities) and processes of the
Unifi ed Process are introduced, and the need for two-dimensional life-cycle models is
explained.

 • A wide variety of ways of organizing software teams are presented in Chapter 4 (“Teams”),
including teams for agile processes and for open-source software development.

 • Chapter 5 (“The Tools of the Trade”) includes information on important classes of
CASE tools.

 • The importance of continual testing is stressed in Chapter 6 (“Testing”).

 • Objects continue to be the focus of attention in Chapter 7 (“From Modules to Objects”).

 • Design patterns remain a central focus of Chapter 8 (“Reusability and Portability”).

 • The IEEE standard for software project management plans is again presented in
Chapter 9 (“Planning and Estimating”).

 • Chapter 11 (“Requirements”), Chapter 13 (“Object-Oriented Analysis”), and Chapter 14
(“Design”) are largely devoted to the workfl ows (activities) of the Unifi ed Process. For
obvious reasons, Chapter 12 (“Classical Analysis”) is largely unchanged.

 • The material in Chapter 15 (“Implementation”) clearly distinguishes between imple-
mentation and integration.

 • The importance of postdelivery maintenance is stressed in Chapter 16.

 • Chapter 17 provides additional material on UML to prepare the student thoroughly for
employment in the software industry. This chapter is of particular use to instructors who
utilize this book for the two-semester software engineering course sequence. In the second
semester, in addition to developing the team-based term project or a capstone project, the
student can acquire additional knowledge of UML, beyond what is needed for this book.

 • As before, there are two running case studies. The MSG Foundation case study and the
Elevator Problem case study have been developed using the Unifi ed Process. As usual,
Java and C++ implementations are available online at www.mhhe.com/schach.

 • In addition to the two running case studies that are used to illustrate the complete life
cycle, eight mini case studies highlight specifi c topics, such as the moving target prob-
lem, stepwise refi nement, design patterns, and postdelivery maintenance.

 • In all the previous editions, I have stressed the importance of documentation, mainte-
nance, reuse, portability, testing, and CASE tools. In this edition, all these concepts are
stressed equally fi rmly. It is no use teaching students the latest ideas unless they appreci-
ate the importance of the basics of software engineering.

 • As in the seventh edition, particular attention is paid to object-oriented life-cycle mod-
els, object-oriented analysis, object-oriented design, management implications of the
object-oriented paradigm, and the testing and maintenance of object-oriented software.
Metrics for the object-oriented paradigm also are included. In addition, many briefer
references are made to objects, a paragraph or even only a sentence in length. The reason
is that the object-oriented paradigm is not just concerned with how the various phases
are performed but rather permeates the way we think about software engineering. Object
technology again pervades this book.

Preface xv

sch76183_FM-i-xx.indd xvsch76183_FM-i-xx.indd xv 15/05/10 2:35 PM15/05/10 2:35 PM

Confirming Pages

 • The software process is still the concept that underlies the book as a whole. To control the pro-
cess, we have to be able to measure what is happening to the project. Accordingly, the emphasis
on metrics continues. With regard to process improvement, the material on the capability matu-
rity model (CMM), ISO/IEC 15504 (SPICE), and ISO/IEC 12207 has been retained.

 • The book is still language independent. The few code examples are presented in C++
and Java, and I have made every effort to smooth over language-dependent details and
ensure that the code examples are equally clear to C++ and Java users. For example,
instead of using cout for C++ output and System.out.println for Java output, I have
utilized the pseudocode instruction print . (The one exception is the new case study,
where complete implementation details are given in both C++ and Java, as before.)

 • As in the seventh edition, this book contains over 600 references. I have selected current
research papers as well as classic articles and books whose message remains fresh and rel-
evant. There is no question that software engineering is a rapidly moving fi eld, and students
therefore need to know the latest results and where in the literature to fi nd them. At the same
time, today’s cutting-edge research is based on yesterday’s truths, and I see no reason to
exclude an older reference if its ideas are as applicable today as they originally were.

 • With regard to prerequisites, it is assumed that the reader is familiar with a high-level
programming language such as C, C#, C++, or Java. In addition, the reader is expected
to have taken a course in data structures.

 Why the Classical Paradigm Is Still Included
 There is now almost unanimous agreement that the object-oriented paradigm is superior
to the classical paradigm. Accordingly, many instructors who adopted the seventh edition
of Object-Oriented and Classical Software Engineering chose to teach only the object-
oriented material in that book. However, when asked, instructors indicated that they prefer
to adopt a text that includes the classical paradigm.
 The reason is that, even though more and more instructors teach only the object-oriented
paradigm, they still refer to the classical paradigm in class; many object-oriented techniques are
hard for the student to understand unless that student has some idea of the classical techniques
from which those object-oriented techniques are derived. For example, understanding entity-
class modeling is easier for the student who has been introduced, even superfi cially, to entity-
relationship modeling. Similarly, a brief introduction to fi nite state machines makes it easier for
the instructor to teach statecharts. Accordingly, I have retained classical material in the eighth
edition, so that instructors have classical material available for pedagogical purposes.

 The Problem Sets
 As in the seventh edition, this book has fi ve types of problems. First, there are running
object-oriented analysis and design projects at the end of Chapters 11, 13, and 14. These
have been included because the only way to learn how to perform the requirements, analy-
sis, and design workfl ows is from extensive hands-on experience.
 Second, the end of each chapter contains a number of exercises intended to highlight key
points. These exercises are self-contained; the technical information for all the exercises
can be found in this book.

xvi Preface

sch76183_FM-i-xx.indd xvisch76183_FM-i-xx.indd xvi 15/05/10 2:35 PM15/05/10 2:35 PM

Confirming Pages

 Third, there is a software term project. It is designed to be solved by students working
in teams of three, the smallest number of team members that cannot confer over a standard
telephone. The term project comprises 15 separate components, each tied to the relevant
chapter. For example, design is the topic of Chapter 14, so in that chapter the component of
the term project is concerned with software design. By breaking a large project into smaller,
well-defi ned pieces, the instructor can monitor the progress of the class more closely. The
structure of the term project is such that an instructor may freely apply the 15 components
to any other project that he or she chooses.
 Because this book has been written for use by graduate students as well as upper-class
undergraduates, the fourth type of problem is based on research papers in the software
engineering literature. In each chapter, an important paper has been chosen; wherever pos-
sible, a paper related to object-oriented software engineering has been selected. The student
is asked to read the paper and answer a question relating to its contents. Of course, the
instructor is free to assign any other research paper; the For Further Reading section at the
end of each chapter includes a wide variety of relevant papers.
 The fi fth type of problem relates to the case study. This type of problem was fi rst intro-
duced in the third edition in response to a number of instructors who felt that their students
learn more by modifying an existing product than by developing a new product from scratch.
Many senior software engineers in the industry agree with that viewpoint. Accordingly, each
chapter in which the case study is presented has problems that require the student to modify
the case study in some way. For example, in one chapter the student is asked to redesign the
case study using a different design technique from the one used for the case study. In another
chapter, the student is asked what the effect would have been of performing the steps of the
object-oriented analysis in a different order. To make it easy to modify the source code of the
case study, it is available on the Web at www.mhhe.com/schach.
 The website also has material for instructors, including a complete set of PowerPoint
lecture notes and detailed solutions to all the exercises as well as to the term project.

 Material on UML
 This book makes substantial use of UML (Unifi ed Modeling Language). If the students do not
have previous knowledge of UML, this material may be taught in two ways. I prefer to teach
UML on a just-in-time basis; that is, each UML concept is introduced just before it is needed.
The following table describes where the UML constructs used in this book are introduced.

 Section in Which the Corresponding
Construct UML Diagram Is Introduced

 Class diagram, note, inheritance (generalization), Section 7.7
 aggregation, association, navigation triangle
 Use case Section 11.4.3
 Use-case diagram, use-case description Section 11.7
 Stereotype Section 13.1
 Statechart Section 13.6
 Interaction diagram (sequence diagram, Section 13.15
 communication diagram)

Preface xvii

sch76183_FM-i-xx.indd xviisch76183_FM-i-xx.indd xvii 15/05/10 2:35 PM15/05/10 2:35 PM

Confirming Pages

 Alternatively, Chapter 17 contains an introduction to UML, including material above and
beyond what is needed for this book. Chapter 17 may be taught at any time; it does not depend
on material in the fi rst 16 chapters. The topics covered in Chapter 17 are as follows:

 Section in Which the Corresponding
Construct UML Diagram Is Introduced

 Class diagram, aggregation, multiplicity, Section 17.2
 composition, generalization, association
 Note Section 17.3
 Use-case diagram Section 17.4
 Stereotype Section 17.5
 Interaction diagram Section 17.6
 Statechart Section 17.7
 Activity diagram Section 17.8
 Package Section 17.9
 Component diagram Section 17.10
 Deployment diagram Section 17.11

Online Resources
A website to accompany the text is available at www.mhhe.com/schach. The website
features Java and C++ implementations as well as source code for the MSG case study for
students. For instructors, lecture PowerPoints, detailed solutions to all exercises and the term
project, and an image library are available. For details, contact your sales representative.

Electronic Textbook Options
E-books are an innovative way for students to save money and create a greener environment
at the same time. An e-book can save students about half the cost of a traditional textbook
and offers unique features like a powerful search engine, highlighting, and the ability to
share notes with classmates using e-books.
 McGraw-Hill offers this text as an e-book. To talk about the e-book options, contact your
McGraw-Hill sales representative or visit the site www.coursesmart.com to learn more.

 Acknowledgments
 I greatly appreciate the constructive criticisms and many helpful suggestions of the reviewers
of the seven previous editions. Special thanks go to the reviewers of this edition, including

xviii Preface

 Ramzi Bualuan
 University of Notre Dame

 Ruth Dameron
 University of Colorado, Boulder

 Werner Krandick
 Drexel University

 Mike McCracken
 Georgia Institute of Technology

 Nenad Medvidovic
 University of Southern California

 Saeed Monemi
 California Polytechnic University, Pomona

sch76183_FM-i-xx.indd xviiisch76183_FM-i-xx.indd xviii 15/05/10 2:35 PM15/05/10 2:35 PM

