CHAPTER 3

PRACTICE SET

Questions

Q3-1. The period of a signal is the inverse of its frequency and vice versa: $\mathrm{T}=1 / \mathrm{f}$ and $f=1 / \mathrm{T}$.

Q3-3. Fourier series gives the frequency domain of a periodic signal; Fourier analysis gives the frequency domain of a nonperiodic signal.

Q3-5. Baseband transmission means sending a digital or an analog signal without modulation using a low-pass channel. Broadband transmission means to modulate signal using a band-pass channel.

Q3-7. The Nyquist theorem defines the maximum bit rate of a noiseless channel.
Q3-9. A fiber-optic cable uses light (very high frequency). Since f is very high, the wavelength, which is $\lambda=\mathrm{c} / \mathrm{f}$, is very low.

Q3-11. The frequency domain of a voice signal is normally continuous because voice is a nonperiodic signal.

Q3-13. This is baseband transmission because no modulation is involved.
Q3-15. This is broadband transmission because it involves modulation.

Problems

P3-1.

a.	$\mathrm{T}=1 / f$	$=1 /(24 \mathrm{~Hz})$	$=0.0417 \mathrm{~s}$	$=41.7 \mathrm{~ms}$
b.	$\mathrm{T}=1 / f$	$=1 /(8 \mathrm{MHz})$	$=0.000000125 \mathrm{~s}$	$=0.125 \mathrm{~ms}$
c.	$\mathrm{T}=1 / f$	$=1 /(140 \mathrm{kHz})$	$=7.14 \times 10^{-6} \mathrm{~s}$	$=7.14 \mathrm{~ms}$

P3-3.
a. 90 degrees ($\pi / 2$ radians)
b. 0 degrees (0 radians)
c. 90 degrees ($\pi / 2$ radians) (Note that it is the same wave as in part a.)

P3-5. We know the bandwidth is 2000 . The highest frequency must be $100+2000=$ 2100 Hz . See below:

P3-7.
a. bit rate $=1 /($ bit duration $)=1 /(0.001 \mathrm{~s})=1000 \mathrm{bps}=1 \mathrm{Kbps}$
b. bit rate $=1 /($ bit duration $)=1 /(2 \mathrm{~ms})=500 \mathrm{bps}$
c. bit rate $=1 /($ bit duration $)=1 /(20 \mu \mathrm{~s} / 10)=1 /(2 \mu \mathrm{~s})=500 \mathrm{Kbps}$

P3-9. There are 8 bits in 16 ns . Bit rate is $8 /\left(16 \times 10^{-9}\right)=0.5 \times 10^{9}=500 \mathrm{Mbps}$
P3-11. The bandwidth is $5 \times 5=25 \mathrm{~Hz}$.
$\mathbf{P 3 - 1 3}$. The signal is nonperiodic, so the frequency domain is made of a continuous spectrum of frequencies as shown below:

P3-15. We can calculate the attenuation as shown below:
$\mathrm{dB}=10 \log _{10}(90 / 100)=-0.46 \mathrm{~dB}$
P3-17. The total gain is $3 \times 4=12 \mathrm{~dB}$. To find how much the signal is amplified, we can use the following formula:

$$
12=10 \log \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right) \quad \rightarrow \quad \log \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=1.2 \quad \rightarrow \quad \mathrm{P}_{2} / \mathrm{P}_{1}=10^{1.2}=15.85
$$

The signal is amplified almost 16 times.
P3-19. $480 \mathrm{~s} \times 300,000 \mathrm{~km} / \mathrm{s}=144,000,000 \mathrm{~km}$
P3-21. We use the Shannon capacity $\mathrm{C}=\mathrm{B} \log _{2}(1+\mathrm{SNR})$

$$
\mathrm{C}=4,000 \log _{2}(1+1,000) \approx 40 \mathrm{Kbps}
$$

P3-23. The file contains $2,000,000 \times 8=16,000,000$ bits.
a. With a $56-\mathrm{Kbps}$ channel, it takes $16,000,000 / 56,000=289 \mathrm{~s} \approx 5$ minutes.
b. With a 1-Mbps channel, it takes $16,000,000 / 1,000,000=16 \mathrm{~s}$.

P3-25. We have

$$
\text { SNR }=(200 \mathrm{~mW}) /(10 \times 2 \times \mu \mathrm{W})=10,000
$$

$$
\mathrm{SNR}_{\mathrm{dB}}=10 \log _{10} \mathrm{SNR}=10 \log _{10} 10000=40
$$

P3-27. We can approximately calculate the capacity as
a. $\mathrm{C}=\mathrm{B} \times\left(\mathrm{SNR}_{\mathrm{dB}} / 3\right)=20 \mathrm{KHz} \times(40 / 3)=267 \mathrm{Kbps}$
b. $\mathrm{C}=\mathrm{B} \times\left(\mathrm{SNR}_{\mathrm{dB}} / 3\right)=200 \mathrm{KHz} \times(4 / 3)=267 \mathrm{Kbps}$
c. $\mathrm{C}=\mathrm{B} \times\left(\mathrm{SNR}_{\mathrm{dB}} / 3\right)=1 \mathrm{MHz} \times(20 / 3)=6.67 \mathrm{Mbps}$

P3-29. We can use the approximate formula

$$
\mathrm{C}=\mathrm{B} \times\left(\mathrm{SNR}_{\mathrm{dB}} / 3\right) \text { or } \mathrm{SNR}_{\mathrm{dB}}=(3 \times \mathrm{C}) / \mathrm{B}
$$

We can say that the minimum of $\mathrm{SNR}_{\mathrm{dB}}$ is

$$
\mathrm{SNR}_{\mathrm{dB}}=3 \times 100 \mathrm{Kbps} / 4 \mathrm{KHz}=75
$$

This means that the minimum

$$
\mathrm{SNR}=10 \mathrm{SNR}_{\mathrm{dB}} / 10=107.5 \approx 31,622,776
$$

P3-31. The bit duration is the inverse of the bandwidth. We have
(bit length) $=(\text { propagation speed })^{\prime}($ bit duration $)$
a. Bit length $=\left(2 \times 10^{8} \mathrm{~m}\right) \times[(1 /(1 \mathrm{Mbps})]=200 \mathrm{~m}$. This means a bit occupies 200 meters on a transmission medium.
b. Bit length $=\left(2 \times 10^{8} \mathrm{~m}\right) \times[(1 /(10 \mathrm{Mbps})]=20 \mathrm{~m}$. This means a bit occupies 20 meters on a transmission medium.
c. Bit length $=\left(2 \times 10^{8} \mathrm{~m}\right) \times[(1 /(100 \mathrm{Mbps})]=2 \mathrm{~m}$. This means a bit occupies 2 meters on a transmission medium.

P3-33. We have Latency $=$ Delay $_{\text {pr }}+$ Delay $_{\mathrm{qu}}+$ Delay $_{\mathrm{tr}}+$ Delay $_{\mathrm{pg}}$

Delay $_{\mathrm{pr}}=10 \times 1 \mu \mathrm{~s}=10 \mu \mathrm{~s}$	// Processing delay
Delay $_{\mathrm{qu}}=10 \times 2 \mu \mathrm{~s}=20 \mu \mathrm{~s}$	$/ /$ Queuing delay
Delay $_{\mathrm{tr}}=5,000,000 /(5 \mathrm{Mbps})=1 \mathrm{~s}$	// Transmission delay
Delay $_{\mathrm{pg}}=(2000 \mathrm{Km}) /\left(2 \times 10^{8}\right)=0.01 \mathrm{~s}$	// Propagation delay

This means

Latency $=10 \mu \mathrm{~s}+20 \mu \mathrm{~s}+1 \mathrm{~s}+0.01 \mathrm{~s} \approx 1.01 \mathrm{~s}$
The transmission time is dominant here because the packet size is huge.

