
Confirming Pages

 Chapter 3
The Software Process
 Learning Objectives

 After studying this chapter, you should be able to

 • Explain why two-dimensional life-cycle models are important.

 • Describe the fi ve core workfl ows of the Unifi ed Process.

 • List the artifacts tested in the test workfl ow.

 • Describe the four phases of the Unifi ed Process.

 • Explain the difference between the workfl ows and the phases of the Unifi ed
Process.

 • Appreciate the importance of software process improvement.

 • Describe the capability maturity model (CMM).

74

 The software process is the way we produce software. It incorporates the methodology
(Section 1.11) with its underlying software life-cycle model (Chapter 2) and techniques,
the tools we use (Sections 5.6 through 5.12), and most important of all, the individuals
building the software.
 Different organizations have different software processes. For example, consider the
issue of documentation. Some organizations consider the software they produce to be self-
documenting; that is, the product can be understood simply by reading the source code.
Other organizations, however, are documentation intensive. They punctiliously draw up
specifi cations and check them methodically. Then they perform design activities pains-
takingly, check and recheck their designs before coding commences, and give extensive
descriptions of each code artifact to the programmers. Test cases are preplanned, the result
of each test run is logged, and the test data are meticulously fi led away. Once the product
has been delivered and installed on the client’s computer, any suggested change must be pro-
posed in writing, with detailed reasons for making the change. The proposed change can be
made only with written authorization, and the modifi cation is not integrated into the product
until the documentation has been updated and the changes to the documentation approved.

sch76183_ch03_074-106.indd 74sch76183_ch03_074-106.indd 74 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 75

 Intensity of testing is another measure by which organizations can be compared. Some
organizations devote up to half their software budgets to testing software, whereas others
feel that only the user can thoroughly test a product. Consequently, some companies devote
minimal time and effort to testing the product but spend a considerable amount of time
fi xing problems reported by users.
 Postdelivery maintenance is a major preoccupation of many software organizations.
Software that is 10, 15, or even 20 years old is continually enhanced to meet changing
needs; in addition, residual faults continue to appear, even after the software has been suc-
cessfully maintained for many years. Almost all organizations move their software to newer
hardware every 3 to 5 years; this, too, constitutes postdelivery maintenance.
 In contrast, yet other organizations essentially are concerned with research, leaving
development—let alone maintenance—to others. This applies particularly to university
computer science departments, where graduate students build software to prove that a par-
ticular design or technique is feasible. The commercial exploitation of the validated con-
cept is left to other organizations. (See Just in Case You Wanted to Know Box 3.1 regarding
the wide variation in the ways different organizations develop software.)
 However, regardless of the exact procedure, the software development process is
structured around the fi ve workfl ows of Figure 2.4 : requirements, analysis (specifi -
cation), design, implementation, and testing. In this chapter, these workfl ows are
described, together with potential challenges that may arise during each workfl ow.
Solutions to the challenges associated with the production of software usually are non-
trivial, and the rest of this book is devoted to describing suitable techniques. In the
fi rst part of this chapter, only the challenges are highlighted, but the reader is guided
to the relevant sections or chapters for solutions. Accordingly, this part of the chapter
not only is an overview of the software process, but a guide to much of the rest of the
book. The chapter concludes with national and international initiatives to improve the
software process.
 We now examine the Unifi ed Process.

 Just in Case You Wanted to Know Box 3.1
 Why does the software process vary so drastically from organization to organization? A
major reason is lack of software engineering skills. All too many software professionals
simply do not keep up to date. They continue to develop software Ye Olde Fashioned
Way, because they know no other way.
 Another reason for differences in the software process is that many software managers
are excellent managers but know precious little about software development or mainte-
nance. Their lack of technical knowledge can result in the project slipping so badly behind
schedule that there is no point in continuing. This frequently is the reason why many
software projects are never completed.
 Yet another reason for differences among processes is management outlook. For
example, one organization may decide that it is better to deliver a product on time, even if
it is not adequately tested. Given the identical circumstances, a different organization might
conclude that the risk of delivering that product without comprehensive testing would be
far greater than taking the time to test the product thoroughly and consequently delivering
it late.

sch76183_ch03_074-106.indd 75sch76183_ch03_074-106.indd 75 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

76 Part A Software Engineering Concepts

 3.1 The Unifi ed Process
 As stated at the beginning of this chapter, methodology is one component of a software
process. The primary object-oriented methodology today is the Unifi ed Process . As
explained in Just in Case You Wanted to Know Box 3.2, the Unifi ed “Process” is actually
a methodology, but the name Unifi ed Methodology already had been used as the name
of the fi rst version of the Unifi ed Modeling Language (UML). The three precursors of
the Unifi ed Process (OMT, Booch’s method, and Objectory) are no longer supported, and
the other object-oriented methodologies have had little or no following. As a result, the
Unifi ed Process is usually the primary choice today for object-oriented software produc-
tion. Fortunately, as will be demonstrated in Part B of this book, the Unifi ed Process is an
excellent object-oriented methodology in almost every way.
 The Unifi ed Process is not a specifi c series of steps that, if followed, will result in the
construction of a software product. In fact, no such single “one size fi ts all” methodology
could exist because of the wide variety of types of software products. For example, there
are many different application domains, such as insurance, aerospace, and manufacturing.
Also, a methodology for rushing a COTS package to market ahead of its competitors is
different from one used to construct a high-security electronic funds transfer network. In
addition, the skills of software professionals can vary widely.
 Instead, the Unifi ed Process should be viewed as an adaptable methodology. That is, it
is modifi ed for the specifi c software product to be developed. As will be seen in Part B,
some features of the Unifi ed Process are inapplicable to small- and even medium-scale
software. However, much of the Unifi ed Process is used for software products of all sizes.
The emphasis in this book is on this common subset of the Unifi ed Process, but aspects
of the Unifi ed Process applicable to only large-scale software also are discussed, to ensure
that the issues that need to be addressed when larger software products are constructed are
thoroughly appreciated.

 3.2 Iteration and Incrementation within
the Object-Oriented Paradigm

 The object-oriented paradigm uses modeling throughout. A model is a set of UML dia-
grams that represent one or more aspects of the software product to be developed. (UML
diagrams are introduced in Chapter 7 .) Recall that UML stands for Unifi ed Modeling Lan-
guage. That is, UML is the tool that we use to represent (model) the target software product.
A major reason for using a graphical representation like UML is best expressed by the old
proverb, a picture is worth a thousand words. UML diagrams enable software profession-
als to communicate with one another more quickly and more accurately than if only verbal
descriptions were used.
 The object-oriented paradigm is an iterative-and-incremental methodology. Each work-
fl ow consists of a number of steps, and to carry out that workfl ow, the steps of the workfl ow
are repeatedly performed until the members of the development team are satisfi ed that
they have an accurate UML model of the software product they want to develop. That is,
even the most experienced software professionals iterate and reiterate until they are fi nally
satisfi ed that the UML diagrams are correct. The implication is that software engineers, no

sch76183_ch03_074-106.indd 76sch76183_ch03_074-106.indd 76 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

 Just in Case You Wanted to Know Box 3.2
 Until recently, the most popular object-oriented software development methodologies were
object modeling technique (OMT) [Rumbaugh et al., 1991] and Grady Booch’s method
[Booch, 1994]. OMT was developed by Jim Rumbaugh and his team at the General Elec-
tric Research and Development Center in Schenectady, New York, whereas Grady Booch
developed his method at Rational, Inc., in Santa Clara, California. All object-oriented soft-
ware development methodologies essentially are equivalent, so the differences between
OMT and Booch’s method are small. Nevertheless, there always was a friendly rivalry
between the supporters of the two camps.
 This changed in October 1994, when Rumbaugh joined Booch at Rational. The two
methodologists immediately began to work together to develop a methodology that would
combine OMT and Booch’s method. When a preliminary version of their work was pub-
lished, it was pointed out that they had not developed a methodology but merely a notation
for representing an object-oriented software product. The name Unifi ed Methodology was
quickly changed to Unifi ed Modeling Language (UML). In 1995, they were joined at Rational
by Ivar Jacobson, author of the Objectory methodology. Booch, Jacobson, and Rumbaugh,
affectionately called the “Three Amigos” (after the 1986 John Landis movie Three Amigos!
with Chevy Chase and Steve Martin), then worked together. Version 1.0 of UML, published
in 1997, took the software engineering world by storm. Until then, there had been no
universally accepted notation for the development of a software product. Almost overnight
UML was used all over the world. The Object Management Group (OMG), an association of
the world’s leading companies in object technology, took the responsibility for organizing
an international standard for UML, so that every software professional would use the same
version of UML, thereby promoting communication among individuals within an organi-
zation as well as companies worldwide. UML [Booch, Rumbaugh, and Jacobson, 1999] is
today the unquestioned international standard notation for representing object-oriented
software products.
 An orchestral score shows which musical instruments are needed to play the piece, the
notes each instrument is to play and when it is to play them, as well as a whole host of
technical information such as the key signature, tempo, and loudness. Could this informa-
tion be given in English, rather than a diagram? Probably, but it would be impossible to play
music from such a description. For example, there is no way a pianist and a violinist could
perform a piece described as follows: “The music is in march time, in the key of B minor. The
fi rst bar begins with the A above middle C on the violin (a quarter note). While this note is
being played, the pianist plays a chord consisting of seven notes. The right hand plays the
following four notes: E sharp above middle C . . .”
 It is clear that, in some fi elds, a textual description simply cannot replace a diagram.
Music is one such fi eld; software development is another. And for software development,
the best modeling language available today is UML.
 Taking the software engineering world by storm with UML was not enough for the Three
Amigos. Their next endeavor was to publish a complete software development methodol-
ogy that unifi ed their three separate methodologies. This unifi ed methodology was fi rst
called the Rational Unifi ed Process (RUP); Rational is in the name of the methodology not
because the Three Amigos considered all other approaches to be irrational, but because at
that time all three were senior managers at Rational, Inc. (Rational was bought by IBM in
2003). In their book on RUP [Jacobson, Booch, and Rumbaugh, 1999], the name Unifi ed
Software Development Process (USDP) was used. The term Unifi ed Process is generally used
today, for brevity.

sch76183_ch03_074-106.indd 77sch76183_ch03_074-106.indd 77 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

78 Part A Software Engineering Concepts

matter how outstanding they may be, almost never get the various work products right the
fi rst time. How can this be?
 The nature of software products is such that virtually everything has to be developed
iteratively and incrementally. After all, software engineers are human, and therefore subject
to Miller’s Law (Section 2.5). That is, it is impossible to consider everything at the same time,
so just seven or so chunks (units of information) are handled initially. Then, when the next set
of chunks is considered, more knowledge about the target software product is gained, and the
UML diagrams are modifi ed in the light of this additional information. The process continues
in this way until eventually the software engineers are satisfi ed that all the models for a given
workfl ow are correct. In other words, initially the best possible UML diagrams are drawn in the
light of the knowledge available at the beginning of the workfl ow. Then, as more knowledge
about the real-world system being modeled is gained, the diagrams are made more accurate
(iteration) and extended (incrementation). Accordingly, no matter how experienced and skillful
a software engineer may be, he or she repeatedly iterates and increments until satisfi ed that the
UML diagrams are an accurate representation of the software product to be developed.
 Ideally, by the end of this book, the reader would have the software engineering skills
necessary for constructing the large, complex software products for which the Unifi ed Pro-
cess was developed. Unfortunately, there are three reasons why this is not feasible.

 1. Just as it is not possible to become an expert on calculus or a foreign language in one
single course, gaining profi ciency in the Unifi ed Process requires extensive study and,
more important, unending practice in object-oriented software engineering.

 2. The Unifi ed Process was created primarily for use in developing large, complex soft-
ware products. To be able to handle the many intricacies of such software products, the
Unifi ed Process is itself large. It would be hard to cover every aspect of the Unifi ed
Process in a textbook of this size.

 3. To teach the Unifi ed Process, it is necessary to present a case study that illustrates the
features of the Unifi ed Process. To illustrate the features that apply to large software
products, such a case study would have to be large. For example, just the specifi cations
typically would take over 1000 pages.

 For these three reasons, this book presents most, but not all, of the Unifi ed Process.
 The fi ve core workfl ows of the Unifi ed Process (requirements workfl ow, analysis
workfl ow, design workfl ow, implementation workfl ow, and test workfl ow) and their chal-
lenges are now discussed.

 3.3 The Requirements Workfl ow

 Software development is expensive. The development process usually begins when the
client approaches a development organization with regard to a software product that, in
the opinion of the client, is either essential to the profi tability of his or her enterprise or
somehow can be justifi ed economically. The aim of the requirements workfl ow is for
the development organization to determine the client’s needs. The fi rst task of the develop-
ment team is to acquire a basic understanding of the application domain (domain for
short), that is, the specifi c environment in which the target software product is to operate.
The domain could be banking, automobile manufacturing, or nuclear physics.

sch76183_ch03_074-106.indd 78sch76183_ch03_074-106.indd 78 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 79

 At any stage of the process, if the client stops believing that the software will be cost
effective, development will terminate immediately. Throughout this chapter the assumption
is made that the client feels that the cost is justifi ed. Therefore, a vital aspect of software
development is the business case , a document that demonstrates the cost-effectiveness of
the target product. (In fact, the “cost” is not always purely fi nancial. For example, military
software often is built for strategic or tactical reasons. Here, the cost of the software is the
potential damage that could be suffered in the absence of the weapon being developed.)
 At an initial meeting between client and developers, the client outlines the product as
he or she conceptualizes it. From the viewpoint of the developers, the client’s description
of the desired product may be vague, unreasonable, contradictory, or simply impossible
to achieve. The task of the developers at this stage is to determine exactly what the client
needs and to fi nd out from the client what constraints exist.

 • A major constraint is almost always the deadline . For example, the client may stipulate
that the fi nished product must be completed within 14 months. In almost every application
domain, it is now commonplace for a target software product to be mission critical. That
is, the client needs the software product for core activities of his or her organization, and
any delay in delivering the target product is detrimental to the organization.

 • A variety of other constraints often are present, such as reliability (for example, the
product must be operational 99 percent of the time, or the mean time between failures
must be at least 4 months). Another common constraint is the size of the executable load
image (for example, it has to run on the client’s personal computer or on the hardware
inside the satellite).

 • The cost is almost invariably an important constraint. However, the client rarely tells
the developers how much money is available to build the product. Instead, a common
practice is that, once the specifi cations have been fi nalized, the client asks the developers
to name their price for completing the project. Clients follow this bidding procedure in
the hope that the amount of the developers’ bid is lower than the amount the client has
budgeted for the project.

 The preliminary investigation of the client’s needs sometimes is called concept explo-
ration . In subsequent meetings between members of the development team and the client
team, the functionality of the proposed product is successively refi ned and analyzed for
technical feasibility and fi nancial justifi cation.
 Up to now, everything seems to be straightforward. Unfortunately, the requirements
workfl ow often is performed inadequately. When the product fi nally is delivered to the
user, perhaps a year or two after the specifi cations have been signed off on by the client, the
client may say to the developers, “I know that this is what I asked for, but it isn’t really what
I wanted.” What the client asked for and, therefore, what the developers thought the client
wanted, was not what the client actually needed . There can be a number of reasons for this
predicament. First, the client may not truly understand what is going on in his or her own
organization. For example, it is no use asking the software developers for a faster operating
system if the cause of the current slow turnaround is a badly designed database. Or, if the
client operates an unprofi table chain of retail stores, the client may ask for a fi nancial man-
agement information system that refl ects such items as sales, salaries, accounts payable,
and accounts receivable. Such a product will be of little use if the real reason for the losses

sch76183_ch03_074-106.indd 79sch76183_ch03_074-106.indd 79 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

is shrinkage (theft by employees and shoplifting). If that is the case, then a stock control
system rather than a fi nancial management information system is required.
 But the major reason why the client frequently asks for the wrong product is that soft-
ware is complex. If it is diffi cult for a software professional to visualize a piece of software
and its functionality, the problem is far worse for a client who is barely computer literate.
As will be shown in Chapter 11 , the Unifi ed Process can help in this regard; the many UML
diagrams of the Unifi ed Process assist the client in gaining the necessary detailed under-
standing of what needs to be developed.

 3.4 The Analysis Workfl ow
 The aim of the analysis workfl ow is to analyze and refi ne the requirements to achieve
the detailed understanding of the requirements essential for developing a software product
correctly and maintaining it easily. At fi rst sight, however, there is no need for an analysis
workfl ow. Instead, an apparently simpler way to proceed would be to develop a software
product by continuing with further iterations of the requirements workfl ow until the neces-
sary understanding of the target software product has been obtained.
 The key point is that the output of the requirements workfl ow must be totally compre-
hended by the client. In other words, the artifacts of the requirements workfl ow must be
expressed in the language of the client, that is, in a natural (human) language such as English,
Armenian, or Zulu. But all natural languages, without exception, are somewhat imprecise and
lend themselves to misunderstanding. For example, consider the following paragraph:

 A part record and a plant record are read from the database. If it contains the letter A directly
followed by the letter Q, then calculate the cost of transporting that part to that plant.

 At fi rst sight, this requirement seems perfectly clear. But to what does it (the second
word in the second sentence) refer: the part record, the plant record, or the database?
 Ambiguities of this kind cannot arise if the requirements are expressed (say) in a math-
ematical notation. However, if a mathematical notation is used for the requirements, then
the client is unlikely to understand much of the requirements. As a result, there may well be
miscommunication between client and developers regarding the requirements, and conse-
quently, the software product developed to satisfy those requirements may not be what the
client needs.
 The solution is to have two separate workfl ows. The requirements workfl ow is couched
in the language of the client; the analysis workfl ow, in a more precise language that ensures
that the design and implementation workfl ows are correctly carried out. In addition, more
details are added during the analysis workfl ow, details not relevant to the client’s under-
standing of the target software product but essential for the software professionals who will
develop the software product. For example, the initial state of a statechart (Section 13.6)
would surely not concern the client in any way but has to be included in the specifi cations
if the developers are to build the target product correctly.
 The specifi cations of the product constitute a contract. The software developers are
deemed to have completed the contract when they deliver a product that satisfi es the
acceptance criteria of the specifi cations. For this reason, the specifi cations should not
include imprecise terms like suitable, convenient, ample , or enough , or similar terms that

80 Part A Software Engineering Concepts

sch76183_ch03_074-106.indd 80sch76183_ch03_074-106.indd 80 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 81

sound exact but in practice are equally imprecise, such as optimal or 98 percent complete .
Whereas contract software development can lead to a lawsuit, there is no chance of the
specifi cations forming the basis for legal action when the client and developers are from
the same organization. Nevertheless, even in the case of internal software development, the
specifi cations always should be written as if they will be used as evidence in a trial.
 More important, the specifi cations are essential for both testing and maintenance. Unless
the specifi cations are precise, there is no way to determine whether they are correct, let
alone whether the implementation satisfi es the specifi cations. And it is hard to change the
specifi cations unless some document states exactly what the specifi cations currently are.
 When the Unifi ed Process is used, there is no specifi cation document in the usual sense of
the term. Instead, a set of UML artifacts are shown to the client, as described in Chapter 13 .
These UML diagrams and their descriptions can obviate many (but by no means all) of the
problems of the classical specifi cation document.
 One mistake that can be made by a classical analysis team is that the specifi cations are
ambiguous; as previously explained, ambiguity is intrinsic to natural languages. Incom-
pleteness is another problem in the specifi cations; that is, some relevant fact or require-
ment may be omitted. For instance, the specifi cation document may not state what actions
are to be taken if the input data contain errors. Moreover, the specifi cation document may
contain contradictions . For example, one place in the specifi cation document for a prod-
uct that controls a fermentation process states that if the pressure exceeds 35 psi, then
valve M17 immediately must be shut. However, another place states that, if the pressure
exceeds 35 psi, then the operator immediately must be alerted; only if the operator takes
no remedial action within 30 seconds should valve M17 be shut automatically. Software
development cannot proceed until such problems in the specifi cations have been corrected.
As pointed out in the previous paragraph, many of these problems can be reduced by using
the Unifi ed Process. This is because UML diagrams together with descriptions of those
diagrams are less likely to contain ambiguity, incompleteness, and contradictions.
 Once the client has approved the specifi cations, detailed planning and estimating com-
mences. No client authorizes a software project without knowing in advance how long the
project will take and how much it will cost. From the viewpoint of the developers, these
two items are just as important. If the developers underestimate the cost of a project, then
the client pays the agreed-upon fee, which may be signifi cantly less than the develop-
ers’ actual cost. Conversely, if the developers overestimate what the project costs, then the
client may turn down the project or have the job done by other developers whose estimate
is more reasonable. Similar issues arise with regard to duration estimates. If the developers
underestimate how long completing a project will take, then the resulting late delivery of
the product, at best, results in a loss of confi dence by the client. At worst, lateness penalty
clauses in the contract are invoked, causing the developers to suffer fi nancially. Again, if
the developers overestimate how long it will take for the product to be delivered, the client
may well award the job to developers who promise faster delivery.
 For the developers, merely estimating the duration and total cost is not enough.
The developers need to assign the appropriate personnel to the various workfl ows of the
development process. For example, the implementation team cannot start until the relevant
design artifacts have been approved by the software quality assurance (SQA) group, and
the design team is not needed until the analysis team has completed its task. In other words,
the developers have to plan ahead. A software project management plan (SPMP) must be

sch76183_ch03_074-106.indd 81sch76183_ch03_074-106.indd 81 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

82 Part A Software Engineering Concepts

drawn up that refl ects the separate workfl ows of the development process and shows which
members of the development organization are involved in each task, as well as the deadlines
for completing each task.
 The earliest that such a detailed plan can be drawn up is when the specifi cations have
been fi nalized. Before that time, the project is too amorphous for complete planning. Some
aspects of the project certainly must be planned right from the start, but until the developers
know exactly what is to be built, they cannot specify all aspects of the plan for building it.
 Therefore, once the specifi cations have been approved by the client, preparation of the
software project management plan commences. Major components of the plan are the
 deliverables (what the client is going to get), the milestones (when the client gets them),
and the budget (how much it is going to cost).
 The plan describes the software process in fullest detail. It includes aspects such as the
life-cycle model to be used, the organizational structure of the development organization,
project responsibilities, managerial objectives and priorities, the techniques and CASE
tools to be used, and detailed schedules, budgets, and resource allocations. Underlying the
entire plan are the duration and cost estimates; techniques for obtaining such estimates are
described in Section 9.2.
 The analysis workfl ow is described in Chapters 12 and 13 : classical analysis techniques
are described in Chapter 12 , and object-oriented analysis is the subject of Chapter 13 .
A major artifact of the analysis workfl ow is the software project management plan. An
explanation of how to draw up the SPMP is given in Sections 9.3 though 9.5.
 Now the design workfl ow is examined.

 3.5 The Design Workfl ow
 The specifi cations of a product spell out what the product is to do; the design shows how
the product is to do it. More precisely, the aim of the design workfl ow is to refi ne the
artifacts of the analysis workfl ow until the material is in a form that can be implemented
by the programmers.
 As explained in Section 1.3, during the classical design phase, the design team determines
the internal structure of the product. The designers decompose the product into modules ,
independent pieces of code with well-defi ned interfaces to the rest of the product. The
interface of each module (that is, the arguments passed to the module and the arguments
returned by the module) must be specifi ed in detail. For example, a module might measure
the water level in a nuclear reactor and cause an alarm to sound if the level is too low. A
module in an avionics product might take as input two or more sets of coordinates of an
incoming enemy missile, compute its trajectory, and invoke another module to advise the
pilot as to possible evasive action. Once the team has completed the decomposition into
modules (the architectural design), the detailed design is performed. For each mod-
ule, algorithms are selected and data structures chosen.
 Turning now to the object-oriented paradigm, the basis of that paradigm is the class , a
specifi c type of module. Classes are extracted during the analysis workfl ow and designed
during the design workfl ow. Consequently, the object-oriented counterpart of architectural
design is performed as a part of the object-oriented analysis workfl ow, and the object-
oriented counterpart of detailed design is part of the object-oriented design workfl ow.

sch76183_ch03_074-106.indd 82sch76183_ch03_074-106.indd 82 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 83

 The design team must keep a meticulous record of the design decisions that are made.
This information is essential for two reasons.

 1. While the product is being designed, a dead end will be reached at times and the design
team must backtrack and redesign certain pieces. Having a written record of why specifi c
decisions were made assists the team when this occurs and helps it get back on track.

 2. Ideally, the design of the product should be open-ended, meaning future enhancements
(postdelivery maintenance) can be done by adding new classes or replacing existing
classes without affecting the design as a whole. Of course, in practice, this ideal is dif-
fi cult to achieve. Deadline constraints in the real world are such that designers struggle
against the clock to complete a design that satisfi es the original specifi cations, without
worrying about any later enhancements. If future enhancements (to be added after the
product is delivered to the client) are included in the specifi cations, then these must be
allowed for in the design, but this situation is extremely rare. In general, the specifi ca-
tions, and hence the design, deal with only present requirements. In addition, while
the product is still being designed, there is no way to determine all possible future
enhancements. Finally, if the design has to take all future possibilities into account,
at best it will be unwieldy; at worst, it will be so complicated that implementation is
impossible. So the designers have to compromise, putting together a design that can be
extended in many reasonable ways without the need for total redesign. But, in a product
that undergoes major enhancement, the time will come when the design simply cannot
handle further changes. When this stage is reached, the product must be redesigned as
a whole. The task of the redesign team is considerably easier if the team members are
provided a record of the reasons for all the original design decisions.

 3.6 The Implementation Workfl ow
 The aim of the implementation workfl ow is to implement the target software product
in the chosen implementation language(s). A small software product is sometimes imple-
mented by the designer. In contrast, a large software product is partitioned into smaller sub-
systems, which are then implemented in parallel by coding teams. The subsystems, in turn,
consist of components or code artifacts implemented by an individual programmer.
 Usually, the only documentation given a programmer is the relevant design artifact. For
example, in the case of the classical paradigm, the programmer is given the detailed design
of the module he or she is to implement. The detailed design usually provides enough
information for the programmer to implement the code artifact without too much diffi culty.
If there are any problems, they can quickly be cleared up by consulting the responsible
designer. However, there is no way for the individual programmer to know if the architec-
tural design is correct. Only when integration of individual code artifacts commences do
the shortcomings of the design as a whole start coming to light.
 Suppose that a number of code artifacts have been implemented and integrated and the
parts of the product integrated so far appear to be working correctly. Suppose further that
a programmer has correctly implemented artifact a45, but when this artifact is integrated
with the other existing artifacts, the product fails. The cause of the failure lies not in artifact
a45 itself, but rather in the way that artifact a45 interacts with the rest of the product, as

sch76183_ch03_074-106.indd 83sch76183_ch03_074-106.indd 83 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

84 Part A Software Engineering Concepts

specifi ed in the architectural design. Nevertheless, in this type of situation the program-
mer who just coded artifact a45 tends to be blamed for the failure. This is unfortunate,
because the programmer has simply followed the instructions provided by the designer and
implemented the artifact exactly as described in the detailed design for that artifact. The
members of the programming team are rarely shown the “big picture,” that is, the archi-
tectural design, let alone asked to comment on it. Although it is grossly unfair to expect an
individual programmer to be aware of the implications of a specifi c artifact for the product
as a whole, this unfortunately happens in practice all too often. This is yet another reason
why it is so important for the design to be correct in every respect.
 The correctness of the design (as well as the other artifacts) is checked as part of the test
workfl ow.

 3.7 The Test Workfl ow
 As shown in Figure 2.4 , in the Unifi ed Process, testing is carried out in parallel with the
other workfl ows, starting from the beginning. There are two major aspects to testing.

 1. Every developer and maintainer is personally responsible for ensuring that his or her
work is correct. Therefore, a software professional has to test and retest each artifact he
or she develops or maintains.

 2. Once the software professional is convinced that an artifact is correct, it is handed over to
the software quality assurance group for independent testing, as described in Chapter 6 .

 The nature of the test workfl ow changes depending on the artifacts being tested. How-
ever, a feature important to all artifacts is traceability.

 3.7.1 Requirements Artifacts
 If the requirements artifacts are to be testable over the life cycle of the software product,
then one property they must have is traceability . For example, it must be possible to trace
every item in the analysis artifacts back to a requirements artifact and similarly for the
design artifacts and the implementation artifacts. If the requirements have been presented
methodically, properly numbered, cross-referenced, and indexed, then the developers
should have little diffi culty tracing through the subsequent artifacts and ensuring that they
are indeed a true refl ection of the client’s requirements. When the work of the members of
the requirements team is subsequently checked by the SQA group, traceability simplifi es
their task, too.

 3.7.2 Analysis Artifacts
 As pointed out in Chapter 1 , a major source of faults in delivered software is faults in the
specifi cations that are not detected until the software has been installed on the client’s
computer and used by the client’s organization for its intended purpose. Both the analy-
sis team and the SQA group must therefore check the analysis artifacts assiduously. In
addition, they must ensure that the specifi cations are feasible, for example, that a specifi c
hardware component is fast enough or that the client’s current online disk storage capacity
is adequate to handle the new product. An excellent way of checking the analysis artifacts
is by means of a review. Representatives of the analysis team and of the client are present.

sch76183_ch03_074-106.indd 84sch76183_ch03_074-106.indd 84 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 85

The meeting usually is chaired by a member of the SQA group. The aim of the review is to
determine whether the analysis artifacts are correct. The reviewers go through the analysis
artifacts, checking to see if there are any faults. Walkthroughs and inspections are two types
of reviews, and they are described in Section 6.2.
 We turn now to the checking of the detailed planning and estimating that takes place
once the client has signed off on the specifi cations. Whereas it is essential that every aspect
of the SPMP be meticulously checked by the development team and then by the SQA
group, particular attention must be paid to the plan’s duration and cost estimates. One way
to do this is for management to obtain two (or more) independent estimates of both dura-
tion and cost when detailed planning starts, and then reconcile any signifi cant differences.
With regard to the SPMP document, an excellent way to check it is by a review similar to
the review of the analysis artifacts. If the duration and cost estimates are satisfactory, the
client will give permission for the project to proceed.

 3.7.3 Design Artifacts
 As mentioned in Section 3.7.1, a critical aspect of testability is traceability. In the case of
the design, this means that every part of the design can be linked to an analysis artifact. A
suitably cross-referenced design gives the developers and the SQA group a powerful tool
for checking whether the design agrees with the specifi cations and whether every part of
the specifi cations is refl ected in some part of the design.
 Design reviews are similar to the reviews that the specifi cations undergo. However, in
view of the technical nature of most designs, the client usually is not present. Members of
the design team and the SQA group work through the design as a whole as well as through
each separate design artifact, ensuring that the design is correct. The types of faults to look
for include logic faults, interface faults, lack of exception handling (processing of error
conditions), and most important, nonconformance to the specifi cations. In addition, the
review team always should be aware of the possibility that some analysis faults were not
detected during the previous workfl ow. A detailed description of the review process is given
in Section 6.2.

 3.7.4 Implementation Artifacts
 Each component should be tested while it is being implemented (desk checking); and after
it has been implemented, it is run against test cases. This informal testing is done by the pro-
grammer. Thereafter, the quality assurance group tests the component methodically; this is
termed unit testing . A variety of unit-testing techniques are described in Chapter 15 .
 In addition to running test cases, a code review is a powerful, successful technique for
detecting programming faults. Here, the programmer guides the members of the review
team through the listing of the component. The review team must include an SQA repre-
sentative. The procedure is similar to reviews of specifi cations and designs described previ-
ously. As in all the other workfl ows, a record of the activities of the SQA group are kept as
part of the test workfl ow.
 Once a component has been coded, it must be combined with the other coded components
so that the SQA group can determine whether the (partial) product as a whole functions
correctly. The way in which the components are integrated (all at once or one at a time) and
the specifi c order (from top to bottom or from bottom to top in the component interconnec-
tion diagram or class hierarchy) can have a critical infl uence on the quality of the resulting

sch76183_ch03_074-106.indd 85sch76183_ch03_074-106.indd 85 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

86 Part A Software Engineering Concepts

product. For example, suppose the product is integrated bottom up. A major design fault, if
present, will show up late, necessitating an expensive reimplementation. Conversely, if the
components are integrated top down, then the lower-level components usually do not receive
as thorough a testing as would be the case if the product were integrated bottom up. These and
other problems are discussed in detail in Chapter 15 . A detailed explanation is given there as
to why coding and integration must be performed in parallel.
 The purpose of this integration testing is to check that the components combine
correctly to achieve a product that satisfi es its specifi cations. During integration testing,
particular care must be paid to testing the component interfaces. It is important that the
number, order, and types of formal arguments match the number, order, and types of actual
arguments. This strong type checking [van Wijngaarden et al., 1975] is best performed by
the compiler and linker. However, many languages are not strongly typed. When such a
language is used, members of the SQA group must check the interfaces.
 When the integration testing has been completed (that is, when all the components have
been coded and integrated), the SQA group performs product testing . The functionality
of the product as a whole is checked against the specifi cations. In particular, the constraints
listed in the specifi cations must be tested. A typical example is whether the response time
has been met. Because the aim of product testing is to determine whether the specifi cations
have been correctly implemented, many of the test cases can be drawn up once the specifi -
cations are complete.
 Not only must the correctness of the product be tested but its robustness must also be
tested. That is, intentionally erroneous input data are submitted to determine whether the
product will crash or whether its error-handling capabilities are adequate for dealing with
bad data. If the product is to be run together with the client’s currently installed software,
then tests also must be performed to check that the new product will have no adverse effect
on the client’s existing computer operations. Finally, a check must be made as to whether
the source code and all other types of documentation are complete and internally consistent.
Product testing is discussed in Section 15.21. On the basis of the results of the product test,
a senior manager in the development organization decides whether the product is ready to
be released to the client.
 The fi nal step in testing the implementation artifacts is acceptance testing . The soft-
ware is delivered to the client, who tests it on the actual hardware, using actual data as
opposed to test data. No matter how methodical the development team or the SQA group
might be, there is a signifi cant difference between test cases, which by their very nature are
artifi cial, and actual data. A software product cannot be considered to satisfy its specifi ca-
tions until the product has passed its acceptance test. More details about acceptance testing
are given in Section 15.22.
 In the case of COTS software (Section 1.11), as soon as product testing is complete,
versions of the complete product are supplied to selected possible future clients for testing
on site. The fi rst such version is termed the alpha release . The corrected alpha release
is called the beta release ; in general, the beta release is intended to be close to the fi nal
version. (The terms alpha release and beta release are generally applied to all types of soft-
ware products, not just COTS.)
 Faults in COTS software usually result in poor sales of the product and huge losses for the
development company. So that as many faults as possible come to light as early as possible,
developers of COTS software frequently give alpha or beta releases to selected companies, in

sch76183_ch03_074-106.indd 86sch76183_ch03_074-106.indd 86 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 87

the expectation that on-site tests will uncover any latent faults. In return, the alpha and beta
sites frequently are promised free copies of the delivered version of the software. Risks are
involved for a company participating in alpha or beta testing. In particular, alpha releases
can be fault laden, resulting in frustration, wasted time, and possible damage to databases.
However, the company gets a head start in using the new COTS software, which can give it
an advantage over its competitors. A problem occurs sometimes when software organizations
use alpha testing by potential clients in place of thorough product testing by the SQA group.
Although alpha testing at a number of different sites usually brings to light a large variety of
faults, there is no substitute for the methodical testing that the SQA group can provide.

 3.8 Postdelivery Maintenance
 Postdelivery maintenance is not an activity grudgingly carried out after the product has been
delivered and installed on the client’s computer. On the contrary, it is an integral part of the
software process that must be planned for from the beginning. As explained in Section 3.5,
the design, as far as is feasible, should take future enhancements into account. Coding must be
performed with future maintenance kept in mind. After all, as pointed out in Section 1.3, more
money is spent on postdelivery maintenance than on all other software activities combined.
It therefore is a vital aspect of software production. Postdelivery maintenance must never be
treated as an afterthought. Instead, the entire software development effort must be carried out in
such a way as to minimize the impact of the inevitable future postdelivery maintenance.
 A common problem with postdelivery maintenance is documentation or, rather, lack of it.
In the course of developing software against a time deadline, the original analysis and design
artifacts frequently are not updated and, consequently, are almost useless to the maintenance
team. Other documentation such as the database manual or the operating manual may never
be written, because management decided that delivering the product to the client on time was
more important than developing the documentation in parallel with the software. In many
instances, the source code is the only documentation available to the maintainer. The high rate
of personnel turnover in the software industry exacerbates the maintenance situation, in that
none of the original developers may be working for the organization at the time when main-
tenance is performed. Postdelivery maintenance frequently is the most challenging aspect of
software production for these reasons and the additional reasons given in Chapter 16 .
 Turning now to testing, there are two aspects to testing changes made to a product when
postdelivery maintenance is performed. The fi rst is checking that the required changes have
been implemented correctly. The second aspect is ensuring that, in the course of making
the required changes to the product, no other inadvertent changes were made. Therefore,
once the programmer has determined that the desired changes have been implemented, the
product must be tested against previous test cases to make certain that the functionality
of the rest of the product has not been compromised. This procedure is called regres-
sion testing . To assist in regression testing, it is necessary that all previous test cases be
retained, together with the results of running those test cases. Testing during postdelivery
maintenance is discussed in greater detail in Chapter 16 .
 A major aspect of postdelivery maintenance is a record of all the changes made, together
with the reason for each change. When software is changed, it has to be regression tested.
Therefore, the regression test cases are a central form of documentation.

sch76183_ch03_074-106.indd 87sch76183_ch03_074-106.indd 87 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

88 Part A Software Engineering Concepts

 3.9 Retirement
 The fi nal stage in the software life cycle is retirement . After many years of service, a stage
is reached when further postdelivery maintenance no longer is cost effective.

 • Sometimes the proposed changes are so drastic that the design as a whole would have
to be changed. In such a case, it is less expensive to redesign and recode the entire
product.

 • So many changes may have been made to the original design that interdependencies
inadvertently have been built into the product, and even a small change to one minor
component might have a drastic effect on the functionality of the product as a whole.

 • The documentation may not have been adequately maintained, thereby increasing the
risk of a regression fault to the extent that it would be safer to recode than maintain.

 • The hardware (and operating system) on which the product runs is to be replaced; it may
be more economical to reimplement from scratch than to modify.

 In each of these instances the current version is replaced by a new version, and the soft-
ware process continues.
 True retirement, on the other hand, is a somewhat rare event that occurs when a product
has outgrown its usefulness. The client organization no longer requires the functionality
provided by the product, and it fi nally is removed from the computer.

 3.10 The Phases of the Unifi ed Process
 Figure 3.1 differs from Figure 2.4 in that the labels of the increments have been changed.
Instead of Increment A, Increment B, and so on, the four increments are now labeled
Inception phase, Elaboration phase, Construction phase, and Transition phase. In
other words, the phases of the Unifi ed Process correspond to increments.

 FIGURE 3.1
The core
workfl ows and
the phases of
the Unifi ed
Process.

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Test
workflow

Time

Pe
rs

on
-h

ou
rs

Inception
phase

Elaboration
phase

Construction
phase

Transition
phase

sch76183_ch03_074-106.indd 88sch76183_ch03_074-106.indd 88 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 89

 Although in theory the development of a software product could be performed in any
number of increments, development in practice often seems to consist of four increments.
The increments or phases are described in Sections 3.10.1 through 3.10.4, together with the
deliverables of each phase, that is, the artifacts that should be completed by the end of that
phase.
 Every step performed in the Unifi ed Process falls into one of fi ve core workfl ows and
 also into one of four phases, the inception phase, elaboration phase, construction phase,
and transition phase. The various steps of these four phases are already described in Sec-
tions 3.3 through 3.7. For example, building a business case is part of the requirements
workfl ow (Section 3.3). It is also part of the inception phase. Nevertheless, each step has to
be considered twice, as will be explained.
 Consider the requirements workfl ow. To determine the client’s needs, one of the steps
is, as just stated, to build a business case. In other words, within the framework of the
requirements workfl ow, building a business case is presented within a technical context. In
Section 3.10.1, a description is presented of building a business case within the framework
of the inception phase, the phase in which management decides whether or not to develop
the proposed software product. That is, building a business case shortly is presented within
an economic context (Section 1.2).
 At the same time, there is no point in presenting each step twice, both times at the same
level of detail. Accordingly, the inception phase is described in depth to highlight the dif-
ference between the technical context of the workfl ows and the economic context of the
phases, but the other three phases are simply outlined.

 3.10.1 The Inception Phase
 The aim of the inception phase (fi rst increment) is to determine whether it is worthwhile
to develop the target software product. In other words, the primary aim of this phase is to
determine whether the proposed software product is economically viable.
 Two steps of the requirements workfl ow are to understand the domain and build a
business model. Clearly, there is no way the developers can give any kind of opinion
regarding a possible future software product unless they fi rst understand the domain in
which they are considering developing the target software product. It does not matter if
the domain is a television network, a machine tool company, or a hospital specializing in
liver disease—if the developers do not fully understand the domain, little reliance can be
placed on what they subsequently build. Hence, the fi rst step is to obtain domain knowl-
edge. Once the developers have a full comprehension of the domain, the second step is
to build a business model, that is, a description of the client’s business processes. In
other words, the fi rst need is to understand the domain itself, and the second need is to
understand precisely how the client organization operates in that domain.
 Now the scope of the target project has to be delimited. For example, consider a pro-
posed software product for a new highly secure ATM network for a nationwide chain
of banks. The size of the business model of the banking chain as a whole is likely to be
huge. To determine what the target software product should incorporate, the developers
have to focus on only a subset of the business model, namely, the subset covered by the
proposed software product. Therefore, delimiting the scope of the proposed project is the
third step.

sch76183_ch03_074-106.indd 89sch76183_ch03_074-106.indd 89 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

90 Part A Software Engineering Concepts

 Now the developers can begin to make the initial business case. The questions that
need to be answered before proceeding with the project include [Jacobson, Booch, and
Rumbaugh, 1999]:

 • Is the proposed software product cost effective? That is, will the benefi ts to be gained
as a consequence of developing the software product outweigh the costs involved? How
long will it take to obtain a return on the investment needed to develop the proposed
software product? Alternatively, what will be the cost to the client if he or she decides
not to develop the proposed software product? If the software product is to be sold in the
marketplace, have the necessary marketing studies been performed?

 • Can the proposed software product be delivered in time? That is, if the software product
is delivered late to the market, will the organization still make a profi t or will a competi-
tive software product obtain the lion’s share of the market? Alternatively, if the software
product is to be developed to support the client organization’s own activities (presum-
ably including mission-critical activities), what is the impact if the proposed software
product is delivered late?

 • What risks are involved in developing the software product, and how can these risks
be mitigated? Do the team members who will develop the proposed software product
have the necessary experience? Is new hardware needed for this software product
and, if so, is there a risk that it will not be delivered in time? If so, is there a way
to mitigate that risk, perhaps by ordering backup hardware from another supplier?
Are software tools (Chapter 5) needed? Are they currently available? Do they have
all the necessary functionality? Is it likely that a COTS package (Section 1.11)
with all (or almost all) the functionality of the proposed custom software prod-
uct will be put on the market while the project is under way, and how can this be
determined?

 By the end of the inception phase the developers need answers to these questions so that
the initial business case can be made.
 The next step is to identify the risks. There are three major risk categories:

 1. Technical risks . Examples of technical risks were just listed.

 2. Not getting the requirements right . This risk can be mitigated by performing the require-
ments workfl ow correctly.

 3. Not getting the architecture right . The architecture may not be suffi ciently robust.
(Recall from Section 2.7 that the architecture of a software product consists of the vari-
ous components and how they fi t together, and that the property of being able to handle
extensions and changes without falling apart is its robustness.) In other words, while the
software product is being developed, there is a risk that trying to add the next piece to
what has been developed so far might require the entire architecture to be redesigned
from scratch. An analogy would be to build a house of cards, only to fi nd the entire
edifi ce tumbling down when an additional card is added.

 The risks need to be ranked so that the critical risks are mitigated fi rst.
 As shown in Figure 3.1 , a small amount of the analysis workfl ow is performed during
the inception phase. All that is usually done is to extract the information needed for the
design of the architecture. This design work is also refl ected in Figure 3.1 .

sch76183_ch03_074-106.indd 90sch76183_ch03_074-106.indd 90 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 91

 Turning now to the implementation workfl ow, during the inception phase frequently
no coding is performed. However, on occasion, it is necessary to build a proof-of-concept
prototype to test the feasibility of part of the proposed software product, as described in
Section 2.9.7.
 The test workfl ow commences at the start of the inception phase. The major aim here is
to ensure that the requirements are accurately determined.
 Planning is an essential part of every phase. In the case of the inception phase, the developers
have insuffi cient information at the beginning of the phase to plan the entire development, so the
only planning done at the start of the project is the planning for the inception phase itself. For
the same reason, a lack of information, the only planning that can meaningfully be done at the
end of the inception phase is to plan for just the next phase, the elaboration phase.
 Documentation, too, is an essential part of every phase. The deliverables of the inception
phase include [Jacobson, Booch, and Rumbaugh, 1999]

 • The initial version of the domain model.

 • The initial version of the business model.

 • The initial version of the requirements artifacts.

 • A preliminary version of the analysis artifacts.

 • A preliminary version of the architecture.

 • The initial list of risks.

 • The initial use cases (see Chapter 11).

 • The plan for the elaboration phase.

 • The initial version of the business case.

 Obtaining the last item, the initial version of the business case, is the overall aim of the
inception phase. This initial version incorporates a description of the scope of the software
product as well as fi nancial details. If the proposed software product is to be marketed, the
business case includes revenue projections, market estimates, and initial cost estimates.
If the software product is to be used in-house, the business case includes the initial cost–
benefi t analysis (Section 5.2).

 3.10.2 The Elaboration Phase
 The aim of the elaboration phase (second increment) is to refi ne the initial require-
ments, refi ne the architecture, monitor the risks and refi ne their priorities, refi ne the busi-
ness case, and produce the software project management plan. The reason for the name
 elaboration phase is clear; the major activities of this phase are refi nements or elaborations
of the previous phase.
 Figure 3.1 shows that these tasks correspond to all but completing the requirements
workfl ow (Chapter 11), performing virtually the entire analysis workfl ow (Chapter 13), and
then starting the design of the architecture (Section 8.5.4).
 The deliverables of the elaboration phase include [Jacobson, Booch, and Rumbaugh, 1999]

 • The completed domain model.

 • The completed business model.

 • The completed requirements artifacts.

sch76183_ch03_074-106.indd 91sch76183_ch03_074-106.indd 91 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

92 Part A Software Engineering Concepts

 • The completed analysis artifacts.

 • An updated version of the architecture.

 • An updated list of risks.

 • The software project management plan (for the remainder of the project).

 • The completed business case.

 3.10.3 The Construction Phase
 The aim of the construction phase (third increment) is to produce the fi rst operational-
quality version of the software product, the so-called beta release (Section 3.7.4). Consider
 Figure 3.1 again. Even though the fi gure is only a symbolic representation of the phases,
it is clear that the emphasis in this phase is on implementation and testing the software
product. That is, the various components are coded and unit tested. The code artifacts are
then compiled and linked (integrated) to form subsystems, which are integration tested.
Finally, the subsystems are combined into the overall system, which is product tested. This
was described in Section 3.7.4.
 The deliverables of the construction phase include [Jacobson, Booch, and Rumbaugh, 1999]

 • The initial user manual and other manuals, as appropriate.

 • All the artifacts (beta release versions).

 • The completed architecture.

 • The updated risk list.

 • The software project management plan (for the remainder of the project).

 • If necessary, the updated business case.

 3.10.4 The Transition Phase
 The aim of the transition phase (fourth increment) is to ensure that the client’s require-
ments have indeed been met. This phase is driven by feedback from the sites at which the
beta version has been installed. (In the case of a custom software product developed for
a specifi c client, there is just one such site.) Faults in the software product are corrected.
Also, all the manuals are completed. During this phase, it is important to try to discover any
previously unidentifi ed risks. (The importance of uncovering risks even during the transi-
tion phase is highlighted in Just in Case You Wanted to Know Box 3.3.)
 The deliverables of the transition phase include [Jacobson, Booch, and Rumbaugh,
1999]

 • All the artifacts (fi nal versions).

 • The completed manuals.

 3.11 One- versus Two-Dimensional Life-Cycle Models
 A classical life-cycle model (like the waterfall model of Section 2.9.2) is a one-dimensional
model, as represented by the single axis in Figure 3.2 (a). Underlying the Unifi ed Process is
a two-dimensional life-cycle model, as represented by the two axes in Figure 3.2 (b).

sch76183_ch03_074-106.indd 92sch76183_ch03_074-106.indd 92 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 93
 Just In Case You Wanted to Know Box 3.3

 A real-time system frequently is more complex than most people, even its developers, real-
ize. As a result, sometimes subtle interactions take place among components that even the
most skilled testers usually would not detect. An apparently minor change therefore can
have major consequences.
 A famous example of this is the fault that delayed the fi rst space shuttle orbital fl ight in
April 1981 [Garman, 1981]. The space shuttle avionics are controlled by four identical syn-
chronized computers. Also, an independent fi fth computer is ready for backup in case the
set of four computers fails. Two years earlier, a change had been made to the module that
performs initialization before the avionics computers are synchronized. An unfortunate side
effect of this change was that a record containing a time just slightly later than the current
time was erroneously sent to the data area used for synchronization of the avionics comput-
ers. The time sent was suffi ciently close to the actual time for this fault not to be detected.
About 1 year later, the time difference was slightly increased, just enough to cause a 1 in
67 chance of a failure. Then, on the day of the fi rst space shuttle launch, with hundreds
of millions of people watching on television all over the world, the synchronization failure
occurred and three of the four identical avionics computers were synchronized one cycle
late relative to the fi rst computer.
 A fail-safe device that prevents the independent fi fth computer from receiving informa-
tion from the other four computers unless they are in agreement had the unanticipated
consequence of preventing initialization of the fi fth computer, and the launch had to be
postponed. An all too familiar aspect of this incident was that the fault was in the initializa-
tion module, a module that apparently had no connection whatsoever with the synchroni-
zation routines.
 Unfortunately, this was by no means the last real-time software fault affecting a space
launch. For example, in April 1999, a Milstar military communications satellite was hurled
into a uselessly low orbit at a cost of $1.2 billion; the cause was a software fault in the upper
stage of the Titan 4 rocket [Florida Today , 1999].
 Not just space launches are affected by real-time faults but landings, too. In May 2003,
a Soyuz TMA-1 spaceship launched from the international space station landed 300 miles
off course in Kazakhstan after a ballistic descent. The cause of the landing problems was, yet
again, a real-time software fault [CNN.com, 2003].

 The one-dimensional nature of the waterfall model is clearly refl ected in Figure 2.3 . In
contrast, Figure 2.2 shows the evolution-tree model of the Winburg mini case study. This
model is two-dimensional and should therefore be compared to Figure 3.2 (b).
 Are the additional complications of a two-dimensional model necessary? The answer
was given in Chapter 2 , but this is such an important issue that it is repeated here. During
the development of a software product, in an ideal world, the requirements workfl ow would
be completed before proceeding to the analysis workfl ow. Similarly, the analysis workfl ow
would be completed before starting the design workfl ow, and so on. In reality, however, all
but the most trivial software products are too large to handle as a single unit. Instead, the
task has to be divided into increments (phases), and within each increment the develop-
ers have to iterate until they have completed the task under construction. As humans, we
are limited by Miller’s Law [Miller, 1956], which states that we can actively process only
seven concepts at a time. We therefore cannot deal with software products as a whole, but
instead we have to break those systems into subsystems. Even subsystems can be too large

sch76183_ch03_074-106.indd 93sch76183_ch03_074-106.indd 93 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

94 Part A Software Engineering Concepts

at times—components may be all that we can handle until we have a fuller understanding
of the software product as a whole.
 The Unifi ed Process is the best solution to date for treating a large problem as a set of
smaller, largely independent subproblems. It provides a framework for incrementation and
iteration, the mechanism used to cope with the complexity of large software products.
 Another challenge that the Unifi ed Process handles well is the inevitable changes. One
aspect of this challenge is changes in the client’s requirements while a software product is
being developed, the so-called moving-target problem (Section 2.4).
 For all these reasons, the Unifi ed Process is currently the best methodology available.
However, in the future, the Unifi ed Process will doubtless be superseded by some new
methodology. Today’s software professionals are looking beyond the Unifi ed Process to the
next major breakthrough. After all, in virtually every fi eld of human endeavor, the discov-
eries of today are often superior to anything that was put forward in the past. The Unifi ed
Process is sure to be superseded, in turn, by the methodologies of the future. The important
lesson is that, based on today’s knowledge, the Unifi ed Process appears to be better than the
other alternatives currently available.
 The remainder of this chapter is devoted to national and international initiatives aimed
at process improvement.

 3.12 Improving the Software Process
 Our global economy depends critically on computers and hence on software. For this rea-
son, the governments of many countries are concerned about the software process. For
example, in 1987, a task force of the U.S. Department of Defense (DoD) reported, “After
two decades of largely unfulfi lled promises about productivity and quality gains from

 FIGURE 3.2
Comparison of
(a) a classical
one-dimensional
life-cycle model
and (b) the two-
dimensional
Unifi ed Process
life-cycle
model.

Incep
tion

p
hase

Elaboration
p

hase

C
onstruction

p
hase

Transition
p

hase
Requirements

phase

Analysis
phase

Phases

Design
phase

Implementation
phase

Requirements
workflow

Analysis
workflow

Workflows
(technical contexts)

Design
workflow

Phases/
increments
(business
contexts)

Implementation
workflow

(a) (b)

sch76183_ch03_074-106.indd 94sch76183_ch03_074-106.indd 94 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 95

applying new software methodologies and technologies, industry and government organi-
zations are realizing that their fundamental problem is the inability to manage the software
process” [Brooks et al., 1987].
 In response to this and related concerns, the DoD founded the Software Engineering In-
stitute (SEI) and set it up at Carnegie Mellon University in Pittsburgh on the basis of a com-
petitive procurement process. A major success of the SEI has been the capability maturity
model (CMM) initiative. Related software process improvement efforts include the ISO
9000-series standards of the International Organization for Standardization, and ISO/IEC
15504, an international software improvement initiative involving more than 40 countries.
We begin by describing the CMM.

 3.13 Capability Maturity Models
 The capability maturity models of the SEI are a related group of strategies for
improving the software process, irrespective of the actual life-cycle model used. (The
term maturity is a measure of the goodness of the process itself.) The SEI has developed
CMMs for software (SW–CMM), for management of human resources (P–CMM; the P
stands for “people”), for systems engineering (SE–CMM), for integrated product develop-
ment (IPD–CMM), and for software acquisition (SA–CMM). There are some inconsisten-
cies between the models and an inevitable level of redundancy. Accordingly, in 1997, it was
decided to develop a single integrated framework for maturity models, capability maturity
model integration (CMMI), which incorporates all fi ve existing capability maturity mod-
els. Additional disciplines may be added to CMMI in the future [SEI, 2002].
 For reasons of space, only one capability maturity model, SW–CMM, is examined here,
and an overview of the P–CMM is given in Section 4.8. The SW–CMM was fi rst put
forward in 1986 by Watts Humphrey [Humphrey, 1989]. Recall that a software process
encompasses the activities, techniques, and tools used to produce software. It therefore
incorporates both technical and managerial aspects of software production. Underlying the
SW–CMM is the belief that the use of new software techniques in itself will not result in
increased productivity and profi tability, because our problems are caused by how we man-
age the software process. The strategy of the SW–CMM is to improve the management
of the software process in the belief that improvements in technique are a natural conse-
quence. The resulting improvement in the process as a whole should result in better-quality
software and fewer software projects that suffer from time and cost overruns.
 Bearing in mind that improvements in the software process cannot occur overnight, the
SW–CMM induces change incrementally. More specifi cally, fi ve levels of maturity are
defi ned, and an organization advances slowly in a series of small evolutionary steps toward
the higher levels of process maturity [Paulk, Weber, Curtis, and Chrissis, 1995]. To under-
stand this approach, the fi ve levels now are described.

 Maturity Level 1. Initial Level
 At the initial level , the lowest level, essentially no sound software engineering manage-
ment practices are in place in the organization. Instead, everything is done on an ad hoc
basis. A specifi c project that happens to be staffed by a competent manager and a good
software development team may be successful. However, the usual pattern is time and cost

sch76183_ch03_074-106.indd 95sch76183_ch03_074-106.indd 95 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

96 Part A Software Engineering Concepts

overruns caused by a lack of sound management in general and planning in particular.
As a result, most activities are responses to crises rather than preplanned tasks. In level-1
organizations, the software process is unpredictable, because it depends totally on the cur-
rent staff; as the staff changes, so does the process. As a consequence, it is impossible to
predict with any accuracy such important items as the time it will take to develop a product
or the cost of that product.
 It is unfortunate that the vast majority of software organizations all over the world are
still level-1 organizations.

 Maturity Level 2. Repeatable Level
 At the repeatable level , basic software project management practices are in place. Plan-
ning and management techniques are based on experience with similar products; hence,
the name repeatable . At level 2, measurements are taken, an essential fi rst step in achieving
an adequate process. Typical measurements include the meticulous tracking of costs and
schedules. Instead of functioning in a crisis mode, as in level 1, managers identify problems
as they arise and take immediate corrective action to prevent them from becoming crises.
The key point is that, without measurements, it is impossible to detect problems before
they get out of hand. Also, measurements taken during one project can be used to draw up
realistic duration and cost schedules for future projects.

 Maturity Level 3. Defi ned Level
 At the defi ned level , the process for software production is fully documented. Both
the managerial and technical aspects of the process are clearly defi ned, and continual
efforts are made to improve the process wherever possible. Reviews (Section 6.2) are
used to achieve software quality goals. At this level, it makes sense to introduce new
technology, such as CASE environments (Section 5.8), to increase quality and produc-
tivity further. In contrast, “high tech” only makes the crisis-driven level-1 process even
more chaotic.
 Although a number of organizations have attained maturity levels 2 and 3, few have
reached levels 4 or 5. The two highest levels therefore are targets for the future.

 Maturity Level 4. Managed Level
 A managed-level organization sets quality and productivity goals for each project.
These two quantities are measured continually and corrective action is taken when there
are unacceptable deviations from the goal. Statistical quality controls ([Deming, 1986],
[Juran, 1988]) are in place to enable management to distinguish a random deviation from a
meaningful violation of quality or productivity standards. (A simple example of a statistical
quality control measure is the number of faults detected per 1000 lines of code. A corre-
sponding objective is to reduce this quantity over time.)

 Maturity Level 5. Optimizing Level
 The goal of an optimizing-level organization is continuous process improvement. Sta-
tistical quality and process control techniques are used to guide the organization. The
knowledge gained from each project is utilized in future projects. The process therefore
incorporates a positive feedback loop, resulting in a steady improvement in productivity
and quality.

sch76183_ch03_074-106.indd 96sch76183_ch03_074-106.indd 96 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 97

 These fi ve maturity levels are summarized in Figure 3.3 , which also shows the key
process areas (KPAs) associated with each maturity level. To improve its software process,
an organization fi rst attempts to gain an understanding of its current process and then
formulates the intended process. Next, actions to achieve this process improvement are
determined and ranked in priority. Finally, a plan to accomplish this improvement is drawn
up and executed. This series of steps is repeated, with the organization successively im-
proving its software process; this progression from level to level is refl ected in Figure 3.3 .
Experience with the capability maturity model has shown that advancing a complete
maturity level usually takes from 18 months to 3 years, but moving from level 1 to level 2
can sometimes take 3 or even 5 years. This is a refl ection of how diffi cult it is to instill a
methodical approach in an organization that up to now has functioned on a purely ad hoc
and reactive basis.

 FIGURE 3.3
The fi ve levels
of the software
capability
maturity model
and their key
process areas
(KPAs).

2. Repeatable level:
Basic project management

Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

1. Initial level:
Ad hoc process

Not applicable

3. Defined level:
Process definition

Organization process focus
Organization process definition
Training program
Integrated software management
Software project engineering
Intergroup coordination
Peer reviews

4. Managed level:
Process measurement

Quantitative process management
Software quality management

5. Optimizing level:
Process control

Defect prevention
Technology change management
Process change management

sch76183_ch03_074-106.indd 97sch76183_ch03_074-106.indd 97 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

98 Part A Software Engineering Concepts

 For each maturity level, the SEI has highlighted a series of key process areas (KPAs) that
an organization should target in its endeavor to reach the next maturity level. For example, as
shown in Figure 3.3 , the KPAs for level 2 (repeatable level) include confi guration management
(Section 5.10), software quality assurance (Section 6.1.1), project planning (Chapter 9), project
tracking (Section 9.2.5), and requirements management (Chapter 11). These areas cover the
basic elements of software management: Determine the client’s needs (requirements manage-
ment), draw up a plan (project planning), monitor deviations from that plan (project tracking),
control the various pieces that make up the software product key process area (confi guration
management), and ensure that the product is fault free (quality assurance). Within each KPA is a
group of between two and four related goals that, if achieved, result in that maturity level being
attained. For example, one project planning goal is the development of a plan that appropriately
and realistically covers the activities of software development.
 At the highest level, maturity level 5, the KPAs include fault prevention, technology
change management, and process change management. Comparing the KPAs of the two
levels, it is clear that a level-5 organization is far in advance of one at level 2. For example,
a level-2 organization is concerned with software quality assurance, that is, with detecting
and correcting faults (software quality is discussed in more detail in Chapter 6). In con-
trast, the process of a level-5 organization incorporates fault prevention, that is, trying to
ensure that no faults are in the software in the fi rst place. To help an organization to reach
the higher maturity levels, the SEI has developed a series of questionnaires that form the
basis for an assessment by an SEI team. The purpose of the assessment is to highlight cur-
rent shortcomings in the organization’s software process and to indicate ways in which the
organization can improve its process.
 The CMM program of the Software Engineering Institute was sponsored by the U.S.
Department of Defense. One of the original goals of the CMM program was to raise the
quality of defense software by evaluating the processes of contractors who produce soft-
ware for the DoD and awarding contracts to those contractors who demonstrate a mature
process. The U.S. Air Force stipulated that any software development organization that
wished to be an Air Force contractor had to conform to SW–CMM level 3 by 1998, and the
DoD as a whole subsequently issued a similar directive. Consequently, pressure is put on
organizations to improve the maturity of their software processes. However, the SW–CMM
program has moved far beyond the limited goal of improving DoD software and is being
implemented by a wide variety of software organizations that wish to improve software
quality and productivity.

 3.14 Other Software Process Improvement Initiatives
 A different attempt to improve software quality is based on the International Organiza-
tion for Standardization (ISO) 9000-series standards, a series of fi ve related standards
applicable to a wide variety of industrial activities, including design, development, produc-
tion, installation, and servicing; ISO 9000 certainly is not just a software standard. Within
the ISO 9000 series, standard ISO 9001 [1987] for quality systems is the standard most
applicable to software development. Because of the broadness of ISO 9001, ISO has pub-
lished specifi c guidelines to assist in applying ISO 9001 to software: ISO 9000-3 [1991].
(For more information on ISO, see Just in Case You Wanted to Know Box 1.4.)

sch76183_ch03_074-106.indd 98sch76183_ch03_074-106.indd 98 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 99

 ISO 9000 has a number of features that distinguish it from the CMM [Dawood, 1994].
ISO 9000 stresses documenting the process in both words and pictures to ensure consis-
tency and comprehensibility. Also, the ISO 9000 philosophy is that adherence to the stan-
dard does not guarantee a high-quality product but rather reduces the risk of a poor-quality
product. ISO 9000 is only part of a quality system. Also required are management commit-
ment to quality, intensive training of workers, and setting and achieving goals for continual
quality improvement. ISO 9000-series standards have been adopted by over 60 countries,
including the United States, Japan, Canada, and the countries of the European Union (EU).
This means, for example, that if a U.S. software organization wishes to do business with a
European client, the U.S. organization must fi rst be certifi ed as ISO 9000 compliant. A cer-
tifi ed registrar (auditor) has to examine the company’s process and certify that it complies
with the ISO standard.
 Following their European counterparts, more and more U.S. organizations are requiring
ISO 9000 certifi cation. For example, General Electric Plastic Division insisted that 340
vendors achieve the standard by June 1993 [Dawood, 1994]. It is unlikely that the U.S. gov-
ernment will follow the EU lead and require ISO 9000 compliance for non-U.S. companies
that wish to do business with organizations in the United States. Nevertheless, pressures
both within the United States and from its major trading partners ultimately may result in
signifi cant worldwide ISO 9000 compliance.
 ISO/IEC 15504 is an international process improvement initiative, like ISO 9000.
The initiative was formerly known as SPICE , an acronym formed from Software Process
Improvement Capability dEtermination. Over 40 countries actively contributed to the
SPICE endeavor. SPICE was initiated by the British Ministry of Defence (MOD) with
the long-term aim of establishing SPICE as an international standard (MOD is the UK
counterpart of the U.S. DoD, which initiated the CMM). The fi rst version of SPICE was
completed in 1995. In July 1997, the SPICE initiative was taken over by a joint committee
of the International Organization for Standardization and the International Electrotechni-
cal Commission. For this reason, the name of the initiative was changed from SPICE to
ISO/IEC 15504, or 15504 for short.

 3.15 Costs and Benefi ts of Software Process Improvement
 Does implementing software process improvement lead to increased profi tability? Results
indicate that this indeed is the case. For example, the Software Engineering Division of
Hughes Aircraft in Fullerton, California, spent nearly $500,000 between 1987 and 1990
for assessments and improvement programs [Humphrey, Snider, and Willis, 1991]. During
this 3-year period, Hughes Aircraft moved up from maturity level 2 to level 3, with every
expectation of future improvement to level 4 and even level 5. As a consequence of improv-
ing its process, Hughes Aircraft estimated its annual savings to be on the order of $2 million.
These savings accrued in a number of ways, including decreased overtime hours, fewer cri-
ses, improved employee morale, and lower turnover of software professionals.
 Comparable results have been reported at other organizations. For example, the Equip-
ment Division at Raytheon moved from level 1 in 1988 to level 3 in 1993. A twofold
increase in productivity resulted, as well as a return of $7.70 for every dollar invested in
the process improvement effort [Dion, 1993]. As a consequence of results like these, the

sch76183_ch03_074-106.indd 99sch76183_ch03_074-106.indd 99 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

100 Part A Software Engineering Concepts

capability maturity models are being applied rather widely within the U.S. software indus-
try and abroad.
 For example, Tata Consultancy Services in India used both the ISO 9000 framework
and CMM to improve its process [Keeni, 2000]. Between 1996 and 2000, the errors in
effort estimation decreased from about 50 percent to only 15 percent. The effectiveness
of reviews (that is, the percentage of faults found during reviews) increased from 40 to
80 percent. The percentage of effort devoted to reworking projects dropped from nearly
12 percent to less than 6 percent.
 Motorola Government Electronics Division (GED) has been actively involved in SEI’s
software process improvement program since 1992 [Diaz and Sligo, 1997]. Figure 3.4
depicts 34 GED projects, categorized according to the maturity level of the group that
developed each project. As can be seen from the fi gure, the relative duration (that is, the
duration of a project relative to a baseline project completed before 1992) decreased with
increasing maturity level. Quality was measured in terms of faults per million equivalent
assembler source lines (MEASL); to be able to compare projects implemented in different
languages, the number of lines of source code was converted into the number of equiva-
lent lines of assembler code [Jones, 1996]. As shown in Figure 3.4 , quality increased with
increasing maturity level. Finally, productivity was measured as MEASL per person-hour.
For reasons of confi dentiality, Motorola does not publish actual productivity fi gures, so
 Figure 3.4 refl ects productivity relative to the productivity of a level-2 project. (No quality
or productivity fi gures are available for the level-1 projects because these quantities cannot
be measured when the team is at level 1.)
 Galin and Avrahami [2006] analyzed 85 projects that had previously been reported in the
literature as having advanced by one level as a consequence of implementing CMM. These
projects were divided into four groups (CMM level 1 to level 2, CMM level 2 to level 3, and
so on). For the four groups, the median fault density (number of faults per KLOC) decreased
by between 26 and 63 percent. The median productivity (KLOC per person month) increased
by between 26 and 187 percent. Median rework decreased by between 34 and 40 percent. The
median project duration decreased by between 28 and 53 percent. Fault detection effective-
ness (percentage of faults detected during development of the total detected project faults)
increased as follows: For the three lowest groups, the median increased by between 70 and
74 percent, and 13 percent for the highest group (CMM level 4 to level 5). The return on
investment varied between 120 and 650 percent, with a median value of 360 percent.

 FIGURE 3.4 Results of 34 Motorola GED projects (MEASL stands for “million equivalent assembler source lines”)
[Diaz and Sligo, 1997]. (© 1997, IEEE.)

 Relative Faults per MEASL
 Number of Decrease in Detected during Relative
 CMM Level Projects Duration Development Productivity

 Level 1 3 1.0 — —
 Level 2 9 3.2 890 1.0
 Level 3 5 2.7 411 0.8
 Level 4 8 5.0 205 2.3
 Level 5 9 7.8 126 2.8

sch76183_ch03_074-106.indd 100sch76183_ch03_074-106.indd 100 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

Chapter 3 The Software Process 101

 As a consequence of published studies such as those described in this section and those
listed in the For Further Reading section of this chapter, more and more organizations
worldwide are realizing that process improvement is cost effective.
 An interesting side effect of the process improvement movement has been the interac-
tion between software process improvement initiatives and software engineering stan-
dards. For example, in 1995 the International Organization for Standardization published
ISO/IEC 12207, a full life-cycle software standard [ISO/IEC 12207, 1995]. Three years
later, a U.S. version of the standard [IEEE/EIA 12207.0-1996, 1998] was published by the
Institute of Electrical and Electronic Engineers (IEEE) and the Electronic Industries Alli-
ance (EIA). This version incorporates U.S. software “best practices,” many of which can
be traced back to CMM. To achieve compliance with IEEE/EIA 12207, an organization
must be at or near CMM capability level 3 [Ferguson and Sheard, 1998]. Also, ISO 9000-3
now incorporates parts of ISO/IEC 12207. This interplay between software engineering
standards organizations and software process improvement initiatives surely will lead to
even better software processes.
 Another dimension of software process improvement appears in Just in Case You Wanted
to Know Box 3.4.

 Just in Case You Wanted to Know Box 3.4
 There are constraints on the speed of hardware because electrons cannot travel faster than
the speed of light. In a famous article entitled “No Silver Bullet,” Brooks [1986] suggested
that inherent problems exist in software production, and that these problems can never be
solved because of analogous constraints on software. Brooks argued that intrinsic proper-
ties of software, such as its complexity, the fact that software is invisible and unvisualizable,
and the numerous changes to which software is typically subjected over its lifetime, make
it unlikely that there will ever be an order-of-magnitude increment (or “silver bullet”) in
software process improvement.

 Chapter
Review
 After some preliminary defi nitions, the Unifi ed Process is introduced in Section 3.1. The impor-

tance of iteration and incrementation within the object-oriented paradigm is described in Section
3.2. Now the core workfl ows of the Unifi ed Process are explained in detail; the requirements
workfl ow (Section 3.3), analysis workfl ow (Section 3.4), design workfl ow (Section 3.5), imple-
mentation workfl ow (Section 3.6), and test workfl ow (Section 3.7). The various artifacts tested
during the test workfl ow are described in Sections 3.7.1 through 3.7.4. Postdelivery maintenance
is discussed in Section 3.8, and retirement in Section 3.9. The relationship between the work-
fl ows and the phases of the Unifi ed Process is analyzed in Section 3.10, and a detailed descrip-
tion is given of the four phases of the Unifi ed Process: the inception phase (Section 3.10.1), the
elaboration phase (Section 3.10.2), the construction phase (Section 3.10.3), and the transition
phase (Section 3.10.4). The importance of two-dimensional life-cycle models is discussed in
Section 3.11.
 The last part of the chapter is devoted to software process improvement (Section 3.12). Details
are given of various national and international software improvement initiatives, including the capa-
bility maturity models (Section 3.13), and ISO 9000 and ISO/IEC 15504 (Section 3.14). The cost-
effectiveness of software process improvement is discussed in Section 3.15.

sch76183_ch03_074-106.indd 101sch76183_ch03_074-106.indd 101 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

102 Part A Software Engineering Concepts

 The March–April 2003 issue of IEEE Software contains a number of articles on the software process,
including [Eickelmann and Anant, 2003], a discussion of statistical process control. Practical applications
of statistical process control are described in [Weller, 2000] and [Florac, Carleton, and Barnard, 2000].
 With regard to testing during each workfl ow, an excellent source is [Ammann and Offutt, 2008].
More specifi c references are given in Chapter 6 of this book and in the For Further Reading section
at the end of that chapter.
 A detailed description of the original SEI capability maturity model is given in [Humphrey,
1989]. Capability maturity model integration is described in [SEI, 2002]. Humphrey [1996]
describes a personal software process (PSP); results of applying the PSP appear in [Ferguson
et al., 1997]. The results of an experiment to measure the effectiveness of PSP training are pre-
sented in [Prechelt and Unger, 2000]. Extensions needed to the Unifi ed Process for it to comply
with CMM levels 2 and 3 are presented in [Manzoni and Price, 2003]. Implementing SW–CMM
in small organizations is described in [Guerrero and Eterovic, 2004] and [Dangle, Larsen, Shaw,
and Zelkowitz, 2005]. The July–August 2000 issue of IEEE Software has three papers on software
process maturity, and there are four papers on the PSP in the November–December 2000 issue of
 IEEE Software .
 A compendium of the results of many studies of process improvement appears in [Galin and
Avrahami, 2006].
 Pitterman [2000] describes how a group at Telecordia Technologies reached level 5; a study of how
a Computer Sciences Corporation group attained level 5 appears in [McGarry and Decker, 2002].
Insights into the nature of level-5 organizations appear in [Eickelmann, 2003] and [Agrawal and
Chari, 2007]. Cost–benefi t analysis of software process improvement is described in [van Solingen,
2004]. An empirical investigation of the key factors for success in software process improvement is
presented in [Dybå, 2005].
 Problems of software product improvement appear in [Conradi and Fuggetta, 2002]. The results of
18 different software process improvement initiatives conducted at Ericsson are described in [Borjes-
son and Mathiassen, 2004]. A wealth of information on the CMM is available at the SEI CMM
website www.sei.cmu.edu . An assessment of the success of the SPICE project can be found in
[Rout et al., 2007]. The ISO/IEC 15504 (SPICE) home page is at www.sei.cmu.edu/technology/
process/spice/ .
 A comparison between CMM and IEEE/EIA 12207 is given in [Ferguson and Sheard, 1998], and
a comparison between CMM and Six Sigma (another approach to process improvement) appears in
[Murugappan and Keeni, 2003]. An approach to implementing both ISO 9001 and CMMI appears
in [Yoo et al., 2006]. A repository containing the results of some 400 software improvement experi-
ments is described in [Blanco, Gutiérrez, and Satriani, 2001].

 For
Further
Reading

 Key Terms acceptance testing 86
 alpha release 86
 ambiguity 81
 analysis workfl ow 80
 application domain 78
 architectural design 82
 beta release 86
 budget 82
 business case 79

 business model 89
 capability maturity model

(CMM) 95
 class 82
 code artifact 83
 component 83
 concept exploration 79
 construction phase 92
 contradiction 81

 core workfl ow 78
 cost 79
 deadline 79
 defi ned level 96
 deliverable 82
 design workfl ow 82
 detailed design 82
 domain 78
 elaboration phase 91

sch76183_ch03_074-106.indd 102sch76183_ch03_074-106.indd 102 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

 implementation workfl ow 83
 inception phase 89
 incompleteness 81
 initial level 95
 integration testing 86
 International Organization for

Standardization (ISO) 98
 ISO 9000-3 98
 ISO 9001 98
 ISO/IEC 15504 99
 key process area (KPA) 98

 managed level 96
 maturity 95
 milestone 82
 model 76
 module 82
 optimizing level 96
 product testing 86
 regression testing 87
 reliability 79
 repeatable level 96
 requirements workfl ow 78

 retirement 88
 SPICE 99
 test workfl ow 84
 traceability 84
 transition phase 92
 Unifi ed Modeling Language

(UML) 76
 Unifi ed Process 76
 unit testing 85

 3.1 Defi ne the terms software process and Unifi ed Process .

 3.2 In the software engineering context, what is meant by the term model ?

 3.3 What is meant by a phase of the Unifi ed Process?

 3.4 Distinguish clearly between an ambiguity, a contradiction, and incompleteness.

 3.5 Consider the requirements workfl ow and the analysis workfl ow. Would it make more sense to
combine these two activities into one workfl ow than to treat them separately?

 3.6 More testing is performed during the implementation workfl ow than in any other workfl ow.
Would it be better to divide this workfl ow into two separate workfl ows, one incorporating the
nontesting aspects, the other all the testing?

 3.7 “Correctness is the responsibility of the SQA group.” Discuss this statement.

 3.8 Maintenance is the most important activity of software production and the most diffi cult to
perform. Nevertheless, it is looked down on by many software professionals, and maintenance
programmers often are paid less than developers. Do you think that this is reasonable? If not,
how would you try to change it?

 3.9 Why do you think that, as stated in Section 3.9, true retirement is a rare event?

 3.10 Because of a fi re at Elmer’s Software, all documentation for a product is destroyed just before
it is delivered. What is the impact of the resulting lack of documentation?

 3.11 You have just purchased Antedeluvian Software Developers, an organization on the verge of
bankruptcy because the company is at maturity level 1. What is the fi rst step you will take to
restore the organization to profi tability?

 3.12 Section 3.13 states that it makes little sense to introduce CASE environments within organiza-
tions at maturity level 1 or 2. Explain why this is so.

 3.13 What is the effect of introducing CASE tools (as opposed to environments) within organiza-
tions with a low maturity level?

 3.14 Maturity level 1, the initial level, refers to an absence of good software engineering manage-
ment practices. Would it not have been better for the SEI to have labeled the initial level as
maturity level 0?

 3.15 (Term Project) What differences would you expect to fi nd if the Chocoholics Anonymous prod-
uct of Appendix A were developed by an organization at CMM level 1, as opposed to an orga-
nization at level 5?

 3.16 (Readings in Software Engineering) Your instructor will distribute copies of [Agrawal and
Chari, 2007]. Would you like to work in a level-5 organization? Explain your answer.

 Problems

Chapter 3 The Software Process 103

sch76183_ch03_074-106.indd 103sch76183_ch03_074-106.indd 103 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

 [Agrawal and Chari, 2007] M. AGRAWAL AND K. CHARI, “Software Effort, Quality, and Cycle Time: A
Study of CMM Level 5 Projects,” IEEE Transactions on Software Engineering 32 (March 2007),
pp. 145–56.

 [Ammann and Offutt, 2008] P. AMMANN AND J. OFFUTT, Introduction to Software Testing, Cambridge
University Press, Cambridge, UK, 2008.

 [Blanco, Gutiérrez, and Satriani, 2001] M. BLANCO, P. GUTIÉRREZ, AND G. SATRIANI, “SPI Patterns:
Learning from Experience,” IEEE Software 18 (May–June 2001), pp. 28–35.

 [Booch, 1994] G. BOOCH, Object-Oriented Analysis and Design with Applications, 2nd ed., Benjamin/
Cummings, Redwood City, CA, 1994.

 [Booch, Rumbaugh, and Jacobson, 1999] G. BOOCH, J. RUMBAUGH, AND I. JACOBSON, The UML Users
Guide , Addison-Wesley, Reading, MA, 1999.

 [Borjesson and Mathiassen, 2004] A. BORJESSON AND L. MATHIASSEN, “Successful Process Imple-
mentation,” IEEE Software 21 (July–August 2004), pp. 36–44.

 [Brooks, 1986] F. P. BROOKS, JR., “No Silver Bullet,” in: Information Processing ’86 , H.-J. Kugler
(Editor), Elsevier North-Holland, New York, 1986; reprinted in IEEE Computer 20 (April 1987),
pp. 10–19.

 [Brooks et al., 1987] F. P. BROOKS, V. BASILI, B. BOEHM, E. BOND, N. EASTMAN, D. L. EVANS, A.
K. JONES, M. SHAW, AND C. A. ZRAKET, “Report of the Defense Science Board Task Force on
Military Software,” Department of Defense, Offi ce of the Under Secretary of Defense for Acqui-
sition, Washington, DC, September 1987.

 [CNN.com, 2003] “Russia: Software Bug Made Soyuz Stray,” edition.cnn.com/2003/TECH/
space/05/06/soyuz.landing.ap/, May 6, 2003.

 [Conradi and Fuggetta, 2002] R. CONRADI AND A. FUGGETTA, “Improving Software Process Improve-
ment,” IEEE Software 19 (July–August 2002), pp. 92–99.

 [Dangle, Larsen, Shaw, and Zelkowitz, 2005] K. C. DANGLE, P. LARSEN, M. SHAW, AND M. V. ZEL-
KOWITZ, “Software Process Improvement in Small Organizations: A Case Study,” IEEE Software
 22 (September–October 2005), pp. 68–75.

 [Dawood, 1994] M. DAWOOD, “It’s Time for ISO 9000,” CrossTalk (March 1994), pp. 26–28.

 [Deming, 1986] W. E. DEMING, Out of the Crisis , MIT Center for Advanced Engineering Study,
Cambridge, MA, 1986.

 [Diaz and Sligo, 1997] M. DIAZ AND J. SLIGO, “How Software Process Improvement Helped
Motorola,” IEEE Software 14 (September–October 1997), pp. 75–81.

 [Dion, 1993] R. DION, “Process Improvement and the Corporate Balance Sheet,” IEEE Software 10
(July 1993), pp. 28–35.

 [Dybå, 2005] T. DYBÅ, “An Empirical Investigation of the Key Factors for Success in Software Pro-
cess Improvement,” IEEE Transactions in Software Engineering 31 (May 2005), pp. 410–24.

 [Eickelmann, 2003] N. EICKELMANN, “An Insider’s View of CMM Level 5,” IEEE Software 20 (July–
August 2003), pp. 79–81.

 [Eickelmann and Anant, 2003] N. EICKELMANN AND A. ANANT, “Statistical Process Control: What
You Don’t Know Can Hurt You!” IEEE Software 20 (March–April 2003), pp. 49–51.

 [Ferguson and Sheard, 1998] J. FERGUSON AND S. SHEARD, “Leveraging Your CMM Efforts for IEEE/
EIA 12207,” IEEE Software 15 (September–October 1998), pp. 23–28.

 [Ferguson et al., 1997] P. FERGUSON, W. S. HUMPHREY, S. KHAJENOORI, S. MACKE, AND A. MAT-
VYA, “Results of Applying the Personal Software Process,” IEEE Computer 30 (May 1997),
pp. 24–31.

 References

104 Part A Software Engineering Concepts

sch76183_ch03_074-106.indd 104sch76183_ch03_074-106.indd 104 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

 [Florac, Carleton, and Barnard, 2000] W. A. FLORAC, A. D. CARLETON, AND J. BARNARD, “Statisti-
cal Process Control: Analyzing a Space Shuttle Onboard Software Process,” IEEE Software 17
(July–August 2000), pp. 97–106.

 [Florida Today , 1999] “Milstar Satellite Lost during Air Force Titan 4b Launch from Cape,” Florida
Today , www.fl oridatoday.com/space/explore/uselv/titan/b32/ , June 5, 1999.

 [Galin and Avrahami, 2006] D. GALIN AND M. AVRAHAMI, “Are CMM Program Investments Benefi -
cial? Analyzing Past Studies,” IEEE Software 23 (November–December 2006), pp. 81–87.

 [Garman, 1981] J. R. GARMAN, “The ‘Bug’ Heard ’Round the World,” ACM SIGSOFT Software En-
gineering Notes 6 (October 1981), pp. 3–10.

 [Guerrero and Eterovic, 2004] F. GUERRERO AND Y. ETEROVIC, “Adopting the SW-CMM in a Small IT
Organization,” IEEE Software 21 (July–August 2004), pp. 29–35.

 [Humphrey, 1989] W. S. HUMPHREY, Managing the Software Process , Addison-Wesley, Reading,
MA, 1989.

 [Humphrey, 1996] W. S. HUMPHREY, “Using a Defi ned and Measured Personal Software Process,”
 IEEE Software 13 (May 1996), pp. 77–88.

 [Humphrey, Snider, and Willis, 1991] W. S. HUMPHREY, T. R. SNIDER, AND R. R. WILLIS, “Software
Process Improvement at Hughes Aircraft,” IEEE Software 8 (July 1991), pp. 11–23.

 [IEEE/EIA 12207.0-1996, 1998] “IEEE/EIA 12207.0-1996 Industry Implementation of Interna-
tional Standard ISO/IEC 12207:1995,” Institute of Electrical and Electronic Engineers, Electronic
Industries Alliance, New York, 1998.

 [ISO 9000-3, 1991] “ISO 9000-3, Guidelines for the Application of ISO 9001 to the Development,
Supply, and Maintenance of Software,” International Organization for Standardization, Geneva,
1991.

 [ISO 9001, 1987] “ISO 9001, Quality Systems—Model for Quality Assurance in Design/Development,
Production, Installation, and Servicing,” International Organization for Standardization, Geneva,
1987.

 [ISO/IEC 12207, 1995] “ISO/IEC 12207:1995, Information Technology—Software Life-Cycle Pro-
cesses,” International Organization for Standardization, International Electrotechnical Commis-
sion, Geneva, 1995.

 [Jacobson, Booch, and Rumbaugh, 1999] I. JACOBSON, G. BOOCH, and J. RUMBAUGH, The Unifi ed
Software Development Process, Addison-Wesley, Reading, MA, 1999.

 [Jones, 1996] C. JONES, Applied Software Measurement, McGraw-Hill, New York, 1996.

 [Juran, 1988] J. M. JURAN, Juran on Planning for Quality , Macmillan, New York, 1988.

 [Keeni, 2000] G. KEENI, “The Evolution of Quality Processes at Tata Consultancy Services,” IEEE
Software 17 (July–August 2000), pp. 79–88.

 [Manzoni and Price, 2003] L. V. MANZONI AND R. T. PRICE, “Identifying Extensions Required by RUP
(Rational Unifi ed Process) to Comply with CMM (Capability Maturity Model) Levels 2 and 3,”
 IEEE Transactions on Software Engineering 29 (February 2003), pp. 181–92.

 [McGarry and Decker, 2002] F. MCGARRY AND B. DECKER, “Attaining Level 5 in CMM Process
Maturity,” IEEE Software 19 (2002), pp. 87–96.

 [Miller, 1956] G. A. MILLER, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” The Psychological Review 63 (March 1956), pp. 81–97.
Reprinted in: www.well.com/user/smalin/miller.html .

 [Murugappan and Keeni, 2003] M. MURUGAPPAN AND G. KEENI, “Blending CMM and Six Sigma to
Meet Business Goals,” IEEE Software 20 (March–April 2003), pp. 42–48.

Chapter 3 The Software Process 105

sch76183_ch03_074-106.indd 105sch76183_ch03_074-106.indd 105 26/04/10 4:39 PM26/04/10 4:39 PM

Confirming Pages

 [Paulk, Weber, Curtis, and Chrissis, 1995] M. C. PAULK, C. V. WEBER, B. CURTIS, AND M. B. CHRISSIS,
 The Capability Maturity Model: Guidelines for Improving the Software Process , Addison-Wesley,
Reading, MA, 1995.

 [Pitterman, 2000] B. PITTERMAN, “Telecordia Technologies: The Journey to High Maturity,” IEEE
Software 17 (July–August 2000), pp. 89–96.

 [Prechelt and Unger, 2000] L. PRECHELT AND B. UNGER, “An Experiment Measuring the Effects of
Personal Software Process (PSP) Training,” IEEE Transactions on Software Engineering 27 (May
2000), pp. 465–72.

 [Rout et al., 2007] T. P. ROUT, K. EL EMAM, M. FUSANI, D. GOLDENSON, AND H.-W. JUNG, “SPICE in
Retrospect: Developing a Standard for Process Assessment,” Journal of Systems and Software 80
(September 2007), pp. 1483–93.

 [Rumbaugh et al., 1991] J. RUMBAUGH, M. BLAHA, W. PREMERLANI, F. EDDY, AND W. LORENSEN,
 Object-Oriented Modeling and Design , Prentice Hall, Englewood Cliffs, NJ, 1991.

 [SEI, 2002] “CMMI Frequently Asked Questions (FAQ),” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, June 2002.

 [van Solingen, 2004] R. VAN SOLINGEN, “Measuring the ROI of Software Process Improvement,”
 IEEE Software 21 (May–June 2004), pp. 32–38.

 [van Wijngaarden et al., 1975] A. VAN WIJNGAARDEN, B. J. MAILLOUX, J. E. L. PECK, C. H. A. KOSTER,
M. SINTZOFF, C. H. LINDSEY, L. G. L. T. MEERTENS, AND R. G. FISKER, “Revised Report on the
Algorithmic Language ALGOL 68,” Acta Informatica 5 (1975), pp. 1–236.

 [Weller, 2000] E. F. WELLER, “Practical Applications of Statistical Process Control,” IEEE Software
 18 (May–June 2000), pp. 48–55.

 [Yoo et al., 2006] C. YOO, J. YOON, B. LEE, C. LEE, J. LEE, S. HYUN, AND C.WU, “A Unifi ed Model for
the Implementation of Both ISO 9001:2000 and CMMI by ISO-Certifi ed Organizations,” Journal
of Systems and Software 79 (July 2006), pp. 954–61.

106 Part A Software Engineering Concepts

sch76183_ch03_074-106.indd 106sch76183_ch03_074-106.indd 106 26/04/10 4:39 PM26/04/10 4:39 PM

