CHAPTER 3

PRACTICE SET

Questions

- **Q3-1.** The period of a signal is the inverse of its frequency and vice versa: T = 1/f and f = 1/T.
- **Q3-3.** *Fourier series* gives the frequency domain of a periodic signal; *Fourier analysis* gives the frequency domain of a nonperiodic signal.
- Q3-5. *Baseband transmission* means sending a digital or an analog signal without modulation using a low-pass channel. *Broadband transmission* means to modulate signal using a band-pass channel.
- Q3-7. The *Nyquist theorem* defines the maximum bit rate of a noiseless channel.
- **Q3-9.** A fiber-optic cable uses light (very high frequency). Since *f* is very high, the wavelength, which is $\lambda = c / f$, is very low.
- **Q3-11.** The frequency domain of a voice signal is normally *continuous* because voice is a nonperiodic signal.
- Q3-13. This is *baseband transmission* because no modulation is involved.
- Q3-15. This is *broadband transmission* because it involves modulation.

Problems

P3-1.

a.	T=1/f	= 1 / (24 Hz)	= 0.0417 s	=41.7 ms
b.	T=1/f	= 1 / (8 MHz)	$= 0.00000125 \mathrm{s}$	$= 0.125 \mathrm{ms}$
c.	T = 1/f	= 1 / (140 kHz)	$= 7.14 \times 10^{-6} \text{ s}$	= 7.14 ms

P3-3.

- **a.** 90 degrees ($\pi/2$ radians)
- **b.** 0 degrees (0 radians)
- **c.** 90 degrees ($\pi/2$ radians) (Note that it is the same wave as in part *a*.)
- **P3-5.** We know the bandwidth is 2000. The highest frequency must be 100 + 2000 = 2100 Hz. See below:

P3-7.

- **a.** bit rate = 1/(bit duration) = 1/(0.001 s) = 1000 bps = 1 Kbps
- **b.** bit rate = 1/(bit duration) = 1/(2 ms) = 500 bps
- **c.** bit rate = 1/ (bit duration) = 1 / ($20 \ \mu s/10$) = 1 / ($2 \ \mu s$) = 500 Kbps
- **P3-9.** There are 8 bits in 16 ns. Bit rate is $8 / (16 \times 10^{-9}) = 0.5 \times 10^{9} = 500$ Mbps
- **P3-11.** The bandwidth is $5 \times 5 = 25$ Hz.
- **P3-13.** The signal is nonperiodic, so the frequency domain is made of a continuous spectrum of frequencies as shown below:

P3-15. We can calculate the attenuation as shown below:

 $dB = 10 \log_{10} (90 / 100) = -0.46 dB$

P3-17. The total gain is $3 \times 4 = 12$ dB. To find how much the signal is amplified, we can use the following formula:

 $12 = 10 \log (P_2/P_1) \longrightarrow \log (P_2/P_1) = 1.2 \longrightarrow P_2/P_1 = 10^{1.2} = 15.85$ The signal is amplified almost 16 times.

P3-19. 480 s \times 300,000 km/s = 144,000,000 km

P3-21. We use the Shannon capacity $C = B \log_2 (1 + SNR)$

 $C = 4,000 \log_2 (1 + 1,000) \approx 40 \text{ Kbps}$

- **P3-23.** The file contains $2,000,000 \times 8 = 16,000,000$ bits.
 - a. With a 56-Kbps channel, it takes 16,000,000/56,000 = 289 s ≈ 5 minutes.
 b. With a 1-Mbps channel, it takes 16,000,000/1,000,000 = 16 s.
- **P3-25.** We have

 $SNR = (200 \text{ mW}) / (10 \times 2 \times \mu\text{W}) = 10,000$ $SNR_{dB} = 10 \log_{10} SNR = 10 \log_{10} 10000 = 40$

P3-27. We can approximately calculate the capacity as

a. $C = B \times (SNR_{dB}/3) = 20 \text{ KHz} \times (40/3) = 267 \text{ Kbps}$

- **b.** $C = B \times (SNR_{dB}/3) = 200 \text{ KHz} \times (4/3) = 267 \text{ Kbps}$
- **c.** $C = B \times (SNR_{dB}/3) = 1 \text{ MHz} \times (20/3) = 6.67 \text{ Mbps}$
- **P3-29.** We can use the approximate formula

 $C = B \times (SNR_{dB}/3)$ or $SNR_{dB} = (3 \times C) / B$

We can say that the minimum of SNR_{dB} is

 $SNR_{dB} = 3 \times 100$ Kbps / 4 KHz = 75

This means that the minimum

 $SNR = 10 SNR_{dB}/10 = 107.5 \approx 31,622,776$

P3-31. The bit duration is the inverse of the bandwidth.We have

(bit length) = (propagation speed) ' (bit duration)

- **a.** Bit length = $(2 \times 10^8 \text{ m}) \times [(1 / (1 \text{ Mbps})] = 200 \text{ m}$. This means a bit occupies 200 meters on a transmission medium.
- **b.** Bit length = $(2 \times 10^8 \text{ m}) \times [(1 / (10 \text{ Mbps})] = 20 \text{ m}$. This means a bit occupies 20 meters on a transmission medium.

- **c.** Bit length = $(2 \times 10^8 \text{ m}) \times [(1 / (100 \text{ Mbps})] = 2 \text{ m}$. This means a bit occupies 2 meters on a transmission medium.
- **P3-33.** We have Latency = $Delay_{pr} + Delay_{qu} + Delay_{tr} + Delay_{pg}$

$Delay_{pr} = 10 \times 1 \ \mu s = 10 \ \mu s$	// Processing delay
$Delay_{qu} = 10 \times 2 \ \mu s = 20 \ \mu s$	// Queuing delay
$Delay_{tr} = 5,000,000 / (5 Mbps) = 1 s$	// Transmission delay
$Delay_{pg} = (2000 \text{ Km}) / (2 \times 10^8) = 0.01 \text{ s}$	// Propagation delay

This means

Latency = $10 \ \mu s + 20 \ \mu s + 1s + 0.01 \ s \approx 1.01 \ s$

The transmission time is dominant here because the packet size is huge.